[petsc-users] Multiplication of partitioned with non-partitioned (sparse) PETSc matrices

Thanasis Boutsikakis thanasis.boutsikakis at corintis.com
Wed Aug 23 03:35:19 CDT 2023


Hi all,

I am trying to multiply two Petsc matrices as C = A * B, where A is a tall matrix and B is a relatively small matrix.

I have taken the decision to create A as (row-)partitioned matrix and B as a non-partitioned matrix that it is entirely shared by all procs (to avoid unnecessary communication).

Here is my code:

import numpy as np
from firedrake import COMM_WORLD
from firedrake.petsc import PETSc
from numpy.testing import assert_array_almost_equal

nproc = COMM_WORLD.size
rank = COMM_WORLD.rank

def create_petsc_matrix_non_partitioned(input_array):
    """Building a mpi non-partitioned petsc matrix from an array

    Args:
        input_array (np array): Input array
        sparse (bool, optional): Toggle for sparese or dense. Defaults to True.

    Returns:
        mpi mat: PETSc matrix
    """
    assert len(input_array.shape) == 2

    m, n = input_array.shape

    matrix = PETSc.Mat().createAIJ(size=((m, n), (m, n)), comm=COMM_WORLD)

    # Set the values of the matrix
    matrix.setValues(range(m), range(n), input_array[:, :], addv=False)

    # Assembly the matrix to compute the final structure
    matrix.assemblyBegin()
    matrix.assemblyEnd()

    return matrix


def create_petsc_matrix(input_array, partition_like=None):
    """Create a PETSc matrix from an input_array

    Args:
        input_array (np array): Input array
        partition_like (petsc mat, optional): Petsc matrix. Defaults to None.
        sparse (bool, optional): Toggle for sparese or dense. Defaults to True.

    Returns:
        petsc mat: PETSc matrix
    """
    # Check if input_array is 1D and reshape if necessary
    assert len(input_array.shape) == 2, "Input array should be 2-dimensional"
    global_rows, global_cols = input_array.shape

    comm = COMM_WORLD
    if partition_like is not None:
        local_rows_start, local_rows_end = partition_like.getOwnershipRange()
        local_rows = local_rows_end - local_rows_start

        # No parallelization in the columns, set local_cols = None to parallelize
        size = ((local_rows, global_rows), (global_cols, global_cols))
    else:
        size = ((None, global_rows), (global_cols, global_cols))

    matrix = PETSc.Mat().createAIJ(size=size, comm=comm)
    matrix.setUp()

    local_rows_start, local_rows_end = matrix.getOwnershipRange()

    for counter, i in enumerate(range(local_rows_start, local_rows_end)):
        # Calculate the correct row in the array for the current process
        row_in_array = counter + local_rows_start
        matrix.setValues(
            i, range(global_cols), input_array[row_in_array, :], addv=False
        )

    # Assembly the matrix to compute the final structure
    matrix.assemblyBegin()
    matrix.assemblyEnd()

    return matrix


m, k = 10, 3
# Generate the random numpy matrices
np.random.seed(0)  # sets the seed to 0
A_np = np.random.randint(low=0, high=6, size=(m, k))
B_np = np.random.randint(low=0, high=6, size=(k, k))


A = create_petsc_matrix(A_np)

B = create_petsc_matrix_non_partitioned(B_np)

# Now perform the multiplication
C = A * B

The problem with this is that there is a mismatch between the local rows of A (depend on the partitioning) and the global rows of B (3 for all procs), so that the multiplication cannot happen in parallel. Here is the error:

[0]PETSC ERROR: ------------------------------------------------------------------------
[0]PETSC ERROR: Caught signal number 11 SEGV: Segmentation Violation, probably memory access out of range
[0]PETSC ERROR: Try option -start_in_debugger or -on_error_attach_debugger
[0]PETSC ERROR: or see https://petsc.org/release/faq/#valgrind and https://petsc.org/release/faq/
[0]PETSC ERROR: configure using --with-debugging=yes, recompile, link, and run
[0]PETSC ERROR: to get more information on the crash.
[0]PETSC ERROR: Run with -malloc_debug to check if memory corruption is causing the crash.
application called MPI_Abort(MPI_COMM_WORLD, 59) - process 0
[unset]: write_line error; fd=-1 buf=:cmd=abort exitcode=59
:
system msg for write_line failure : Bad file descriptor


Is there a standard way to achieve this?

Thanks,
Thanos

  
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20230823/b38261b8/attachment.html>


More information about the petsc-users mailing list