[petsc-users] Galerkin projection using petsc4py
Thanasis Boutsikakis
thanasis.boutsikakis at corintis.com
Wed Oct 11 01:58:18 CDT 2023
Pierre, I see your point, but my experiment shows that it does not even run due to size mismatch, so I don’t see how being sparse would change things here. There must be some kind of problem with the parallel ptap(), because it does run sequentially. In order to test that, I changed the flags of the matrix creation to sparse=True and ran it again. Here is the code
"""Experimenting with PETSc mat-mat multiplication"""
import numpy as np
from firedrake import COMM_WORLD
from firedrake.petsc import PETSc
from utilities import Print
nproc = COMM_WORLD.size
rank = COMM_WORLD.rank
def create_petsc_matrix(input_array, sparse=True):
"""Create a PETSc matrix from an input_array
Args:
input_array (np array): Input array
partition_like (PETSc mat, optional): Petsc matrix. Defaults to None.
sparse (bool, optional): Toggle for sparese or dense. Defaults to True.
Returns:
PETSc mat: PETSc mpi matrix
"""
# Check if input_array is 1D and reshape if necessary
assert len(input_array.shape) == 2, "Input array should be 2-dimensional"
global_rows, global_cols = input_array.shape
size = ((None, global_rows), (global_cols, global_cols))
# Create a sparse or dense matrix based on the 'sparse' argument
if sparse:
matrix = PETSc.Mat().createAIJ(size=size, comm=COMM_WORLD)
else:
matrix = PETSc.Mat().createDense(size=size, comm=COMM_WORLD)
matrix.setUp()
local_rows_start, local_rows_end = matrix.getOwnershipRange()
for counter, i in enumerate(range(local_rows_start, local_rows_end)):
# Calculate the correct row in the array for the current process
row_in_array = counter + local_rows_start
matrix.setValues(
i, range(global_cols), input_array[row_in_array, :], addv=False
)
# Assembly the matrix to compute the final structure
matrix.assemblyBegin()
matrix.assemblyEnd()
return matrix
# --------------------------------------------
# EXP: Galerkin projection of an mpi PETSc matrix A with an mpi PETSc matrix Phi
# A' = Phi.T * A * Phi
# [k x k] <- [k x m] x [m x m] x [m x k]
# --------------------------------------------
m, k = 100, 7
# Generate the random numpy matrices
np.random.seed(0) # sets the seed to 0
A_np = np.random.randint(low=0, high=6, size=(m, m))
Phi_np = np.random.randint(low=0, high=6, size=(m, k))
# --------------------------------------------
# TEST: Galerking projection of numpy matrices A_np and Phi_np
# --------------------------------------------
Aprime_np = Phi_np.T @ A_np @ Phi_np
# Create A as an mpi matrix distributed on each process
A = create_petsc_matrix(A_np, sparse=True)
# Create Phi as an mpi matrix distributed on each process
Phi = create_petsc_matrix(Phi_np, sparse=True)
# Create an empty PETSc matrix object to store the result of the PtAP operation.
# This will hold the result A' = Phi.T * A * Phi after the computation.
A_prime = create_petsc_matrix(np.zeros((k, k)), sparse=True)
