[petsc-users] Varying TAO optimization solve iterations using BLMVM

Justin Chang jychang48 at gmail.com
Thu Jun 25 11:42:53 CDT 2015


Jason,

I was experimenting with some smaller steady-state problems and I still get
the same issue: every time I run the same problem on the same number of
processors the number of iterations differs but the solutions remain the
same. I think this is the root to why I get such erratic behavior in
iterations in the transient case. Attached are the log files for the two
runs I did.

Is it possible to tell what's going on from these? Or should I reinstall
PETSc? Because I only noticed this problem once I switched over to the
master version of 3.6 (although it's possible I might have screwed up the
installation a bit because I had to scp everything due to the firewall). I
can send you the example code and working files if needed

Thanks,
Justin

On Thu, Jun 25, 2015 at 9:51 AM, Jason Sarich <jason.sarich at gmail.com>
wrote:

> Hi Justin,
>
> I don't see anything obviously wrong that would be causing this variation
> in iterations due to number of processors. Is it at all feasible to send be
> an example code that reproduces the problem (perhaps a smaller version)?
> I'm still guessing the problem lies in numerical precision, it would be
> nice to find a way to avoid them. I don't think the job scheduling or
> compute nodes would affect this.
>
>>  Basically I call TaoSolve at each time level. What I find strange is
>> that the number of TAO solve iterations vary at each time level for a given
>> number of processors
>
> Just for clarification, do you mean that for a given problem, you run the
> same problem several times the only difference being the number of
> processors, and that on each time step you get (close to) the same solution
> for each run, just with a different number of TAO iterations?
>
> If you run the same problem twice using the same number of processors, is
> the output identical? No OpenMP threads or GPU's?
>
>
>> 2) Sometimes, I get Tao Termination reason of -5, and from what I see
>> from the online documentation, it means the number of function evaluations
>> exceeds the maximum number of function evaluations. I only get this at
>> certain time levels, and it also varies when I change the number of
>> processors.
>
>
> This looks like the same issue, unless the number of iterations is hugely
> different (say it converges on some number of processors after 200
> iterations, but still hasn't converged after 2000 on a different number).
>
>
> Jason
>
>
>
>
> On Tue, Jun 23, 2015 at 6:36 PM, Justin Chang <jychang48 at gmail.com> wrote:
>
>>     I was unable to do quad precision or even with 64 bit integers
>> because my data files rely on intricate binary files that have been written
>> in 32 bit.
>>
>>  However, I noticed a couple things which are puzzling to me:
>>
>>  1) I am solving a transient problem using my own backward euler
>> function. Basically I call TaoSolve at each time level. What I find strange
>> is that the number of TAO solve iterations vary at each time level for a
>> given number of processors. The solution is roughly the same when I change
>> the number of processors. Any idea why this is happening, or might this
>> have more to do with the job scheduling/compute nodes on my HPC machine?
>>
>>  2) Sometimes, I get Tao Termination reason of -5, and from what I see
>> from the online documentation, it means the number of function evaluations
>> exceeds the maximum number of function evaluations. I only get this at
>> certain time levels, and it also varies when I change the number of
>> processors.
>>
>>  I can understand the number of iterations going down the further in time
>> i go (this is due to the nature of my problem), but I am not sure why the
>> above two observations are happening. Any thoughts?
>>
>>  Thanks,
>>  Justin
>>
>> On Fri, Jun 19, 2015 at 11:52 AM, Justin Chang <jychang48 at gmail.com>
>> wrote:
>>
>>> My code sort of requires HDF5 so installing quad precision might be a
>>> little difficult. I could try to work around this but that might take some
>>> effort.
>>>
>>>  In the mean time, is there any other potential explanation or
>>> alternative to figuring this out?
>>>
>>>  Thanks,
>>> Justin
>>>
>>>
>>> On Thursday, June 18, 2015, Matthew Knepley <knepley at gmail.com> wrote:
>>>
>>>>  On Thu, Jun 18, 2015 at 1:52 PM, Jason Sarich <jason.sarich at gmail.com>
>>>> wrote:
>>>>
>>>>> BLMVM doesn't use a KSP or preconditioner, it updates using the
>>>>> L-BFGS-B formula
>>>>>
>>>>
>>>>  Then this sounds like a bug, unless one of the constants is partition
>>>> dependent.
>>>>
>>>>    Matt
>>>>
>>>>
>>>>>  On Thu, Jun 18, 2015 at 1:45 PM, Matthew Knepley <knepley at gmail.com>
>>>>> wrote:
>>>>>
>>>>>>   On Thu, Jun 18, 2015 at 12:15 PM, Jason Sarich <
>>>>>> jason.sarich at gmail.com> wrote:
>>>>>>
>>>>>>> Hi Justin,
>>>>>>>
>>>>>>>  I can't tell for sure why this is happening, have you tried using
>>>>>>> quad precision to make sure that numerical cutoffs isn't the problem?
>>>>>>>
>>>>>>>  1 The Hessian being approximate and the resulting implicit
>>>>>>> computation is the source of the cutoff, but would not be causing different
>>>>>>> convergence rates in infinite precision.
>>>>>>>
>>>>>>>  2 the local size may affect load balancing but not the resulting
>>>>>>> norms/convergence rate.
>>>>>>>
>>>>>>
>>>>>>  This sounds to be like the preconditioner is dependent on the
>>>>>> partition. Can you send -tao_view -snes_view
>>>>>>
>>>>>>    Matt
>>>>>>
>>>>>>
>>>>>>>  Jason
>>>>>>>
>>>>>>>
>>>>>>> On Thu, Jun 18, 2015 at 10:44 AM, Justin Chang <jychang48 at gmail.com>
>>>>>>> wrote:
>>>>>>>
>>>>>>>>  I solved a transient diffusion across multiple cores using TAO
>>>>>>>> BLMVM. When I simulate the same problem but on different numbers of
>>>>>>>> processing cores, the number of solve iterations change quite drastically.
>>>>>>>> The numerical solution is the same, but these changes are quite vast. I
>>>>>>>> attached a PDF showing a comparison between KSP and TAO. KSP remains
>>>>>>>> largely invariant with number of processors but TAO (with bounded
>>>>>>>> constraints) fluctuates.
>>>>>>>>
>>>>>>>> My question is, why is this happening? I understand that
>>>>>>>> accumulation of numerical round-offs may attribute to this, but the
>>>>>>>> differences seem quite vast to me. My initial thought was that
>>>>>>>>
>>>>>>>>  1) the Hessian is only projected and not explicitly computed,
>>>>>>>> which may have something to do with the rate of convergence
>>>>>>>>
>>>>>>>> 2) local problem size. Certain regions of my domain have different
>>>>>>>> number of "violations" which need to be corrected by the bounded
>>>>>>>> constraints so the rate of convergence depends on how these regions are
>>>>>>>> partitioned?
>>>>>>>>
>>>>>>>> Any thoughts?
>>>>>>>>
>>>>>>>> Thanks,
>>>>>>>> Justin
>>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>
>>>>>>
>>>>>>  --
>>>>>> What most experimenters take for granted before they begin their
>>>>>> experiments is infinitely more interesting than any results to which their
>>>>>> experiments lead.
>>>>>> -- Norbert Wiener
>>>>>>
>>>>>
>>>>>
>>>>
>>>>
>>>>  --
>>>> What most experimenters take for granted before they begin their
>>>> experiments is infinitely more interesting than any results to which their
>>>> experiments lead.
>>>> -- Norbert Wiener
>>>>
>>>
>>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20150625/a7bf96c7/attachment-0001.html>
-------------- next part --------------

==================================================
==================================================
MESHID = 4
==================================================
==================================================

