[hpc-announce] Deadline Extension: 2nd Workshop on Advances in Software and Hardware for Big Data to Knowledge Discovery (ASH) at IEEE BigData 2015

Hongfeng Yu hfyu at unl.edu
Fri Aug 21 08:50:10 CDT 2015

Call for Papers

Workshop on Advances in Software and Hardware for Big Data to Knowledge Discovery (ASH) in conjunction with 2015 IEEE conference on Big Data, Oct. 29-Nov.1 Santa Clara, CA USA

Extended Deadline: Sep. 7, 2015

The workshop on Advances in Software and Hardware for Big Data to Knowledge Discovery aims to bridge the latest technology development in hardware and software with end users of big data. The workshop will discuss issues that concern domain researchers about the latest software and hardware technologies, such as performance evaluation, optimizations, accessibility and usability of new technologies. We would like to invite cyber-infrastructure specialists and computer scientists to share their experiences with latest hardware and software advancements as well as data scientists to share their experiences and perspectives in using those technologies for data driven scientific investigations.

Fueled by the big data analytics needs, new computing and storage technologies are developing rapidly and pushing for new high-end hardware geared toward big data problems. While those technologies have the potential to greatly improve effectiveness of big data analytics, the cost and sophistications of those technologies and limited initial application supports often make them inaccessible to the end users and not fully utilized in academia years later. Meanwhile, comprehensive analytic software environment and platforms, such as R and Python, have become increasingly popular open-source platforms for data analysis. Those software environment and platforms not only provide a collection of analytic methods but also have the potential to utilize new hardware transparently and ease the efforts required from end users. However, most data scientists have only had experiences with small to medium-sized data; and now the size of Big Data poses its own challenges. It is therefore a critical issue to make the latest technology advancements in software and hardware accessible and usable to the domain scientists in a timely manner, especially those in fields traditionally not strong in computation and programming.

All submissions will be reviewed by at least two reviewers. Accepted papers will be included in the conference proceedings published by IEEE. Authors of selected papers will have the opportunities to be invited to extend the workshop version of the presentations to other journals.

The topics of the workshop are centered on the accessibility and applicability of the latest hardware and software to practical domain problems. Topics of interest include, but are not limited to:

*         Adopting hardware technology, such as GPGPU, Xeon Phi, etc., for Big Data analytics

*         Application and use cases in using cyber-infrastructure for Big Data in sciences and engineering

*         Big data and interactive analysis languages (e.g., R, Python, and Matlab)

*         New advances in hardware technology

*         Novel software platforms and models for big data collection management and analysis

*         Performance tuning with new hardware infrastructure and software platform

*         Search and data retrieval on large-scale data set

*         Service oriented architectures to enable data science

*         Software and platform for big data analysis and visualization

Important dates:
Sep. 7, 2015: Extended deadline for papers submission
Sep. 20, 2015: Notification of paper acceptance to authors
Oct. 5, 2015: Camera-ready of accepted papers
Oct. 29-Nov. 1 2014: Workshops

For more information and submission instructions please visit


Best regards,

Weijia Xu, Hui Zhang, and Hongfeng Yu

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.mcs.anl.gov/mailman/private/hpc-announce/attachments/20150821/e0495f93/attachment.html>

More information about the hpc-announce mailing list