# Perform the PtAP (Phi Transpose times A times Phi) operation.
# In mathematical terms, this operation is A' = Phi.T * A * Phi.
# A_prime will store the result of the operation.
A_prime = A.ptap(Phi)
I got
Traceback (most recent call last):
File "/Users/boutsitron/petsc-experiments/mat_vec_multiplication2.py", line 89, in <module>
Traceback (most recent call last):
File "/Users/boutsitron/petsc-experiments/mat_vec_multiplication2.py", line 89, in <module>
Traceback (most recent call last):
File "/Users/boutsitron/petsc-experiments/mat_vec_multiplication2.py", line 89, in <module>
A_prime = A.ptap(Phi)
A_prime = A.ptap(Phi)
^^^^^^^^^^^
File "petsc4py/PETSc/Mat.pyx", line 1525, in petsc4py.PETSc.Mat.ptap
A_prime = A.ptap(Phi)
^^^^^^^^^^^
^^^^^^^^^^^
File "petsc4py/PETSc/Mat.pyx", line 1525, in petsc4py.PETSc.Mat.ptap
File "petsc4py/PETSc/Mat.pyx", line 1525, in petsc4py.PETSc.Mat.ptap
petsc4py.PETSc.Error: error code 60
[0] MatPtAP() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matrix.c:9896
[0] MatProductSetFromOptions() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matproduct.c:541
[0] MatProductSetFromOptions_Private() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matproduct.c:435
[0] MatProductSetFromOptions_MPIAIJ() at /Users/boutsitron/firedrake/src/petsc/src/mat/impls/aij/mpi/mpimatmatmult.c:2372
[0] MatProductSetFromOptions_MPIAIJ_PtAP() at /Users/boutsitron/firedrake/src/petsc/src/mat/impls/aij/mpi/mpimatmatmult.c:2266
[0] Nonconforming object sizes
[0] Matrix local dimensions are incompatible, Acol (0, 100) != Prow (0,34)
Abort(1) on node 0 (rank 0 in comm 496): application called MPI_Abort(PYOP2_COMM_WORLD, 1) - process 0
petsc4py.PETSc.Error: error code 60
[1] MatPtAP() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matrix.c:9896
[1] MatProductSetFromOptions() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matproduct.c:541
[1] MatProductSetFromOptions_Private() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matproduct.c:435
[1] MatProductSetFromOptions_MPIAIJ() at /Users/boutsitron/firedrake/src/petsc/src/mat/impls/aij/mpi/mpimatmatmult.c:2372
[1] MatProductSetFromOptions_MPIAIJ_PtAP() at /Users/boutsitron/firedrake/src/petsc/src/mat/impls/aij/mpi/mpimatmatmult.c:2266
[1] Nonconforming object sizes
[1] Matrix local dimensions are incompatible, Acol (100, 200) != Prow (34,67)
Abort(1) on node 1 (rank 1 in comm 496): application called MPI_Abort(PYOP2_COMM_WORLD, 1) - process 1
petsc4py.PETSc.Error: error code 60
[2] MatPtAP() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matrix.c:9896
[2] MatProductSetFromOptions() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matproduct.c:541
[2] MatProductSetFromOptions_Private() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matproduct.c:435
[2] MatProductSetFromOptions_MPIAIJ() at /Users/boutsitron/firedrake/src/petsc/src/mat/impls/aij/mpi/mpimatmatmult.c:2372
[2] MatProductSetFromOptions_MPIAIJ_PtAP() at /Users/boutsitron/firedrake/src/petsc/src/mat/impls/aij/mpi/mpimatmatmult.c:2266
[2] Nonconforming object sizes
[2] Matrix local dimensions are incompatible, Acol (200, 300) != Prow (67,100)
Abort(1) on node 2 (rank 2 in comm 496): application called MPI_Abort(PYOP2_COMM_WORLD, 1) - process 2
> On 11 Oct 2023, at 07:18, Pierre Jolivet <pierre at joliv.et> wrote:
>
> I disagree with what Mark and Matt are saying: your code is fine, the error message is fine, petsc4py is fine (in this instance).
> It’s not a typical use case of MatPtAP(), which is mostly designed for MatAIJ, not MatDense.
> On the one hand, in the MatDense case, indeed there will be a mismatch between the number of columns of A and the number of rows of P, as written in the error message.
> On the other hand, there is not much to optimize when computing C = P’ A P with everything being dense.
> I would just write this as B = A P and then C = P’ B (but then you may face the same issue as initially reported, please let us know then).