==========================================
  16 processors:
==========================================
TSTEP	ANALYSIS TIME	ITER	FLOPS/s
iter =   0, Function value: -1.57703e-07,  Residual: 0.239098 
iter =   1, Function value: -4.53878e-07,  Residual: 0.223304 
iter =   2, Function value: -7.89606e-06,  Residual: 0.221146 
iter =   3, Function value: -0.0808297,  Residual: 0.225876 
iter =   4, Function value: -1.67847,  Residual: 0.351701 
iter =   5, Function value: -3.2307,  Residual: 0.18377 
iter =   6, Function value: -3.80321,  Residual: 0.168797 
iter =   7, Function value: -4.25223,  Residual: 0.208515 
iter =   8, Function value: -4.54546,  Residual: 0.211522 
iter =   9, Function value: -4.76263,  Residual: 0.121566 
iter =  10, Function value: -4.93278,  Residual: 0.11454 
iter =  11, Function value: -5.1385,  Residual: 0.149913 
iter =  12, Function value: -5.3172,  Residual: 0.188699 
iter =  13, Function value: -5.35404,  Residual: 0.414234 
iter =  14, Function value: -5.46775,  Residual: 0.166872 
iter =  15, Function value: -5.5088,  Residual: 0.109606 
iter =  16, Function value: -5.55735,  Residual: 0.137697 
iter =  17, Function value: -5.61175,  Residual: 0.20436 
iter =  18, Function value: -5.67254,  Residual: 0.145789 
iter =  19, Function value: -5.7428,  Residual: 0.131282 
iter =  20, Function value: -5.78678,  Residual: 0.168675 
iter =  21, Function value: -5.83482,  Residual: 0.107592 
iter =  22, Function value: -5.88877,  Residual: 0.120863 
iter =  23, Function value: -5.94162,  Residual: 0.170501 
iter =  24, Function value: -5.99103,  Residual: 0.137338 
iter =  25, Function value: -6.03433,  Residual: 0.11123 
iter =  26, Function value: -6.08494,  Residual: 0.123001 
iter =  27, Function value: -6.12432,  Residual: 0.158457 
iter =  28, Function value: -6.16801,  Residual: 0.100757 
iter =  29, Function value: -6.21675,  Residual: 0.100482 
iter =  30, Function value: -6.25439,  Residual: 0.150756 
iter =  31, Function value: -6.29508,  Residual: 0.10085 
iter =  32, Function value: -6.33253,  Residual: 0.0966374 
iter =  33, Function value: -6.36431,  Residual: 0.103262 
iter =  34, Function value: -6.40181,  Residual: 0.102187 
iter =  35, Function value: -6.44427,  Residual: 0.121893 
iter =  36, Function value: -6.48004,  Residual: 0.0983186 
iter =  37, Function value: -6.51506,  Residual: 0.092832 
iter =  38, Function value: -6.5519,  Residual: 0.116683 
iter =  39, Function value: -6.58292,  Residual: 0.116904 
iter =  40, Function value: -6.60971,  Residual: 0.0771122 
iter =  41, Function value: -6.63585,  Residual: 0.0757516 
iter =  42, Function value: -6.6586,  Residual: 0.10885 
iter =  43, Function value: -6.68587,  Residual: 0.0752019 
iter =  44, Function value: -6.7155,  Residual: 0.0769993 
iter =  45, Function value: -6.7459,  Residual: 0.1128 
iter =  46, Function value: -6.77436,  Residual: 0.0874185 
iter =  47, Function value: -6.8015,  Residual: 0.0772962 
iter =  48, Function value: -6.82934,  Residual: 0.0894704 
iter =  49, Function value: -6.85383,  Residual: 0.0930334 
iter =  50, Function value: -6.87712,  Residual: 0.0707267 
iter =  51, Function value: -6.90227,  Residual: 0.0704031 
iter =  52, Function value: -6.92095,  Residual: 0.11036 
iter =  53, Function value: -6.94187,  Residual: 0.0625794 
iter =  54, Function value: -6.96158,  Residual: 0.0585309 
iter =  55, Function value: -6.98111,  Residual: 0.07778 
iter =  56, Function value: -7.00425,  Residual: 0.0917501 
iter =  57, Function value: -7.02495,  Residual: 0.0680073 
iter =  58, Function value: -7.04571,  Residual: 0.0632846 
iter =  59, Function value: -7.06812,  Residual: 0.067345 
iter =  60, Function value: -7.08734,  Residual: 0.111259 
iter =  61, Function value: -7.10785,  Residual: 0.062663 
iter =  62, Function value: -7.12178,  Residual: 0.0546556 
iter =  63, Function value: -7.13834,  Residual: 0.0661359 
iter =  64, Function value: -7.15288,  Residual: 0.0977186 
iter =  65, Function value: -7.16979,  Residual: 0.0558807 
iter =  66, Function value: -7.18517,  Residual: 0.0514965 
iter =  67, Function value: -7.19956,  Residual: 0.0566699 
iter =  68, Function value: -7.21503,  Residual: 0.102862 
iter =  69, Function value: -7.23295,  Residual: 0.0520616 
iter =  70, Function value: -7.24472,  Residual: 0.0514462 
iter =  71, Function value: -7.2607,  Residual: 0.0603313 
iter =  72, Function value: -7.27322,  Residual: 0.114154 
iter =  73, Function value: -7.29073,  Residual: 0.0553255 
iter =  74, Function value: -7.30301,  Residual: 0.0468704 
iter =  75, Function value: -7.31535,  Residual: 0.0503862 
iter =  76, Function value: -7.32483,  Residual: 0.121667 
iter =  77, Function value: -7.34239,  Residual: 0.0473323 
iter =  78, Function value: -7.35051,  Residual: 0.0402786 
iter =  79, Function value: -7.36252,  Residual: 0.0513142 
iter =  80, Function value: -7.37578,  Residual: 0.0980691 
iter =  81, Function value: -7.39103,  Residual: 0.0561799 
iter =  82, Function value: -7.40188,  Residual: 0.0420525 
iter =  83, Function value: -7.41352,  Residual: 0.0506624 
iter =  84, Function value: -7.42311,  Residual: 0.0745317 
iter =  85, Function value: -7.43349,  Residual: 0.0418963 
iter =  86, Function value: -7.44304,  Residual: 0.0427164 
iter =  87, Function value: -7.45309,  Residual: 0.050941 
iter =  88, Function value: -7.46557,  Residual: 0.0855721 
iter =  89, Function value: -7.47897,  Residual: 0.0443531 
iter =  90, Function value: -7.48731,  Residual: 0.038289 
iter =  91, Function value: -7.49667,  Residual: 0.0433084 
iter =  92, Function value: -7.50404,  Residual: 0.0748006 
iter =  93, Function value: -7.51295,  Residual: 0.0379092 
iter =  94, Function value: -7.52065,  Residual: 0.0360034 
iter =  95, Function value: -7.52815,  Residual: 0.0407615 
iter =  96, Function value: -7.53624,  Residual: 0.0871539 
iter =  97, Function value: -7.54733,  Residual: 0.0370463 
iter =  98, Function value: -7.55263,  Residual: 0.0321752 
iter =  99, Function value: -7.5611,  Residual: 0.0380701 
iter = 100, Function value: -7.56636,  Residual: 0.0828749 
iter = 101, Function value: -7.57523,  Residual: 0.0364468 
iter = 102, Function value: -7.58065,  Residual: 0.0296879 
iter = 103, Function value: -7.58617,  Residual: 0.0331854 
iter = 104, Function value: -7.59286,  Residual: 0.0653273 
iter = 105, Function value: -7.60073,  Residual: 0.0311378 
iter = 106, Function value: -7.605,  Residual: 0.0271273 
iter = 107, Function value: -7.61161,  Residual: 0.0352389 
iter = 108, Function value: -7.61636,  Residual: 0.0633698 
iter = 109, Function value: -7.62264,  Residual: 0.0323803 
iter = 110, Function value: -7.62822,  Residual: 0.0286247 
iter = 111, Function value: -7.63278,  Residual: 0.0310643 
iter = 112, Function value: -7.63766,  Residual: 0.0695965 
iter = 113, Function value: -7.64471,  Residual: 0.0273006 
iter = 114, Function value: -7.6477,  Residual: 0.0241679 
iter = 115, Function value: -7.65299,  Residual: 0.0287846 
iter = 116, Function value: -7.65608,  Residual: 0.0686328 
iter = 117, Function value: -7.66196,  Residual: 0.029546 
iter = 118, Function value: -7.66562,  Residual: 0.022733 
iter = 119, Function value: -7.6691,  Residual: 0.0260237 
iter = 120, Function value: -7.67366,  Residual: 0.0518384 
iter = 121, Function value: -7.67882,  Residual: 0.0250519 
iter = 122, Function value: -7.68159,  Residual: 0.0208822 
iter = 123, Function value: -7.68604,  Residual: 0.0283777 
iter = 124, Function value: -7.68918,  Residual: 0.0502209 
iter = 125, Function value: -7.69338,  Residual: 0.026466 
iter = 126, Function value: -7.69725,  Residual: 0.0232737 
iter = 127, Function value: -7.70029,  Residual: 0.0246071 
iter = 128, Function value: -7.70333,  Residual: 0.0560219 
iter = 129, Function value: -7.70795,  Residual: 0.0219018 
iter = 130, Function value: -7.70988,  Residual: 0.0192943 
iter = 131, Function value: -7.71333,  Residual: 0.0223829 
iter = 132, Function value: -7.71539,  Residual: 0.0571394 
iter = 133, Function value: -7.71939,  Residual: 0.0241063 
iter = 134, Function value: -7.72174,  Residual: 0.0183287 
iter = 135, Function value: -7.72395,  Residual: 0.0206927 
iter = 136, Function value: -7.7272,  Residual: 0.0366094 
iter = 137, Function value: -7.73034,  Residual: 0.0229168 
iter = 138, Function value: -7.73217,  Residual: 0.0165316 
iter = 139, Function value: -7.73523,  Residual: 0.0207809 
iter = 140, Function value: -7.7372,  Residual: 0.0344397 
iter = 141, Function value: -7.73964,  Residual: 0.0197955 
iter = 142, Function value: -7.74225,  Residual: 0.0175415 
iter = 143, Function value: -7.74421,  Residual: 0.0204096 
iter = 144, Function value: -7.74642,  Residual: 0.0325727 
iter = 145, Function value: -7.74861,  Residual: 0.0168286 
iter = 146, Function value: -7.74991,  Residual: 0.0166282 
iter = 147, Function value: -7.75202,  Residual: 0.0187187 
iter = 148, Function value: -7.75333,  Residual: 0.043491 
iter = 149, Function value: -7.75579,  Residual: 0.0163257 
iter = 150, Function value: -7.75685,  Residual: 0.013081 
iter = 151, Function value: -7.75808,  Residual: 0.0146514 
iter = 152, Function value: -7.75972,  Residual: 0.0272383 
iter = 153, Function value: -7.76143,  Residual: 0.0146716 
iter = 154, Function value: -7.76245,  Residual: 0.012202 
iter = 155, Function value: -7.76402,  Residual: 0.0165763 
iter = 156, Function value: -7.76485,  Residual: 0.0264216 
iter = 157, Function value: -7.76596,  Residual: 0.0141675 
iter = 158, Function value: -7.76711,  Residual: 0.0118525 
iter = 159, Function value: -7.76795,  Residual: 0.0132682 
iter = 160, Function value: -7.76906,  Residual: 0.0307988 
iter = 161, Function value: -7.77046,  Residual: 0.0136723 
iter = 162, Function value: -7.77101,  Residual: 0.0105228 
iter = 163, Function value: -7.77204,  Residual: 0.0114438 
iter = 164, Function value: -7.77257,  Residual: 0.0246093 
iter = 165, Function value: -7.77345,  Residual: 0.0125104 
iter = 166, Function value: -7.77417,  Residual: 0.0102181 
