[petsc-users] Multiplication of partitioned with non-partitioned (sparse) PETSc matrices
Pierre Jolivet
pierre.jolivet at lip6.fr
Wed Aug 23 03:47:48 CDT 2023
> On 23 Aug 2023, at 5:35 PM, Thanasis Boutsikakis <thanasis.boutsikakis at corintis.com> wrote:
> Hi all,
>
> I am trying to multiply two Petsc matrices as C = A * B, where A is a tall matrix and B is a relatively small matrix.
>
> I have taken the decision to create A as (row-)partitioned matrix and B as a non-partitioned matrix that it is entirely shared by all procs (to avoid unnecessary communication).
>
> Here is my code:
>
> import numpy as np
> from firedrake import COMM_WORLD
> from firedrake.petsc import PETSc
> from numpy.testing import assert_array_almost_equal
>
> nproc = COMM_WORLD.size
> rank = COMM_WORLD.rank
>
> def create_petsc_matrix_non_partitioned(input_array):
> """Building a mpi non-partitioned petsc matrix from an array
>
> Args:
> input_array (np array): Input array
> sparse (bool, optional): Toggle for sparese or dense. Defaults to True.
>
> Returns:
> mpi mat: PETSc matrix
> """
> assert len(input_array.shape) == 2
>
> m, n = input_array.shape
>
> matrix = PETSc.Mat().createAIJ(size=((m, n), (m, n)), comm=COMM_WORLD)
>
> # Set the values of the matrix
> matrix.setValues(range(m), range(n), input_array[:, :], addv=False)
>
> # Assembly the matrix to compute the final structure
> matrix.assemblyBegin()
> matrix.assemblyEnd()
>
> return matrix
>
>
> def create_petsc_matrix(input_array, partition_like=None):
> """Create a PETSc matrix from an input_array
>
> Args:
> input_array (np array): Input array
> partition_like (petsc mat, optional): Petsc matrix. Defaults to None.
> sparse (bool, optional): Toggle for sparese or dense. Defaults to True.
>
> Returns:
> petsc mat: PETSc matrix
> """
> # Check if input_array is 1D and reshape if necessary
> assert len(input_array.shape) == 2, "Input array should be 2-dimensional"
> global_rows, global_cols = input_array.shape
>
> comm = COMM_WORLD
> if partition_like is not None:
> local_rows_start, local_rows_end = partition_like.getOwnershipRange()
> local_rows = local_rows_end - local_rows_start
>
> # No parallelization in the columns, set local_cols = None to parallelize
> size = ((local_rows, global_rows), (global_cols, global_cols))
> else:
> size = ((None, global_rows), (global_cols, global_cols))
>
> matrix = PETSc.Mat().createAIJ(size=size, comm=comm)
> matrix.setUp()
>
> local_rows_start, local_rows_end = matrix.getOwnershipRange()
>
> for counter, i in enumerate(range(local_rows_start, local_rows_end)):
> # Calculate the correct row in the array for the current process
> row_in_array = counter + local_rows_start
> matrix.setValues(
> i, range(global_cols), input_array[row_in_array, :], addv=False
> )
>
> # Assembly the matrix to compute the final structure
> matrix.assemblyBegin()
> matrix.assemblyEnd()
>
> return matrix
>
>
> m, k = 10, 3
> # Generate the random numpy matrices
> np.random.seed(0) # sets the seed to 0
> A_np = np.random.randint(low=0, high=6, size=(m, k))
> B_np = np.random.randint(low=0, high=6, size=(k, k))
>
>
> A = create_petsc_matrix(A_np)
>
> B = create_petsc_matrix_non_partitioned(B_np)
>
> # Now perform the multiplication
> C = A * B
>
> The problem with this is that there is a mismatch between the local rows of A (depend on the partitioning) and the global rows of B (3 for all procs), so that the multiplication cannot happen in parallel. Here is the error:
>
> [0]PETSC ERROR: ------------------------------------------------------------------------
> [0]PETSC ERROR: Caught signal number 11 SEGV: Segmentation Violation, probably memory access out of range
> [0]PETSC ERROR: Try option -start_in_debugger or -on_error_attach_debugger
> [0]PETSC ERROR: or see https://petsc.org/release/faq/#valgrind and https://petsc.org/release/faq/
> [0]PETSC ERROR: configure using --with-debugging=yes, recompile, link, and run
> [0]PETSC ERROR: to get more information on the crash.
> [0]PETSC ERROR: Run with -malloc_debug to check if memory corruption is causing the crash.
> application called MPI_Abort(MPI_COMM_WORLD, 59) - process 0
> [unset]: write_line error; fd=-1 buf=:cmd=abort exitcode=59
> :
> system msg for write_line failure : Bad file descriptor
>
>
> Is there a standard way to achieve this?
Your B is duplicated by all processes?
If so, then, call https://petsc.org/main/manualpages/Mat/MatMPIAIJGetLocalMat/, do a sequential product with B on COMM_SELF, not COMM_WORLD, and use https://petsc.org/main/manualpages/Mat/MatCreateMPIMatConcatenateSeqMat/ with the output.
Thanks,
Pierre
> Thanks,
> Thanos
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20230823/c0a607c6/attachment-0001.html>
More information about the petsc-users
mailing list