>
> Thanks,
> Pierre
>
>> On 11 Oct 2023, at 2:42 AM, Mark Adams <mfadams at lbl.gov> wrote:
>>
>> This looks like a false positive or there is some subtle bug here that we are not seeing.
>> Could this be the first time parallel PtAP has been used (and reported) in petsc4py?
>>
>> Mark
>>
>> On Tue, Oct 10, 2023 at 8:27 PM Matthew Knepley <knepley at gmail.com <mailto:knepley at gmail.com>> wrote:
>>> On Tue, Oct 10, 2023 at 5:34 PM Thanasis Boutsikakis <thanasis.boutsikakis at corintis.com <mailto:thanasis.boutsikakis at corintis.com>> wrote:
>>>> Hi all,
>>>>
>>>> Revisiting my code and the proposed solution from Pierre, I realized this works only in sequential. The reason is that PETSc partitions those matrices only row-wise, which leads to an error due to the mismatch between number of columns of A (non-partitioned) and the number of rows of Phi (partitioned).
>>>
>>> Are you positive about this? P^T A P is designed to run in this scenario, so either we have a bug or the diagnosis is wrong.
>>>
>>> Thanks,
>>>
>>> Matt
>>>
>>>> """Experimenting with PETSc mat-mat multiplication"""
>>>>
>>>> import time
>>>>
>>>> import numpy as np
>>>> from colorama import Fore
>>>> from firedrake import COMM_SELF, COMM_WORLD
>>>> from firedrake.petsc import PETSc
>>>> from mpi4py import MPI
>>>> from numpy.testing import assert_array_almost_equal
>>>>
>>>> from utilities import Print
>>>>
>>>> nproc = COMM_WORLD.size
>>>> rank = COMM_WORLD.rank
>>>>
>>>> def create_petsc_matrix(input_array, sparse=True):
>>>> """Create a PETSc matrix from an input_array
>>>>
>>>> Args:
>>>> input_array (np array): Input array
>>>> partition_like (PETSc mat, optional): Petsc matrix. Defaults to None.
>>>> sparse (bool, optional): Toggle for sparese or dense. Defaults to True.
>>>>
>>>> Returns:
>>>> PETSc mat: PETSc mpi matrix
>>>> """
>>>> # Check if input_array is 1D and reshape if necessary
>>>> assert len(input_array.shape) == 2, "Input array should be 2-dimensional"
>>>> global_rows, global_cols = input_array.shape
>>>> size = ((None, global_rows), (global_cols, global_cols))
>>>>
>>>> # Create a sparse or dense matrix based on the 'sparse' argument
>>>> if sparse:
>>>> matrix = PETSc.Mat().createAIJ(size=size, comm=COMM_WORLD)
>>>> else:
>>>> matrix = PETSc.Mat().createDense(size=size, comm=COMM_WORLD)
>>>> matrix.setUp()
>>>>
>>>> local_rows_start, local_rows_end = matrix.getOwnershipRange()
>>>>
>>>> for counter, i in enumerate(range(local_rows_start, local_rows_end)):
>>>> # Calculate the correct row in the array for the current process
>>>> row_in_array = counter + local_rows_start
>>>> matrix.setValues(
>>>> i, range(global_cols), input_array[row_in_array, :], addv=False
>>>> )
>>>>
>>>> # Assembly the matrix to compute the final structure
>>>> matrix.assemblyBegin()
>>>> matrix.assemblyEnd()
>>>>
>>>> return matrix
>>>>
>>>> # --------------------------------------------
>>>> # EXP: Galerkin projection of an mpi PETSc matrix A with an mpi PETSc matrix Phi
>>>> # A' = Phi.T * A * Phi
>>>> # [k x k] <- [k x m] x [m x m] x [m x k]
>>>> # --------------------------------------------
>>>>
>>>> m, k = 100, 7
>>>> # Generate the random numpy matrices
>>>> np.random.seed(0) # sets the seed to 0
>>>> A_np = np.random.randint(low=0, high=6, size=(m, m))
>>>> Phi_np = np.random.randint(low=0, high=6, size=(m, k))
>>>>
>>>> # --------------------------------------------
>>>> # TEST: Galerking projection of numpy matrices A_np and Phi_np
>>>> # --------------------------------------------
>>>> Aprime_np = Phi_np.T @ A_np @ Phi_np
>>>> Print(f"MATRIX Aprime_np [{Aprime_np.shape[0]}x{Aprime_np.shape[1]}]")
>>>> Print(f"{Aprime_np}")
>>>>
>>>> # Create A as an mpi matrix distributed on each process
>>>> A = create_petsc_matrix(A_np, sparse=False)
>>>>
>>>> # Create Phi as an mpi matrix distributed on each process
>>>> Phi = create_petsc_matrix(Phi_np, sparse=False)
>>>>
>>>> # Create an empty PETSc matrix object to store the result of the PtAP operation.