iter = 167, Function value: -7.77474,  Residual: 0.0109432 
iter = 168, Function value: -7.77532,  Residual: 0.0199891 
iter = 169, Function value: -7.77611,  Residual: 0.0101163 
iter = 170, Function value: -7.77655,  Residual: 0.0105442 
iter = 171, Function value: -7.77743,  Residual: 0.0116992 
iter = 172, Function value: -7.77779,  Residual: 0.0293656 
iter = 173, Function value: -7.77878,  Residual: 0.0112078 
iter = 174, Function value: -7.77919,  Residual: 0.00808034 
iter = 175, Function value: -7.77957,  Residual: 0.00902743 
iter = 176, Function value: -7.78023,  Residual: 0.0122209 
iter = 177, Function value: -7.78068,  Residual: 0.0174619 
iter = 178, Function value: -7.78127,  Residual: 0.00842028 
iter = 179, Function value: -7.78167,  Residual: 0.00912139 
iter = 180, Function value: -7.78215,  Residual: 0.0100989 
iter = 181, Function value: -7.78253,  Residual: 0.0198295 
iter = 182, Function value: -7.78312,  Residual: 0.00877936 
iter = 183, Function value: -7.78342,  Residual: 0.00805744 
iter = 184, Function value: -7.78381,  Residual: 0.00884593 
iter = 185, Function value: -7.78426,  Residual: 0.0172994 
iter = 186, Function value: -7.78476,  Residual: 0.00859095 
iter = 187, Function value: -7.78503,  Residual: 0.00730765 
iter = 188, Function value: -7.78543,  Residual: 0.00819728 
iter = 189, Function value: -7.7857,  Residual: 0.0163602 
iter = 190, Function value: -7.78611,  Residual: 0.00840991 
iter = 191, Function value: -7.78641,  Residual: 0.00748283 
iter = 192, Function value: -7.7867,  Residual: 0.00842632 
iter = 193, Function value: -7.78717,  Residual: 0.0143767 
iter = 194, Function value: -7.78759,  Residual: 0.00972408 
iter = 195, Function value: -7.78783,  Residual: 0.00682761 
iter = 196, Function value: -7.78815,  Residual: 0.00741374 
iter = 197, Function value: -7.7884,  Residual: 0.00941704 
iter = 198, Function value: -7.78875,  Residual: 0.00770444 
iter = 199, Function value: -7.78917,  Residual: 0.0085247 
iter = 200, Function value: -7.78949,  Residual: 0.0119359 
iter = 201, Function value: -7.7898,  Residual: 0.00737882 
iter = 202, Function value: -7.79006,  Residual: 0.00692514 
iter = 203, Function value: -7.79031,  Residual: 0.00784755 
iter = 204, Function value: -7.79062,  Residual: 0.0133266 
iter = 205, Function value: -7.79097,  Residual: 0.00759952 
iter = 206, Function value: -7.7912,  Residual: 0.00672236 
iter = 207, Function value: -7.79144,  Residual: 0.00698928 
iter = 208, Function value: -7.79165,  Residual: 0.0137271 
iter = 209, Function value: -7.79195,  Residual: 0.00704828 
iter = 210, Function value: -7.79218,  Residual: 0.00665079 
iter = 211, Function value: -7.79241,  Residual: 0.00752568 
iter = 212, Function value: -7.79273,  Residual: 0.0135994 
iter = 213, Function value: -7.79307,  Residual: 0.00727429 
iter = 214, Function value: -7.79324,  Residual: 0.00610776 
iter = 215, Function value: -7.79355,  Residual: 0.00704834 
iter = 216, Function value: -7.79371,  Residual: 0.0129413 
iter = 217, Function value: -7.79398,  Residual: 0.00699312 
iter = 218, Function value: -7.79422,  Residual: 0.00615925 
iter = 219, Function value: -7.79442,  Residual: 0.00670629 
iter = 220, Function value: -7.79466,  Residual: 0.0129022 
iter = 221, Function value: -7.79497,  Residual: 0.00653843 
iter = 222, Function value: -7.79512,  Residual: 0.00595371 
iter = 223, Function value: -7.79543,  Residual: 0.00677522 
iter = 224, Function value: -7.79557,  Residual: 0.0157612 
iter = 225, Function value: -7.79589,  Residual: 0.00704513 
iter = 226, Function value: -7.79609,  Residual: 0.00558273 
iter = 227, Function value: -7.79628,  Residual: 0.00635017 
iter = 228, Function value: -7.79656,  Residual: 0.0100848 
iter = 229, Function value: -7.79683,  Residual: 0.00716537 
iter = 230, Function value: -7.79701,  Residual: 0.00566117 
iter = 231, Function value: -7.79735,  Residual: 0.00681235 
iter = 232, Function value: -7.79758,  Residual: 0.0114013 
iter = 233, Function value: -7.79786,  Residual: 0.00690156 
iter = 234, Function value: -7.79816,  Residual: 0.00560736 
iter = 235, Function value: -7.79836,  Residual: 0.00676259 
iter = 236, Function value: -7.79867,  Residual: 0.00733547 
iter = 237, Function value: -7.79891,  Residual: 0.00691113 
iter = 238, Function value: -7.79917,  Residual: 0.00634128 
iter = 239, Function value: -7.79947,  Residual: 0.00755322 
iter = 240, Function value: -7.79971,  Residual: 0.00881029 
iter = 241, Function value: -7.79994,  Residual: 0.00591148 
iter = 242, Function value: -7.80019,  Residual: 0.00531922 
iter = 243, Function value: -7.80038,  Residual: 0.00782399 
iter = 244, Function value: -7.80062,  Residual: 0.00560367 
iter = 245, Function value: -7.80087,  Residual: 0.00646445 
iter = 246, Function value: -7.8011,  Residual: 0.00669491 
iter = 247, Function value: -7.8013,  Residual: 0.00542145 
iter = 248, Function value: -7.80156,  Residual: 0.00646472 
iter = 249, Function value: -7.80176,  Residual: 0.00831322 
iter = 250, Function value: -7.80195,  Residual: 0.00593352 
iter = 251, Function value: -7.80221,  Residual: 0.00510617 
iter = 252, Function value: -7.80237,  Residual: 0.00726524 
iter = 253, Function value: -7.80255,  Residual: 0.00561318 
iter = 254, Function value: -7.80277,  Residual: 0.00598889 
iter = 255, Function value: -7.80293,  Residual: 0.00663841 
iter = 256, Function value: -7.80309,  Residual: 0.00557977 
iter = 257, Function value: -7.80339,  Residual: 0.00662109 
iter = 258, Function value: -7.80351,  Residual: 0.0103698 
iter = 259, Function value: -7.80369,  Residual: 0.00547099 
iter = 260, Function value: -7.80385,  Residual: 0.00412179 
iter = 261, Function value: -7.80398,  Residual: 0.00469965 
iter = 262, Function value: -7.80418,  Residual: 0.00800895 
iter = 263, Function value: -7.80436,  Residual: 0.00682549 
iter = 264, Function value: -7.8045,  Residual: 0.00448242 
iter = 265, Function value: -7.8047,  Residual: 0.00449525 
iter = 266, Function value: -7.80483,  Residual: 0.00623266 
iter = 267, Function value: -7.80499,  Residual: 0.00432503 
iter = 268, Function value: -7.80516,  Residual: 0.00443986 
iter = 269, Function value: -7.80527,  Residual: 0.00654341 
iter = 270, Function value: -7.8054,  Residual: 0.00403316 
iter = 271, Function value: -7.80557,  Residual: 0.0042036 
iter = 272, Function value: -7.8057,  Residual: 0.00486939 
iter = 273, Function value: -7.80582,  Residual: 0.00914879 
iter = 274, Function value: -7.80599,  Residual: 0.00371046 
iter = 275, Function value: -7.80606,  Residual: 0.00343322 
iter = 276, Function value: -7.80617,  Residual: 0.00408214 
iter = 277, Function value: -7.80626,  Residual: 0.00960308 
iter = 278, Function value: -7.80641,  Residual: 0.00403028 
iter = 279, Function value: -7.8065,  Residual: 0.00326197 
iter = 280, Function value: -7.80658,  Residual: 0.00364705 
iter = 281, Function value: -7.8067,  Residual: 0.00772842 
iter = 282, Function value: -7.80684,  Residual: 0.00352321 
iter = 283, Function value: -7.80691,  Residual: 0.00312168 
iter = 284, Function value: -7.80703,  Residual: 0.00413708 
iter = 285, Function value: -7.8071,  Residual: 0.00844741 
iter = 286, Function value: -7.80722,  Residual: 0.00387447 
iter = 287, Function value: -7.80731,  Residual: 0.00321656 
iter = 288, Function value: -7.80739,  Residual: 0.0035753 
iter = 289, Function value: -7.8075,  Residual: 0.00709712 
iter = 290, Function value: -7.80762,  Residual: 0.0038076 
iter = 291, Function value: -7.80768,  Residual: 0.00276752 
iter = 292, Function value: -7.80778,  Residual: 0.00341213 
iter = 293, Function value: -7.80784,  Residual: 0.00630934 
iter = 294, Function value: -7.80793,  Residual: 0.00369558 
iter = 295, Function value: -7.80804,  Residual: 0.00316572 
iter = 296, Function value: -7.80811,  Residual: 0.00341499 
iter = 297, Function value: -7.80817,  Residual: 0.00733733 
iter = 298, Function value: -7.80828,  Residual: 0.00290179 
iter = 299, Function value: -7.80832,  Residual: 0.002659 
iter = 300, Function value: -7.80841,  Residual: 0.00325143 
iter = 301, Function value: -7.80846,  Residual: 0.00851133 
iter = 302, Function value: -7.80856,  Residual: 0.00338366 
iter = 303, Function value: -7.80862,  Residual: 0.00242721 
iter = 304, Function value: -7.80866,  Residual: 0.00265834 
iter = 305, Function value: -7.80874,  Residual: 0.00468424 
iter = 306, Function value: -7.80881,  Residual: 0.00278952 
iter = 307, Function value: -7.80886,  Residual: 0.0024051 
iter = 308, Function value: -7.80896,  Residual: 0.00336636 
iter = 309, Function value: -7.809,  Residual: 0.00684994 
iter = 310, Function value: -7.80907,  Residual: 0.00284831 
iter = 311, Function value: -7.80912,  Residual: 0.0021039 
iter = 312, Function value: -7.80915,  Residual: 0.0024576 
iter = 313, Function value: -7.80923,  Residual: 0.00351195 
iter = 314, Function value: -7.80925,  Residual: 0.00653157 
iter = 315, Function value: -7.80933,  Residual: 0.00221326 
iter = 316, Function value: -7.80935,  Residual: 0.00193244 
iter = 317, Function value: -7.8094,  Residual: 0.00236798 
iter = 318, Function value: -7.80944,  Residual: 0.00544877 
iter = 319, Function value: -7.80949,  Residual: 0.00242602 
iter = 320, Function value: -7.80952,  Residual: 0.00187275 
iter = 321, Function value: -7.80955,  Residual: 0.00208739 
iter = 322, Function value: -7.80959,  Residual: 0.00369487 
iter = 323, Function value: -7.80963,  Residual: 0.00210818 
iter = 324, Function value: -7.80965,  Residual: 0.00171339 
iter = 325, Function value: -7.8097,  Residual: 0.00224769 
iter = 326, Function value: -7.80972,  Residual: 0.00409731 
iter = 327, Function value: -7.80975,  Residual: 0.00205957 
iter = 328, Function value: -7.80978,  Residual: 0.00166663 
iter = 329, Function value: -7.8098,  Residual: 0.00177559 
iter = 330, Function value: -7.80984,  Residual: 0.00401932 
iter = 331, Function value: -7.80987,  Residual: 0.0019732 
iter = 332, Function value: -7.80988,  Residual: 0.00146904 
