[petsc-users] Multiplication of partitioned with non-partitioned (sparse) PETSc matrices
Thanasis Boutsikakis
thanasis.boutsikakis at corintis.com
Wed Aug 23 03:35:19 CDT 2023
Hi all,
I am trying to multiply two Petsc matrices as C = A * B, where A is a tall matrix and B is a relatively small matrix.
I have taken the decision to create A as (row-)partitioned matrix and B as a non-partitioned matrix that it is entirely shared by all procs (to avoid unnecessary communication).
Here is my code:
import numpy as np
from firedrake import COMM_WORLD
from firedrake.petsc import PETSc
from numpy.testing import assert_array_almost_equal
nproc = COMM_WORLD.size
rank = COMM_WORLD.rank
def create_petsc_matrix_non_partitioned(input_array):
"""Building a mpi non-partitioned petsc matrix from an array
Args:
input_array (np array): Input array
sparse (bool, optional): Toggle for sparese or dense. Defaults to True.
Returns:
mpi mat: PETSc matrix
"""
assert len(input_array.shape) == 2
m, n = input_array.shape
matrix = PETSc.Mat().createAIJ(size=((m, n), (m, n)), comm=COMM_WORLD)
# Set the values of the matrix
matrix.setValues(range(m), range(n), input_array[:, :], addv=False)
# Assembly the matrix to compute the final structure
matrix.assemblyBegin()
matrix.assemblyEnd()
return matrix
def create_petsc_matrix(input_array, partition_like=None):
"""Create a PETSc matrix from an input_array
Args:
input_array (np array): Input array
partition_like (petsc mat, optional): Petsc matrix. Defaults to None.
sparse (bool, optional): Toggle for sparese or dense. Defaults to True.
Returns:
petsc mat: PETSc matrix
"""
# Check if input_array is 1D and reshape if necessary
assert len(input_array.shape) == 2, "Input array should be 2-dimensional"
global_rows, global_cols = input_array.shape
comm = COMM_WORLD
if partition_like is not None:
local_rows_start, local_rows_end = partition_like.getOwnershipRange()
local_rows = local_rows_end - local_rows_start
# No parallelization in the columns, set local_cols = None to parallelize
size = ((local_rows, global_rows), (global_cols, global_cols))
else:
size = ((None, global_rows), (global_cols, global_cols))
matrix = PETSc.Mat().createAIJ(size=size, comm=comm)
matrix.setUp()
local_rows_start, local_rows_end = matrix.getOwnershipRange()
for counter, i in enumerate(range(local_rows_start, local_rows_end)):
# Calculate the correct row in the array for the current process
row_in_array = counter + local_rows_start
matrix.setValues(
i, range(global_cols), input_array[row_in_array, :], addv=False
)
# Assembly the matrix to compute the final structure
matrix.assemblyBegin()
matrix.assemblyEnd()
return matrix
m, k = 10, 3
# Generate the random numpy matrices
np.random.seed(0) # sets the seed to 0
A_np = np.random.randint(low=0, high=6, size=(m, k))
B_np = np.random.randint(low=0, high=6, size=(k, k))
A = create_petsc_matrix(A_np)
B = create_petsc_matrix_non_partitioned(B_np)
# Now perform the multiplication
C = A * B
The problem with this is that there is a mismatch between the local rows of A (depend on the partitioning) and the global rows of B (3 for all procs), so that the multiplication cannot happen in parallel. Here is the error:
[0]PETSC ERROR: ------------------------------------------------------------------------
[0]PETSC ERROR: Caught signal number 11 SEGV: Segmentation Violation, probably memory access out of range
[0]PETSC ERROR: Try option -start_in_debugger or -on_error_attach_debugger
[0]PETSC ERROR: or see https://petsc.org/release/faq/#valgrind and https://petsc.org/release/faq/
[0]PETSC ERROR: configure using --with-debugging=yes, recompile, link, and run
[0]PETSC ERROR: to get more information on the crash.
[0]PETSC ERROR: Run with -malloc_debug to check if memory corruption is causing the crash.
application called MPI_Abort(MPI_COMM_WORLD, 59) - process 0
[unset]: write_line error; fd=-1 buf=:cmd=abort exitcode=59
:
system msg for write_line failure : Bad file descriptor
Is there a standard way to achieve this?
Thanks,
Thanos
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20230823/b38261b8/attachment.html>
More information about the petsc-users
mailing list