>>>> # This will hold the result A' = Phi.T * A * Phi after the computation.
>>>> A_prime = create_petsc_matrix(np.zeros((k, k)), sparse=False)
>>>>
>>>> # Perform the PtAP (Phi Transpose times A times Phi) operation.
>>>> # In mathematical terms, this operation is A' = Phi.T * A * Phi.
>>>> # A_prime will store the result of the operation.
>>>> A_prime = A.ptap(Phi)
>>>>
>>>> Here is the error
>>>>
>>>> MATRIX mpiaij A [100x100]
>>>> Assembled
>>>>
>>>> Partitioning for A:
>>>> Rank 0: Rows [0, 34)
>>>> Rank 1: Rows [34, 67)
>>>> Rank 2: Rows [67, 100)
>>>>
>>>> MATRIX mpiaij Phi [100x7]
>>>> Assembled
>>>>
>>>> Partitioning for Phi:
>>>> Rank 0: Rows [0, 34)
>>>> Rank 1: Rows [34, 67)
>>>> Rank 2: Rows [67, 100)
>>>>
>>>> Traceback (most recent call last):
>>>> File "/Users/boutsitron/work/galerkin_projection.py", line 87, in <module>
>>>> A_prime = A.ptap(Phi)
>>>> ^^^^^^^^^^^
>>>> File "petsc4py/PETSc/Mat.pyx", line 1525, in petsc4py.PETSc.Mat.ptap
>>>> petsc4py.PETSc.Error: error code 60
>>>> [0] MatPtAP() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matrix.c:9896
>>>> [0] MatProductSetFromOptions() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matproduct.c:541
>>>> [0] MatProductSetFromOptions_Private() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matproduct.c:435
>>>> [0] MatProductSetFromOptions_MPIAIJ() at /Users/boutsitron/firedrake/src/petsc/src/mat/impls/aij/mpi/mpimatmatmult.c:2372
>>>> [0] MatProductSetFromOptions_MPIAIJ_PtAP() at /Users/boutsitron/firedrake/src/petsc/src/mat/impls/aij/mpi/mpimatmatmult.c:2266
>>>> [0] Nonconforming object sizes
>>>> [0] Matrix local dimensions are incompatible, Acol (0, 100) != Prow (0,34)
>>>> Abort(1) on node 0 (rank 0 in comm 496): application called MPI_Abort(PYOP2_COMM_WORLD, 1) - process 0
>>>>
>>>> Any thoughts?
>>>>
>>>> Thanks,
>>>> Thanos
>>>>
>>>>> On 5 Oct 2023, at 14:23, Thanasis Boutsikakis <thanasis.boutsikakis at corintis.com <mailto:thanasis.boutsikakis at corintis.com>> wrote:
>>>>>
>>>>> This works Pierre. Amazing input, thanks a lot!