iter = 333, Function value: -7.80991,  Residual: 0.00156285 
iter = 334, Function value: -7.80993,  Residual: 0.00366378 
iter = 335, Function value: -7.80996,  Residual: 0.00182864 
iter = 336, Function value: -7.80998,  Residual: 0.00143332 
iter = 337, Function value: -7.80999,  Residual: 0.00153632 
iter = 338, Function value: -7.81001,  Residual: 0.00300152 
iter = 339, Function value: -7.81003,  Residual: 0.00158852 
iter = 340, Function value: -7.81005,  Residual: 0.00139549 
iter = 341, Function value: -7.81007,  Residual: 0.0015773 
iter = 342, Function value: -7.81008,  Residual: 0.00381815 
iter = 343, Function value: -7.8101,  Residual: 0.00154118 
iter = 344, Function value: -7.81011,  Residual: 0.00110395 
iter = 345, Function value: -7.81012,  Residual: 0.00129509 
iter = 346, Function value: -7.81014,  Residual: 0.00187921 
iter = 347, Function value: -7.81016,  Residual: 0.00235816 
iter = 348, Function value: -7.81017,  Residual: 0.00112299 
iter = 349, Function value: -7.81018,  Residual: 0.00122119 
iter = 350, Function value: -7.81019,  Residual: 0.00136949 
iter = 351, Function value: -7.81021,  Residual: 0.00242993 
iter = 352, Function value: -7.81022,  Residual: 0.00113653 
iter = 353, Function value: -7.81023,  Residual: 0.00119118 
iter = 354, Function value: -7.81024,  Residual: 0.00131839 
iter = 355, Function value: -7.81025,  Residual: 0.00344071 
iter = 356, Function value: -7.81027,  Residual: 0.00107127 
iter = 357, Function value: -7.81027,  Residual: 0.000881068 
iter = 358, Function value: -7.81028,  Residual: 0.00103876 
iter = 359, Function value: -7.81029,  Residual: 0.00168859 
iter = 360, Function value: -7.8103,  Residual: 0.00128558 
iter = 361, Function value: -7.81031,  Residual: 0.000936338 
iter = 362, Function value: -7.81032,  Residual: 0.00112771 
iter = 363, Function value: -7.81033,  Residual: 0.00198573 
iter = 364, Function value: -7.81034,  Residual: 0.00111927 
iter = 365, Function value: -7.81035,  Residual: 0.000968416 
iter = 366, Function value: -7.81036,  Residual: 0.00106383 
iter = 367, Function value: -7.81037,  Residual: 0.00255311 
iter = 368, Function value: -7.81038,  Residual: 0.00109532 
iter = 369, Function value: -7.81038,  Residual: 0.000799371 
iter = 370, Function value: -7.81039,  Residual: 0.000852602 
iter = 371, Function value: -7.8104,  Residual: 0.00198778 
iter = 372, Function value: -7.81041,  Residual: 0.00113394 
iter = 373, Function value: -7.81042,  Residual: 0.000915895 
iter = 374, Function value: -7.81043,  Residual: 0.000993134 
iter = 375, Function value: -7.81043,  Residual: 0.00201892 
iter = 376, Function value: -7.81044,  Residual: 0.000831109 
iter = 377, Function value: -7.81045,  Residual: 0.000884957 
iter = 378, Function value: -7.81045,  Residual: 0.00110069 
iter = 379, Function value: -7.81046,  Residual: 0.0024113 
iter = 380, Function value: -7.81047,  Residual: 0.000842735 
iter = 381, Function value: -7.81048,  Residual: 0.000673622 
iter = 382, Function value: -7.81048,  Residual: 0.0007883 
iter = 383, Function value: -7.81049,  Residual: 0.00169046 
iter = 384, Function value: -7.81049,  Residual: 0.000872412 
iter = 385, Function value: -7.8105,  Residual: 0.000738495 
iter = 386, Function value: -7.81051,  Residual: 0.00109419 
iter = 387, Function value: -7.81051,  Residual: 0.00127752 
iter = 388, Function value: -7.81052,  Residual: 0.000781728 
iter = 389, Function value: -7.81052,  Residual: 0.000802141 
iter = 390, Function value: -7.81053,  Residual: 0.000918364 
iter = 391, Function value: -7.81054,  Residual: 0.00194135 
iter = 392, Function value: -7.81054,  Residual: 0.000837812 
iter = 393, Function value: -7.81055,  Residual: 0.000640064 
iter = 394, Function value: -7.81055,  Residual: 0.000663732 
iter = 395, Function value: -7.81056,  Residual: 0.00144857 
iter = 396, Function value: -7.81056,  Residual: 0.000820515 
iter = 397, Function value: -7.81057,  Residual: 0.00068299 
iter = 398, Function value: -7.81057,  Residual: 0.000751018 
iter = 399, Function value: -7.81057,  Residual: 0.00162709 
iter = 400, Function value: -7.81058,  Residual: 0.000692016 
iter = 401, Function value: -7.81058,  Residual: 0.000676616 
iter = 402, Function value: -7.81059,  Residual: 0.000839196 
iter = 403, Function value: -7.81059,  Residual: 0.00192361 
iter = 404, Function value: -7.8106,  Residual: 0.000734566 
iter = 405, Function value: -7.8106,  Residual: 0.000552234 
iter = 406, Function value: -7.8106,  Residual: 0.000666441 
iter = 407, Function value: -7.81061,  Residual: 0.00110812 
iter = 408, Function value: -7.81061,  Residual: 0.000805687 
iter = 409, Function value: -7.81062,  Residual: 0.000563736 
iter = 410, Function value: -7.81062,  Residual: 0.000747683 
iter = 411, Function value: -7.81062,  Residual: 0.00109469 
iter = 412, Function value: -7.81063,  Residual: 0.000705128 
iter = 413, Function value: -7.81063,  Residual: 0.000617784 
iter = 414, Function value: -7.81064,  Residual: 0.00119265 
iter = 415, Function value: -7.81064,  Residual: 0.000626528 
iter = 416, Function value: -7.81064,  Residual: 0.000587671 
iter = 417, Function value: -7.81065,  Residual: 0.00068946 
iter = 418, Function value: -7.81065,  Residual: 0.00129254 
iter = 419, Function value: -7.81065,  Residual: 0.000927012 
iter = 420, Function value: -7.81066,  Residual: 0.000498195 
iter = 421, Function value: -7.81066,  Residual: 0.000540408 
iter = 422, Function value: -7.81066,  Residual: 0.000728311 
iter = 423, Function value: -7.81067,  Residual: 0.00109958 
iter = 424, Function value: -7.81067,  Residual: 0.000615443 
iter = 425, Function value: -7.81067,  Residual: 0.000579832 
iter = 426, Function value: -7.81068,  Residual: 0.000682068 
iter = 427, Function value: -7.81068,  Residual: 0.000860703 
iter = 428, Function value: -7.81068,  Residual: 0.000559616 
iter = 429, Function value: -7.81069,  Residual: 0.000618818 
iter = 430, Function value: -7.81069,  Residual: 0.000794079 
iter = 431, Function value: -7.81069,  Residual: 0.00073984 
iter = 432, Function value: -7.8107,  Residual: 0.000747683 
iter = 433, Function value: -7.8107,  Residual: 0.000616185 
iter = 434, Function value: -7.8107,  Residual: 0.000693478 
iter = 435, Function value: -7.81071,  Residual: 0.000640444 
iter = 436, Function value: -7.81071,  Residual: 0.000620902 
iter = 437, Function value: -7.81072,  Residual: 0.000854389 
iter = 438, Function value: -7.81072,  Residual: 0.00106588 
iter = 439, Function value: -7.81072,  Residual: 0.000556506 
iter = 440, Function value: -7.81072,  Residual: 0.000495603 
iter = 441, Function value: -7.81073,  Residual: 0.000674669 
iter = 442, Function value: -7.81073,  Residual: 0.00103042 
iter = 443, Function value: -7.81073,  Residual: 0.000655499 
iter = 444, Function value: -7.81074,  Residual: 0.000607126 
iter = 445, Function value: -7.81074,  Residual: 0.000705519 
iter = 446, Function value: -7.81074,  Residual: 0.00119595 
iter = 447, Function value: -7.81075,  Residual: 0.000646184 
iter = 448, Function value: -7.81075,  Residual: 0.000594044 
iter = 449, Function value: -7.81075,  Residual: 0.000641001 
iter = 450, Function value: -7.81076,  Residual: 0.00125829 
iter = 451, Function value: -7.81076,  Residual: 0.000555608 
iter = 452, Function value: -7.81076,  Residual: 0.000525893 
iter = 453, Function value: -7.81077,  Residual: 0.000642375 
iter = 454, Function value: -7.81077,  Residual: 0.00143457 
iter = 455, Function value: -7.81077,  Residual: 0.000603507 
iter = 456, Function value: -7.81077,  Residual: 0.0004898 
iter = 457, Function value: -7.81078,  Residual: 0.000552409 
iter = 458, Function value: -7.81078,  Residual: 0.00108441 
iter = 459, Function value: -7.81078,  Residual: 0.000449216 
iter = 460, Function value: -7.81078,  Residual: 0.000447034 
iter = 461, Function value: -7.81078,  Residual: 0.000582248 
iter = 462, Function value: -7.81079,  Residual: 0.00129805 
iter = 463, Function value: -7.81079,  Residual: 0.000628522 
iter = 464, Function value: -7.81079,  Residual: 0.000497836 
iter = 465, Function value: -7.81079,  Residual: 0.000525396 
iter = 466, Function value: -7.8108,  Residual: 0.00116966 
iter = 467, Function value: -7.8108,  Residual: 0.000449353 
iter = 468, Function value: -7.8108,  Residual: 0.000376025 
iter = 469, Function value: -7.8108,  Residual: 0.000468749 
iter = 470, Function value: -7.8108,  Residual: 0.00101476 
iter = 471, Function value: -7.81081,  Residual: 0.000525062 
iter = 472, Function value: -7.81081,  Residual: 0.000429858 
iter = 473, Function value: -7.81081,  Residual: 0.000451821 
iter = 474, Function value: -7.81081,  Residual: 0.00120145 
iter = 475, Function value: -7.81081,  Residual: 0.000391866 
iter = 476, Function value: -7.81081,  Residual: 0.000333985 
iter = 477, Function value: -7.81082,  Residual: 0.000428342 
iter = 478, Function value: -7.81082,  Residual: 0.000739816 
iter = 479, Function value: -7.81082,  Residual: 0.000514762 
iter = 480, Function value: -7.81082,  Residual: 0.000342221 
iter = 481, Function value: -7.81082,  Residual: 0.000402088 
iter = 482, Function value: -7.81082,  Residual: 0.000503487 
iter = 483, Function value: -7.81083,  Residual: 0.000375629 
iter = 484, Function value: -7.81083,  Residual: 0.000387146 
iter = 485, Function value: -7.81083,  Residual: 0.000767867 
iter = 486, Function value: -7.81083,  Residual: 0.000318778 
iter = 487, Function value: -7.81083,  Residual: 0.000275048 
Tao Object: 16 MPI processes
  type: blmvm
      Gradient steps: 0
  TaoLineSearch Object:   16 MPI processes
    type: more-thuente
  Active Set subset type: subvec
  convergence tolerances: fatol=1e-08,   frtol=1e-08
  convergence tolerances: gatol=1e-08,   steptol=0,   gttol=0
  Residual in Function/Gradient:=0.000275048
  Objective value=-7.81083
  total number of iterations=487,                          (max: 50000)
  total number of function/gradient evaluations=488,      (max: 4000)
  Solution converged:   estimated |f(x)-f(X*)|/|f(X*)| <= frtol
it: 1	2.409978e+00	487	6.354219e+09