>>>>>
>>>>>> On 5 Oct 2023, at 14:17, Pierre Jolivet <pierre at joliv.et <mailto:pierre at joliv.et>> wrote:
>>>>>>
>>>>>> Not a petsc4py expert here, but you may to try instead:
>>>>>> A_prime = A.ptap(Phi)
>>>>>>
>>>>>> Thanks,
>>>>>> Pierre
>>>>>>
>>>>>>> On 5 Oct 2023, at 2:02 PM, Thanasis Boutsikakis <thanasis.boutsikakis at corintis.com <mailto:thanasis.boutsikakis at corintis.com>> wrote:
>>>>>>>
>>>>>>> Thanks Pierre! So I tried this and got a segmentation fault. Is this supposed to work right off the bat or am I missing sth?
>>>>>>>
>>>>>>> [0]PETSC ERROR: ------------------------------------------------------------------------
>>>>>>> [0]PETSC ERROR: Caught signal number 11 SEGV: Segmentation Violation, probably memory access out of range
>>>>>>> [0]PETSC ERROR: Try option -start_in_debugger or -on_error_attach_debugger
>>>>>>> [0]PETSC ERROR: or see https://petsc.org/release/faq/#valgrind and https://petsc.org/release/faq/
>>>>>>> [0]PETSC ERROR: configure using --with-debugging=yes, recompile, link, and run
>>>>>>> [0]PETSC ERROR: to get more information on the crash.
>>>>>>> [0]PETSC ERROR: Run with -malloc_debug to check if memory corruption is causing the crash.
>>>>>>> Abort(59) on node 0 (rank 0 in comm 0): application called MPI_Abort(MPI_COMM_WORLD, 59) - process 0
>>>>>>>
>>>>>>> """Experimenting with PETSc mat-mat multiplication"""
>>>>>>>
>>>>>>> import time
>>>>>>>
>>>>>>> import numpy as np
>>>>>>> from colorama import Fore
>>>>>>> from firedrake import COMM_SELF, COMM_WORLD
>>>>>>> from firedrake.petsc import PETSc
>>>>>>> from mpi4py import MPI
>>>>>>> from numpy.testing import assert_array_almost_equal
>>>>>>>
>>>>>>> from utilities import (
>>>>>>> Print,
>>>>>>> create_petsc_matrix,
>>>>>>> print_matrix_partitioning,
>>>>>>> )
>>>>>>>
>>>>>>> nproc = COMM_WORLD.size
>>>>>>> rank = COMM_WORLD.rank
>>>>>>>
>>>>>>> # --------------------------------------------
>>>>>>> # EXP: Galerkin projection of an mpi PETSc matrix A with an mpi PETSc matrix Phi
>>>>>>> # A' = Phi.T * A * Phi
>>>>>>> # [k x k] <- [k x m] x [m x m] x [m x k]
>>>>>>> # --------------------------------------------
>>>>>>>
>>>>>>> m, k = 11, 7
>>>>>>> # Generate the random numpy matrices
>>>>>>> np.random.seed(0) # sets the seed to 0
>>>>>>> A_np = np.random.randint(low=0, high=6, size=(m, m))
>>>>>>> Phi_np = np.random.randint(low=0, high=6, size=(m, k))
>>>>>>>
>>>>>>> # --------------------------------------------
>>>>>>> # TEST: Galerking projection of numpy matrices A_np and Phi_np
>>>>>>> # --------------------------------------------
>>>>>>> Aprime_np = Phi_np.T @ A_np @ Phi_np
>>>>>>> Print(f"MATRIX Aprime_np [{Aprime_np.shape[0]}x{Aprime_np.shape[1]}]")
>>>>>>> Print(f"{Aprime_np}")
>>>>>>>
>>>>>>> # Create A as an mpi matrix distributed on each process
>>>>>>> A = create_petsc_matrix(A_np, sparse=False)
>>>>>>>
>>>>>>> # Create Phi as an mpi matrix distributed on each process
>>>>>>> Phi = create_petsc_matrix(Phi_np, sparse=False)
>>>>>>>
>>>>>>> # Create an empty PETSc matrix object to store the result of the PtAP operation.