==========================================
  Time summary:
==========================================
Creating DMPlex: 	1.1421
Distributing DMPlex: 	0.738438
Refining DMPlex: 	0.388502
Setting up problem: 	0.545519
Overall analysis time: 	2.81322
Overall FLOPS/s: 	5.22992e+09
************************************************************************************************************************
***             WIDEN YOUR WINDOW TO 120 CHARACTERS.  Use 'enscript -r -fCourier9' to print this document            ***
************************************************************************************************************************

---------------------------------------------- PETSc Performance Summary: ----------------------------------------------

./main_wolf on a arch-no-hdf5-opt named wf323.localdomain with 16 processors, by jychang48 Thu Jun 25 10:33:17 2015
Using Petsc Development GIT revision: unknown  GIT Date: unknown

                         Max       Max/Min        Avg      Total 
Time (sec):           5.637e+00      1.00020   5.637e+00
Objects:              3.920e+02      1.11681   3.536e+02
Flops:                1.029e+09      1.12330   9.661e+08  1.546e+10
Flops/sec:            1.826e+08      1.12340   1.714e+08  2.742e+09
MPI Messages:         5.230e+03      1.42222   4.597e+03  7.354e+04
MPI Message Lengths:  8.956e+07      5.74006   4.876e+03  3.586e+08
MPI Reductions:       1.269e+04      1.00000

Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
                            e.g., VecAXPY() for real vectors of length N --> 2N flops
                            and VecAXPY() for complex vectors of length N --> 8N flops

Summary of Stages:   ----- Time ------  ----- Flops -----  --- Messages ---  -- Message Lengths --  -- Reductions --
                        Avg     %Total     Avg     %Total   counts   %Total     Avg         %Total   counts   %Total 
 0:      Main Stage: 5.6369e+00 100.0%  1.5458e+10 100.0%  7.354e+04 100.0%  4.876e+03      100.0%  1.269e+04 100.0% 

------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
   Count: number of times phase was executed
   Time and Flops: Max - maximum over all processors
                   Ratio - ratio of maximum to minimum over all processors
   Mess: number of messages sent
   Avg. len: average message length (bytes)
   Reduct: number of global reductions
   Global: entire computation
   Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
      %T - percent time in this phase         %F - percent flops in this phase
      %M - percent messages in this phase     %L - percent message lengths in this phase
      %R - percent reductions in this phase
   Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------
Event                Count      Time (sec)     Flops                             --- Global ---  --- Stage ---   Total
                   Max Ratio  Max     Ratio   Max  Ratio  Mess   Avg len Reduct  %T %F %M %L %R  %T %F %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------

--- Event Stage 0: Main Stage

CreateMesh           489 1.0 2.7790e+00 1.0 2.81e+08 1.1 7.1e+04 3.7e+03 9.9e+02 49 27 96 74  8  49 27 96 74  8  1523
VecView                1 1.0 2.8899e-03 2.4 6.20e+04 2.6 8.6e+01 2.5e+04 0.0e+00  0  0  0  1  0   0  0  0  1  0   252
VecDot             10680 1.0 5.4635e-01 1.3 3.61e+08 1.1 0.0e+00 0.0e+00 1.1e+04  8 35  0  0 84   8 35  0  0 84  9915
VecNorm              488 1.0 3.0562e-02 1.8 1.65e+07 1.1 0.0e+00 0.0e+00 4.9e+02  0  2  0  0  4   0  2  0  0  4  8099
VecScale            1947 1.0 2.9742e-02 1.1 3.29e+07 1.1 0.0e+00 0.0e+00 0.0e+00  1  3  0  0  0   1  3  0  0  0 16602
VecCopy             6326 1.0 1.7738e-01 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  3  0  0  0  0   3  0  0  0  0     0
VecSet                11 1.0 1.6385e-02 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY             8245 1.0 2.7241e-01 1.2 2.87e+08 1.1 0.0e+00 0.0e+00 0.0e+00  4 28  0  0  0   4 28  0  0  0 15804
VecAYPX              972 1.0 3.0343e-02 1.5 1.64e+07 1.1 0.0e+00 0.0e+00 0.0e+00  0  2  0  0  0   0  2  0  0  0  8124
VecWAXPY               1 1.0 4.1008e-05 1.8 1.69e+04 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0  6185
VecPointwiseMult    2917 1.0 7.4186e-02 1.1 4.93e+07 1.1 0.0e+00 0.0e+00 0.0e+00  1  5  0  0  0   1  5  0  0  0  9972
VecScatterBegin      489 1.0 2.2702e-02 1.4 0.00e+00 0.0 6.8e+04 2.5e+03 0.0e+00  0  0 93 48  0   0  0 93 48  0     0
VecScatterEnd        489 1.0 2.3321e-02 1.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatMult              489 1.0 4.4136e-01 1.1 2.32e+08 1.1 6.8e+04 2.5e+03 0.0e+00  8 23 93 48  0   8 23 93 48  0  7922
MatAssemblyBegin       2 1.0 2.9637e-0211.0 0.00e+00 0.0 2.1e+02 7.3e+04 4.0e+00  0  0  0  4  0   0  0  0  4  0     0
MatAssemblyEnd         2 1.0 1.2829e-02 1.7 0.00e+00 0.0 2.8e+02 6.3e+02 8.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatZeroEntries         1 1.0 3.3212e-04 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
Mesh Partition         1 1.0 6.6892e-01 1.0 0.00e+00 0.0 1.6e+03 1.1e+04 4.0e+00 12  0  2  5  0  12  0  2  5  0     0
Mesh Migration         1 1.0 8.7067e-02 1.0 0.00e+00 0.0 3.0e+02 2.0e+05 2.0e+00  2  0  0 16  0   2  0  0 16  0     0
DMPlexInterp           3 1.0 9.7370e-014158.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  1  0  0  0  0   1  0  0  0  0     0
DMPlexDistribute       1 1.0 7.6774e-01 1.0 0.00e+00 0.0 1.9e+03 4.7e+04 6.0e+00 14  0  3 25  0  14  0  3 25  0     0
DMPlexDistCones        1 1.0 5.6297e-02 1.0 0.00e+00 0.0 1.3e+02 3.5e+05 0.0e+00  1  0  0 13  0   1  0  0 13  0     0
DMPlexDistLabels       1 1.0 2.6512e-0424.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
DMPlexDistField        2 1.0 2.6672e-02 1.1 0.00e+00 0.0 2.6e+02 7.8e+04 4.0e+00  0  0  0  6  0   0  0  0  6  0     0
DMPlexDistData         1 1.0 4.5035e-0132.4 0.00e+00 0.0 1.6e+03 7.0e+03 0.0e+00  7  0  2  3  0   7  0  2  3  0     0
DMPlexStratify        12 1.2 3.5558e-01 4.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  2  0  0  0  0   2  0  0  0  0     0
DMPlexPrealloc         1 1.0 1.9255e-01 1.0 0.00e+00 0.0 1.7e+03 5.2e+03 1.7e+01  3  0  2  2  0   3  0  2  2  0     0
DMPlexResidualFE       1 1.0 1.0459e-01 1.1 5.23e+06 1.1 0.0e+00 0.0e+00 0.0e+00  2  1  0  0  0   2  1  0  0  0   769
DMPlexJacobianFE       1 1.0 3.0138e-01 1.0 1.06e+07 1.1 2.1e+02 7.3e+04 2.0e+00  5  1  0  4  0   5  1  0  4  0   542
SFSetGraph            22 1.0 1.2767e-02 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
SFBcastBegin          35 1.0 4.6513e-01 7.6 0.00e+00 0.0 3.6e+03 3.0e+04 0.0e+00  8  0  5 30  0   8  0  5 30  0     0
SFBcastEnd            35 1.0 8.2554e-02 2.7 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  1  0  0  0  0   1  0  0  0  0     0
SFReduceBegin          6 1.0 1.3256e-02 9.8 0.00e+00 0.0 8.0e+02 1.9e+04 0.0e+00  0  0  1  4  0   0  0  1  4  0     0
SFReduceEnd            6 1.0 1.9113e-02 3.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
SFFetchOpBegin         1 1.0 7.4863e-0524.2 0.00e+00 0.0 7.0e+01 1.2e+04 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
SFFetchOpEnd           1 1.0 4.8614e-04 2.3 0.00e+00 0.0 7.0e+01 1.2e+04 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
SNESFunctionEval       1 1.0 1.1039e-01 1.1 5.23e+06 1.1 1.7e+02 2.5e+04 0.0e+00  2  1  0  1  0   2  1  0  1  0   729
SNESJacobianEval       1 1.0 3.0186e-01 1.0 1.06e+07 1.1 4.2e+02 4.4e+04 2.0e+00  5  1  1  5  0   5  1  1  5  0   541
TaoSolve               1 1.0 2.0006e+00 1.0 1.00e+09 1.1 6.8e+04 2.5e+03 1.3e+04 35 97 93 48 99  35 97 93 48 99  7529
TaoLineSearchApply     487 1.0 7.7062e-01 1.0 3.63e+08 1.1 6.8e+04 2.5e+03 3.9e+03 14 35 93 48 31  14 35 93 48 31  7083
------------------------------------------------------------------------------------------------------------------------