>>>>>>> # This will hold the result A' = Phi.T * A * Phi after the computation.
>>>>>>> A_prime = create_petsc_matrix(np.zeros((k, k)), sparse=False)
>>>>>>>
>>>>>>> # Perform the PtAP (Phi Transpose times A times Phi) operation.
>>>>>>> # In mathematical terms, this operation is A' = Phi.T * A * Phi.
>>>>>>> # A_prime will store the result of the operation.
>>>>>>> Phi.PtAP(A, A_prime)
>>>>>>>
>>>>>>>> On 5 Oct 2023, at 13:22, Pierre Jolivet <pierre at joliv.et <mailto:pierre at joliv.et>> wrote:
>>>>>>>>
>>>>>>>> How about using ptap which will use MatPtAP?
>>>>>>>> It will be more efficient (and it will help you bypass the issue).
>>>>>>>>
>>>>>>>> Thanks,
>>>>>>>> Pierre
>>>>>>>>
>>>>>>>>> On 5 Oct 2023, at 1:18 PM, Thanasis Boutsikakis <thanasis.boutsikakis at corintis.com <mailto:thanasis.boutsikakis at corintis.com>> wrote:
>>>>>>>>>
>>>>>>>>> Sorry, forgot function create_petsc_matrix()
>>>>>>>>>
>>>>>>>>> def create_petsc_matrix(input_array sparse=True):
>>>>>>>>> """Create a PETSc matrix from an input_array
>>>>>>>>>
>>>>>>>>> Args:
>>>>>>>>> input_array (np array): Input array
>>>>>>>>> partition_like (PETSc mat, optional): Petsc matrix. Defaults to None.
>>>>>>>>> sparse (bool, optional): Toggle for sparese or dense. Defaults to True.
>>>>>>>>>
>>>>>>>>> Returns:
>>>>>>>>> PETSc mat: PETSc matrix
>>>>>>>>> """
>>>>>>>>> # Check if input_array is 1D and reshape if necessary
>>>>>>>>> assert len(input_array.shape) == 2, "Input array should be 2-dimensional"
>>>>>>>>> global_rows, global_cols = input_array.shape
>>>>>>>>>
>>>>>>>>> size = ((None, global_rows), (global_cols, global_cols))
>>>>>>>>>
>>>>>>>>> # Create a sparse or dense matrix based on the 'sparse' argument
>>>>>>>>> if sparse:
>>>>>>>>> matrix = PETSc.Mat().createAIJ(size=size, comm=COMM_WORLD)
>>>>>>>>> else:
>>>>>>>>> matrix = PETSc.Mat().createDense(size=size, comm=COMM_WORLD)
>>>>>>>>> matrix.setUp()
>>>>>>>>>
>>>>>>>>> local_rows_start, local_rows_end = matrix.getOwnershipRange()
>>>>>>>>>
>>>>>>>>> for counter, i in enumerate(range(local_rows_start, local_rows_end)):
>>>>>>>>> # Calculate the correct row in the array for the current process
>>>>>>>>> row_in_array = counter + local_rows_start
>>>>>>>>> matrix.setValues(
>>>>>>>>> i, range(global_cols), input_array[row_in_array, :], addv=False
>>>>>>>>> )
>>>>>>>>>
>>>>>>>>> # Assembly the matrix to compute the final structure
>>>>>>>>> matrix.assemblyBegin()
>>>>>>>>> matrix.assemblyEnd()
>>>>>>>>>
>>>>>>>>> return matrix
>>>>>>>>>
>>>>>>>>>> On 5 Oct 2023, at 13:09, Thanasis Boutsikakis <thanasis.boutsikakis at corintis.com <mailto:thanasis.boutsikakis at corintis.com>> wrote:
>>>>>>>>>>
>>>>>>>>>> Hi everyone,
>>>>>>>>>>