Memory usage is given in bytes:

Object Type          Creations   Destructions     Memory  Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

              Viewer     4              3         2264     0
              Object     7              7         4032     0
           Container     7              7         3976     0
              Vector    49             49     35398640     0
      Vector Scatter     1              1         1088     0
              Matrix     4              4      3128844     0
    Distributed Mesh    30             30       139040     0
    GraphPartitioner    12             12         7248     0
Star Forest Bipartite Graph    78             78        63576     0
     Discrete System    30             30        25440     0
           Index Set    85             85     12912584     0
   IS L to G Mapping     2              2      3821272     0
             Section    70             70        46480     0
                SNES     1              1         1332     0
      SNESLineSearch     1              1          864     0
              DMSNES     1              1          664     0
       Krylov Solver     1              1         1216     0
      Preconditioner     1              1          848     0
        Linear Space     2              2         1280     0
          Dual Space     2              2         1312     0
            FE Space     2              2         1496     0
                 Tao     1              1         1752     0
       TaoLineSearch     1              1          880     0
========================================================================================================================
Average time to get PetscTime(): 5.96046e-07
Average time for MPI_Barrier(): 5.00679e-06
Average time for zero size MPI_Send(): 1.68383e-06
#PETSc Option Table entries:
-al 1
-am 0
-at 0.001
-bcloc 0,1,0,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,1,1,0,1,0.45,0.55,0.45,0.55,0.45,0.55
-bcnum 7
-bcval 0,0,0,0,0,0,1
-dim 3
-dm_refine 1
-dt 0.001
-edges 3,3
-floc 0.25,0.75,0.25,0.75,0.25,0.75
-fnum 0
-ftime 0,99
-fval 1
-ksp_max_it 50000
-ksp_rtol 1.0e-10
-ksp_type cg
-log_summary
-lower 0,0
-mat_petscspace_order 0
-mesh datafiles/cube_with_hole4_mesh.dat
-mu 1
-nonneg 1
-numsteps 0
-options_left 0
-pc_type jacobi
-petscpartitioner_type parmetis
-progress 0
-simplex 1
-solution_petscspace_order 1
-tao_fatol 1e-8
-tao_frtol 1e-8
-tao_max_it 50000
-tao_monitor
-tao_type blmvm
-tao_view
-trans datafiles/cube_with_hole4_trans.dat
-upper 1,1
-vtuname figures/cube_with_hole_4
-vtuprint 1
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 4
Configure options: --download-f2cblaslapack=/turquoise/users/jychang48/petsc-externalpackages/f2cblaslapack-3.4.2.q1.tar.gz --download-metis=/turquoise/users/jychang48/petsc-externalpackages/metis-5.1.0-p1.tar.gz --download-openmpi=/turquoise/users/jychang48/petsc-externalpackages/openmpi-1.8.5.tar.gz --download-parmetis=/turquoise/users/jychang48/petsc-externalpackages/parmetis-4.0.3-p1.tar.gz --download-sowing=/turquoise/users/jychang48/petsc-externalpackages/sowing-1.1.17-p1.tar.gz --with-cc=gcc --with-cxx=g++ --with-debugging=0 --with-fc=gfortran COPTFLAGS="-O3 -march=native -mtune=native" CXXOPTFLAGS="-O3 -march=native -mtune=native" PETSC_ARCH=arch-no-hdf5-opt --download-chaco=/turquoise/users/jychang48/petsc-externalpackages/Chaco-2.2-p2.tar.gz
-----------------------------------------
Libraries compiled on Tue Jun 23 12:16:19 2015 on wf-fe2.lanl.gov 
Machine characteristics: Linux-2.6.32-431.29.2.2chaos.ch5.2.x86_64-x86_64-with-redhat-6.6-Santiago
Using PETSc directory: /turquoise/users/jychang48/petsc-master
Using PETSc arch: arch-no-hdf5-opt
-----------------------------------------

Using C compiler: /turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/bin/mpicc  -fPIC -Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -O3 -march=native -mtune=native  ${COPTFLAGS} ${CFLAGS}
Using Fortran compiler: /turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/bin/mpif90  -fPIC  -Wall -Wno-unused-variable -ffree-line-length-0 -Wno-unused-dummy-argument -O  ${FOPTFLAGS} ${FFLAGS} 
-----------------------------------------

Using include paths: -I/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/include -I/turquoise/users/jychang48/petsc-master/include -I/turquoise/users/jychang48/petsc-master/include -I/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/include
-----------------------------------------

Using C linker: /turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/bin/mpicc
Using Fortran linker: /turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/bin/mpif90
Using libraries: -Wl,-rpath,/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/lib -L/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/lib -lpetsc -Wl,-rpath,/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/lib -L/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/lib -lf2clapack -lf2cblas -lm -lparmetis -lmetis -lchaco -lX11 -lhwloc -lssl -lcrypto -lm -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc/x86_64-unknown-linux-gnu/4.8.2 -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc/x86_64-unknown-linux-gnu/4.8.2 -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib64 -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib64 -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib -lmpi_usempi -lmpi_mpifh -lgfortran -lm -lgfortran -lm -lquadmath -lm -lmpi_cxx -lstdc++ -Wl,-rpath,/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/lib -L/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/lib -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc/x86_64-unknown-linux-gnu/4.8.2 -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc/x86_64-unknown-linux-gnu/4.8.2 -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib64 -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib64 -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib -ldl -Wl,-rpath,/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/lib -lmpi -lgcc_s -lpthread -ldl 
-----------------------------------------
-------------- next part --------------

==================================================
==================================================
MESHID = 4
==================================================
==================================================