>>>>>>>>>> I am trying a Galerkin projection (see MFE below) and I cannot get the Phi.transposeMatMult(A, A1) work. The error is
>>>>>>>>>>
>>>>>>>>>> Phi.transposeMatMult(A, A1)
>>>>>>>>>> File "petsc4py/PETSc/Mat.pyx", line 1514, in petsc4py.PETSc.Mat.transposeMatMult
>>>>>>>>>> petsc4py.PETSc.Error: error code 56
>>>>>>>>>> [0] MatTransposeMatMult() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matrix.c:10135
>>>>>>>>>> [0] MatProduct_Private() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matrix.c:9989
>>>>>>>>>> [0] No support for this operation for this object type
>>>>>>>>>> [0] Call MatProductCreate() first
>>>>>>>>>>
>>>>>>>>>> Do you know if these exposed to petsc4py or maybe there is another way? I cannot get the MFE to work (neither in sequential nor in parallel)
>>>>>>>>>>
>>>>>>>>>> """Experimenting with PETSc mat-mat multiplication"""
>>>>>>>>>>
>>>>>>>>>> import time
>>>>>>>>>>
>>>>>>>>>> import numpy as np
>>>>>>>>>> from colorama import Fore
>>>>>>>>>> from firedrake import COMM_SELF, COMM_WORLD
>>>>>>>>>> from firedrake.petsc import PETSc
>>>>>>>>>> from mpi4py import MPI
>>>>>>>>>> from numpy.testing import assert_array_almost_equal
>>>>>>>>>>
>>>>>>>>>> from utilities import (
>>>>>>>>>> Print,
>>>>>>>>>> create_petsc_matrix,
>>>>>>>>>> )
>>>>>>>>>>
>>>>>>>>>> nproc = COMM_WORLD.size
>>>>>>>>>> rank = COMM_WORLD.rank
>>>>>>>>>>
>>>>>>>>>> # --------------------------------------------
>>>>>>>>>> # EXP: Galerkin projection of an mpi PETSc matrix A with an mpi PETSc matrix Phi
>>>>>>>>>> # A' = Phi.T * A * Phi
>>>>>>>>>> # [k x k] <- [k x m] x [m x m] x [m x k]
>>>>>>>>>> # --------------------------------------------
>>>>>>>>>>
>>>>>>>>>> m, k = 11, 7
>>>>>>>>>> # Generate the random numpy matrices
>>>>>>>>>> np.random.seed(0) # sets the seed to 0
>>>>>>>>>> A_np = np.random.randint(low=0, high=6, size=(m, m))
>>>>>>>>>> Phi_np = np.random.randint(low=0, high=6, size=(m, k))
>>>>>>>>>>
>>>>>>>>>> # Create A as an mpi matrix distributed on each process
>>>>>>>>>> A = create_petsc_matrix(A_np)
>>>>>>>>>>
>>>>>>>>>> # Create Phi as an mpi matrix distributed on each process
>>>>>>>>>> Phi = create_petsc_matrix(Phi_np)
>>>>>>>>>>
>>>>>>>>>> A1 = create_petsc_matrix(np.zeros((k, m)))
>>>>>>>>>>
>>>>>>>>>> # Now A1 contains the result of Phi^T * A
>>>>>>>>>> Phi.transposeMatMult(A, A1)
>>>>>>>>>>
>>>>>>>>>
>>>>>>>>
>>>>>>>
>>>>>>
>>>>>
>>>>
>>>
>>>
>>> --
>>> What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.
>>> -- Norbert Wiener
>>>
>>> https://www.cse.buffalo.edu/~knepley/ <http://www.cse.buffalo.edu/~knepley/>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20231011/c80d6864/attachment-0001.html>
More information about the petsc-users
mailing list