==========================================
  16 processors:
==========================================
TSTEP	ANALYSIS TIME	ITER	FLOPS/s
iter =   0, Function value: -1.57703e-07,  Residual: 0.239098 
iter =   1, Function value: -4.53878e-07,  Residual: 0.223304 
iter =   2, Function value: -7.89606e-06,  Residual: 0.221146 
iter =   3, Function value: -0.0808297,  Residual: 0.225876 
iter =   4, Function value: -1.67847,  Residual: 0.351701 
iter =   5, Function value: -3.2307,  Residual: 0.18377 
iter =   6, Function value: -3.80321,  Residual: 0.168797 
iter =   7, Function value: -4.25223,  Residual: 0.208515 
iter =   8, Function value: -4.54546,  Residual: 0.211522 
iter =   9, Function value: -4.76263,  Residual: 0.121566 
iter =  10, Function value: -4.93278,  Residual: 0.11454 
iter =  11, Function value: -5.1385,  Residual: 0.149913 
iter =  12, Function value: -5.3172,  Residual: 0.188699 
iter =  13, Function value: -5.35404,  Residual: 0.414234 
iter =  14, Function value: -5.46775,  Residual: 0.166872 
iter =  15, Function value: -5.5088,  Residual: 0.109606 
iter =  16, Function value: -5.55735,  Residual: 0.137697 
iter =  17, Function value: -5.61175,  Residual: 0.20436 
iter =  18, Function value: -5.67254,  Residual: 0.145789 
iter =  19, Function value: -5.7428,  Residual: 0.131282 
iter =  20, Function value: -5.78678,  Residual: 0.168675 
iter =  21, Function value: -5.83482,  Residual: 0.107592 
iter =  22, Function value: -5.88877,  Residual: 0.120863 
iter =  23, Function value: -5.94162,  Residual: 0.170501 
iter =  24, Function value: -5.99103,  Residual: 0.137338 
iter =  25, Function value: -6.03433,  Residual: 0.11123 
iter =  26, Function value: -6.08494,  Residual: 0.123001 
iter =  27, Function value: -6.12432,  Residual: 0.158457 
iter =  28, Function value: -6.16801,  Residual: 0.100757 
iter =  29, Function value: -6.21675,  Residual: 0.100482 
iter =  30, Function value: -6.25439,  Residual: 0.150756 
iter =  31, Function value: -6.29508,  Residual: 0.10085 
iter =  32, Function value: -6.33253,  Residual: 0.0966374 
iter =  33, Function value: -6.36431,  Residual: 0.103262 
iter =  34, Function value: -6.40181,  Residual: 0.102187 
iter =  35, Function value: -6.44427,  Residual: 0.121893 
iter =  36, Function value: -6.48004,  Residual: 0.0983186 
iter =  37, Function value: -6.51506,  Residual: 0.092832 
iter =  38, Function value: -6.5519,  Residual: 0.116683 
iter =  39, Function value: -6.58292,  Residual: 0.116904 
iter =  40, Function value: -6.60971,  Residual: 0.0771122 
iter =  41, Function value: -6.63585,  Residual: 0.0757516 
iter =  42, Function value: -6.6586,  Residual: 0.10885 
iter =  43, Function value: -6.68587,  Residual: 0.0752019 
iter =  44, Function value: -6.7155,  Residual: 0.0769993 
iter =  45, Function value: -6.7459,  Residual: 0.1128 
iter =  46, Function value: -6.77436,  Residual: 0.0874185 
iter =  47, Function value: -6.8015,  Residual: 0.0772962 
iter =  48, Function value: -6.82934,  Residual: 0.0894704 
iter =  49, Function value: -6.85383,  Residual: 0.0930334 
iter =  50, Function value: -6.87712,  Residual: 0.0707267 
iter =  51, Function value: -6.90227,  Residual: 0.0704031 
iter =  52, Function value: -6.92095,  Residual: 0.11036 
iter =  53, Function value: -6.94187,  Residual: 0.0625794 
iter =  54, Function value: -6.96158,  Residual: 0.0585309 
iter =  55, Function value: -6.98111,  Residual: 0.07778 
iter =  56, Function value: -7.00425,  Residual: 0.0917501 
iter =  57, Function value: -7.02495,  Residual: 0.0680073 
iter =  58, Function value: -7.04571,  Residual: 0.0632846 
iter =  59, Function value: -7.06812,  Residual: 0.067345 
iter =  60, Function value: -7.08734,  Residual: 0.111259 
iter =  61, Function value: -7.10785,  Residual: 0.062663 
iter =  62, Function value: -7.12178,  Residual: 0.0546556 
iter =  63, Function value: -7.13834,  Residual: 0.0661359 
iter =  64, Function value: -7.15288,  Residual: 0.0977186 
iter =  65, Function value: -7.16979,  Residual: 0.0558807 
iter =  66, Function value: -7.18517,  Residual: 0.0514965 
iter =  67, Function value: -7.19956,  Residual: 0.0566699 
iter =  68, Function value: -7.21503,  Residual: 0.102862 
iter =  69, Function value: -7.23295,  Residual: 0.0520616 
iter =  70, Function value: -7.24472,  Residual: 0.0514462 
iter =  71, Function value: -7.2607,  Residual: 0.0603313 
iter =  72, Function value: -7.27322,  Residual: 0.114154 
iter =  73, Function value: -7.29073,  Residual: 0.0553255 
iter =  74, Function value: -7.30301,  Residual: 0.0468704 
iter =  75, Function value: -7.31535,  Residual: 0.0503862 
iter =  76, Function value: -7.32483,  Residual: 0.121667 
iter =  77, Function value: -7.34239,  Residual: 0.0473323 
iter =  78, Function value: -7.35051,  Residual: 0.0402786 
iter =  79, Function value: -7.36252,  Residual: 0.0513142 
iter =  80, Function value: -7.37578,  Residual: 0.0980691 
iter =  81, Function value: -7.39103,  Residual: 0.0561799 
iter =  82, Function value: -7.40188,  Residual: 0.0420525 
iter =  83, Function value: -7.41352,  Residual: 0.0506624 
iter =  84, Function value: -7.42311,  Residual: 0.0745317 
iter =  85, Function value: -7.43349,  Residual: 0.0418963 
iter =  86, Function value: -7.44304,  Residual: 0.0427164 
iter =  87, Function value: -7.45309,  Residual: 0.050941 
iter =  88, Function value: -7.46557,  Residual: 0.0855721 
iter =  89, Function value: -7.47897,  Residual: 0.0443531 
iter =  90, Function value: -7.48731,  Residual: 0.038289 
iter =  91, Function value: -7.49667,  Residual: 0.0433084 
iter =  92, Function value: -7.50404,  Residual: 0.0748006 
iter =  93, Function value: -7.51295,  Residual: 0.0379092 
iter =  94, Function value: -7.52065,  Residual: 0.0360034 
iter =  95, Function value: -7.52815,  Residual: 0.0407615 
iter =  96, Function value: -7.53624,  Residual: 0.0871539 
iter =  97, Function value: -7.54733,  Residual: 0.0370463 
iter =  98, Function value: -7.55263,  Residual: 0.0321752 
iter =  99, Function value: -7.5611,  Residual: 0.0380701 
iter = 100, Function value: -7.56636,  Residual: 0.0828749 
iter = 101, Function value: -7.57523,  Residual: 0.0364468 
iter = 102, Function value: -7.58065,  Residual: 0.0296879 
iter = 103, Function value: -7.58617,  Residual: 0.0331854 
iter = 104, Function value: -7.59286,  Residual: 0.0653273 
iter = 105, Function value: -7.60073,  Residual: 0.0311378 
iter = 106, Function value: -7.605,  Residual: 0.0271273 
iter = 107, Function value: -7.61161,  Residual: 0.0352389 
iter = 108, Function value: -7.61636,  Residual: 0.0633698 
iter = 109, Function value: -7.62264,  Residual: 0.0323803 
iter = 110, Function value: -7.62822,  Residual: 0.0286247 
iter = 111, Function value: -7.63278,  Residual: 0.0310643 
iter = 112, Function value: -7.63766,  Residual: 0.0695965 
iter = 113, Function value: -7.64471,  Residual: 0.0273006 
iter = 114, Function value: -7.6477,  Residual: 0.0241679 
iter = 115, Function value: -7.65299,  Residual: 0.0287846 
iter = 116, Function value: -7.65608,  Residual: 0.0686328 
iter = 117, Function value: -7.66196,  Residual: 0.029546 
iter = 118, Function value: -7.66562,  Residual: 0.022733 
iter = 119, Function value: -7.6691,  Residual: 0.0260237 
iter = 120, Function value: -7.67366,  Residual: 0.0518384 
iter = 121, Function value: -7.67882,  Residual: 0.0250519 
iter = 122, Function value: -7.68159,  Residual: 0.0208822 
iter = 123, Function value: -7.68604,  Residual: 0.0283777 
iter = 124, Function value: -7.68918,  Residual: 0.0502209 
iter = 125, Function value: -7.69338,  Residual: 0.026466 
iter = 126, Function value: -7.69725,  Residual: 0.0232737 
iter = 127, Function value: -7.70029,  Residual: 0.0246071 
iter = 128, Function value: -7.70333,  Residual: 0.0560219 
iter = 129, Function value: -7.70795,  Residual: 0.0219018 
iter = 130, Function value: -7.70988,  Residual: 0.0192943 
iter = 131, Function value: -7.71333,  Residual: 0.0223829 
iter = 132, Function value: -7.71539,  Residual: 0.0571394 
iter = 133, Function value: -7.71939,  Residual: 0.0241063 
iter = 134, Function value: -7.72174,  Residual: 0.0183287 
iter = 135, Function value: -7.72395,  Residual: 0.0206927 
iter = 136, Function value: -7.7272,  Residual: 0.0366094 
iter = 137, Function value: -7.73034,  Residual: 0.0229168 
iter = 138, Function value: -7.73217,  Residual: 0.0165316 
iter = 139, Function value: -7.73523,  Residual: 0.0207809 
iter = 140, Function value: -7.7372,  Residual: 0.0344397 
iter = 141, Function value: -7.73964,  Residual: 0.0197955 
iter = 142, Function value: -7.74225,  Residual: 0.0175415 
iter = 143, Function value: -7.74421,  Residual: 0.0204096 
iter = 144, Function value: -7.74642,  Residual: 0.0325727 
iter = 145, Function value: -7.74861,  Residual: 0.0168286 
iter = 146, Function value: -7.74991,  Residual: 0.0166282 
iter = 147, Function value: -7.75202,  Residual: 0.0187187 
iter = 148, Function value: -7.75333,  Residual: 0.043491 
iter = 149, Function value: -7.75579,  Residual: 0.0163257 
iter = 150, Function value: -7.75685,  Residual: 0.013081 
iter = 151, Function value: -7.75808,  Residual: 0.0146514 
iter = 152, Function value: -7.75972,  Residual: 0.0272383 
iter = 153, Function value: -7.76143,  Residual: 0.0146716 
iter = 154, Function value: -7.76245,  Residual: 0.012202 
iter = 155, Function value: -7.76402,  Residual: 0.0165763 
iter = 156, Function value: -7.76485,  Residual: 0.0264216 
iter = 157, Function value: -7.76596,  Residual: 0.0141675 
iter = 158, Function value: -7.76711,  Residual: 0.0118525 
iter = 159, Function value: -7.76795,  Residual: 0.0132682 
iter = 160, Function value: -7.76906,  Residual: 0.0307988 
iter = 161, Function value: -7.77046,  Residual: 0.0136723 
iter = 162, Function value: -7.77101,  Residual: 0.0105228 
iter = 163, Function value: -7.77204,  Residual: 0.0114438 
iter = 164, Function value: -7.77257,  Residual: 0.0246093 
iter = 165, Function value: -7.77345,  Residual: 0.0125104 
iter = 166, Function value: -7.77417,  Residual: 0.0102181 
iter = 167, Function value: -7.77474,  Residual: 0.0109432 
iter = 168, Function value: -7.77532,  Residual: 0.0199892 
iter = 169, Function value: -7.77611,  Residual: 0.0101163 
iter = 170, Function value: -7.77655,  Residual: 0.0105442 
iter = 171, Function value: -7.77743,  Residual: 0.0116992 
iter = 172, Function value: -7.77779,  Residual: 0.0293656 
iter = 173, Function value: -7.77878,  Residual: 0.0112078 
iter = 174, Function value: -7.77919,  Residual: 0.00808034 
iter = 175, Function value: -7.77957,  Residual: 0.00902743 
iter = 176, Function value: -7.78023,  Residual: 0.0122209 
iter = 177, Function value: -7.78068,  Residual: 0.0174618 
iter = 178, Function value: -7.78127,  Residual: 0.00842028 
iter = 179, Function value: -7.78167,  Residual: 0.0091214 
iter = 180, Function value: -7.78215,  Residual: 0.0100989 
iter = 181, Function value: -7.78253,  Residual: 0.0198294 
iter = 182, Function value: -7.78312,  Residual: 0.00877935 
iter = 183, Function value: -7.78342,  Residual: 0.00805744 
iter = 184, Function value: -7.78381,  Residual: 0.00884593 
iter = 185, Function value: -7.78426,  Residual: 0.0172995 
iter = 186, Function value: -7.78476,  Residual: 0.00859094 
iter = 187, Function value: -7.78503,  Residual: 0.00730765 
iter = 188, Function value: -7.78543,  Residual: 0.00819726 
iter = 189, Function value: -7.7857,  Residual: 0.0163602 
iter = 190, Function value: -7.78611,  Residual: 0.00840989 
iter = 191, Function value: -7.78641,  Residual: 0.00748282 
iter = 192, Function value: -7.7867,  Residual: 0.00842633 
iter = 193, Function value: -7.78717,  Residual: 0.0143768 
iter = 194, Function value: -7.78759,  Residual: 0.00972398 
iter = 195, Function value: -7.78783,  Residual: 0.0068276 
iter = 196, Function value: -7.78815,  Residual: 0.00741378 
iter = 197, Function value: -7.7884,  Residual: 0.00941715 
iter = 198, Function value: -7.78875,  Residual: 0.00770439 
iter = 199, Function value: -7.78917,  Residual: 0.00852455 
iter = 200, Function value: -7.78949,  Residual: 0.0119365 
iter = 201, Function value: -7.7898,  Residual: 0.00737878 
iter = 202, Function value: -7.79006,  Residual: 0.00692509 
iter = 203, Function value: -7.79031,  Residual: 0.0078474 
iter = 204, Function value: -7.79062,  Residual: 0.0133278 
iter = 205, Function value: -7.79097,  Residual: 0.00759941 
iter = 206, Function value: -7.7912,  Residual: 0.00672229 
iter = 207, Function value: -7.79144,  Residual: 0.00698935 
iter = 208, Function value: -7.79165,  Residual: 0.0137285 
iter = 209, Function value: -7.79195,  Residual: 0.00704832 
iter = 210, Function value: -7.79218,  Residual: 0.00665052 
iter = 211, Function value: -7.79241,  Residual: 0.00752555 
iter = 212, Function value: -7.79273,  Residual: 0.013596 
iter = 213, Function value: -7.79307,  Residual: 0.00727608 
iter = 214, Function value: -7.79324,  Residual: 0.0061077 
iter = 215, Function value: -7.79355,  Residual: 0.0070488 
iter = 216, Function value: -7.79371,  Residual: 0.0129342 
iter = 217, Function value: -7.79398,  Residual: 0.00699342 
iter = 218, Function value: -7.79422,  Residual: 0.00615994 
iter = 219, Function value: -7.79442,  Residual: 0.00670625 
iter = 220, Function value: -7.79466,  Residual: 0.0129079 
iter = 221, Function value: -7.79497,  Residual: 0.00653888 
iter = 222, Function value: -7.79512,  Residual: 0.00595468 
iter = 223, Function value: -7.79543,  Residual: 0.00677409 
iter = 224, Function value: -7.79557,  Residual: 0.0157728 
iter = 225, Function value: -7.79589,  Residual: 0.00704583 
iter = 226, Function value: -7.79609,  Residual: 0.00558073 
iter = 227, Function value: -7.79628,  Residual: 0.00634841 
iter = 228, Function value: -7.79655,  Residual: 0.0100776 
iter = 229, Function value: -7.79683,  Residual: 0.00715925 
iter = 230, Function value: -7.79701,  Residual: 0.00566091 
iter = 231, Function value: -7.79735,  Residual: 0.00681582 
iter = 232, Function value: -7.79758,  Residual: 0.0114214 
iter = 233, Function value: -7.79786,  Residual: 0.00690348 
iter = 234, Function value: -7.79816,  Residual: 0.00560618 
iter = 235, Function value: -7.79836,  Residual: 0.00674194 
iter = 236, Function value: -7.79867,  Residual: 0.00742554 
iter = 237, Function value: -7.79891,  Residual: 0.00689359 
iter = 238, Function value: -7.79916,  Residual: 0.00634623 
iter = 239, Function value: -7.79947,  Residual: 0.00757451 
iter = 240, Function value: -7.79971,  Residual: 0.00895436 
iter = 241, Function value: -7.79993,  Residual: 0.00593646 
iter = 242, Function value: -7.80019,  Residual: 0.0052903 
iter = 243, Function value: -7.80038,  Residual: 0.00750854 
iter = 244, Function value: -7.80063,  Residual: 0.00558416 
iter = 245, Function value: -7.80087,  Residual: 0.00693769 
iter = 246, Function value: -7.80111,  Residual: 0.00608144 
iter = 247, Function value: -7.80131,  Residual: 0.00532918 
iter = 248, Function value: -7.80156,  Residual: 0.0068985 
iter = 249, Function value: -7.80177,  Residual: 0.00830931 
iter = 250, Function value: -7.80197,  Residual: 0.00580026 
iter = 251, Function value: -7.80221,  Residual: 0.00495945 
iter = 252, Function value: -7.80236,  Residual: 0.00744075 
iter = 253, Function value: -7.80255,  Residual: 0.00554201 
iter = 254, Function value: -7.80278,  Residual: 0.00566253 
iter = 255, Function value: -7.80295,  Residual: 0.00688607 
iter = 256, Function value: -7.80311,  Residual: 0.00544887 
iter = 257, Function value: -7.8034,  Residual: 0.00636679 
iter = 258, Function value: -7.80355,  Residual: 0.00897564 
iter = 259, Function value: -7.80371,  Residual: 0.00549888 
iter = 260, Function value: -7.8039,  Residual: 0.00415368 
iter = 261, Function value: -7.80402,  Residual: 0.00468554 
iter = 262, Function value: -7.8042,  Residual: 0.00944556 
iter = 263, Function value: -7.8044,  Residual: 0.00516081 
iter = 264, Function value: -7.8045,  Residual: 0.0043641 
iter = 265, Function value: -7.8047,  Residual: 0.00495905 
iter = 266, Function value: -7.80479,  Residual: 0.00991048 
iter = 267, Function value: -7.80495,  Residual: 0.00465967 
iter = 268, Function value: -7.80507,  Residual: 0.00374079 
iter = 269, Function value: -7.80516,  Residual: 0.00395313 
iter = 270, Function value: -7.80527,  Residual: 0.00847105 
iter = 271, Function value: -7.80544,  Residual: 0.00366557 
iter = 272, Function value: -7.80554,  Residual: 0.00421187 
iter = 273, Function value: -7.80573,  Residual: 0.00506542 
iter = 274, Function value: -7.8058,  Residual: 0.0113156 
iter = 275, Function value: -7.80599,  Residual: 0.00403993 
iter = 276, Function value: -7.80607,  Residual: 0.00309473 
iter = 277, Function value: -7.80614,  Residual: 0.00370412 
iter = 278, Function value: -7.80629,  Residual: 0.00589863 
iter = 279, Function value: -7.80642,  Residual: 0.00610977 
iter = 280, Function value: -7.80654,  Residual: 0.00338659 
iter = 281, Function value: -7.80664,  Residual: 0.00361862 
iter = 282, Function value: -7.80672,  Residual: 0.00436093 
iter = 283, Function value: -7.80683,  Residual: 0.00412742 
iter = 284, Function value: -7.80694,  Residual: 0.0034514 
iter = 285, Function value: -7.80707,  Residual: 0.00470219 
iter = 286, Function value: -7.80717,  Residual: 0.00523596 
iter = 287, Function value: -7.80726,  Residual: 0.00350967 
iter = 288, Function value: -7.80737,  Residual: 0.00311707 
iter = 289, Function value: -7.80744,  Residual: 0.0046191 
iter = 290, Function value: -7.80754,  Residual: 0.00378936 
iter = 291, Function value: -7.80763,  Residual: 0.00564189 
iter = 292, Function value: -7.80771,  Residual: 0.00311771 
iter = 293, Function value: -7.80776,  Residual: 0.00315966 
iter = 294, Function value: -7.80786,  Residual: 0.00369862 
iter = 295, Function value: -7.80792,  Residual: 0.00827063 
iter = 296, Function value: -7.80803,  Residual: 0.00357855 
iter = 297, Function value: -7.80811,  Residual: 0.00265554 
iter = 298, Function value: -7.80816,  Residual: 0.00290326 
iter = 299, Function value: -7.80822,  Residual: 0.00596541 
iter = 300, Function value: -7.8083,  Residual: 0.00280405 
iter = 301, Function value: -7.80836,  Residual: 0.00260171 
iter = 302, Function value: -7.80844,  Residual: 0.00323139 
iter = 303, Function value: -7.80849,  Residual: 0.00698054 
iter = 304, Function value: -7.80858,  Residual: 0.00268255 
iter = 305, Function value: -7.80862,  Residual: 0.00233456 
iter = 306, Function value: -7.80867,  Residual: 0.00274033 
iter = 307, Function value: -7.80874,  Residual: 0.00525292 
iter = 308, Function value: -7.80882,  Residual: 0.00315494 
iter = 309, Function value: -7.80887,  Residual: 0.00224967 
iter = 310, Function value: -7.80893,  Residual: 0.00288279 
iter = 311, Function value: -7.80896,  Residual: 0.0034635 
iter = 312, Function value: -7.809,  Residual: 0.00250577 
iter = 313, Function value: -7.80908,  Residual: 0.00252035 
iter = 314, Function value: -7.80913,  Residual: 0.00382787 
iter = 315, Function value: -7.80918,  Residual: 0.00268336 
iter = 316, Function value: -7.80924,  Residual: 0.00316437 
iter = 317, Function value: -7.80927,  Residual: 0.00287941 
iter = 318, Function value: -7.8093,  Residual: 0.00233516 
iter = 319, Function value: -7.80936,  Residual: 0.00313269 
iter = 320, Function value: -7.8094,  Residual: 0.00424648 
iter = 321, Function value: -7.80943,  Residual: 0.00254562 
iter = 322, Function value: -7.80948,  Residual: 0.00197848 
iter = 323, Function value: -7.80951,  Residual: 0.00219143 
iter = 324, Function value: -7.80954,  Residual: 0.00559215 
iter = 325, Function value: -7.8096,  Residual: 0.00207975 
iter = 326, Function value: -7.80962,  Residual: 0.00178679 
iter = 327, Function value: -7.80967,  Residual: 0.00219704 
iter = 328, Function value: -7.80968,  Residual: 0.00618964 
iter = 329, Function value: -7.80974,  Residual: 0.00217387 
iter = 330, Function value: -7.80976,  Residual: 0.00159697 
iter = 331, Function value: -7.80978,  Residual: 0.00181745 
iter = 332, Function value: -7.80981,  Residual: 0.00342114 
iter = 333, Function value: -7.80984,  Residual: 0.00156656 
iter = 334, Function value: -7.80987,  Residual: 0.0015906 
iter = 335, Function value: -7.8099,  Residual: 0.00220417 
iter = 336, Function value: -7.80992,  Residual: 0.00465009 
iter = 337, Function value: -7.80995,  Residual: 0.00187269 
iter = 338, Function value: -7.80997,  Residual: 0.00141207 
iter = 339, Function value: -7.80999,  Residual: 0.00165522 
iter = 340, Function value: -7.81002,  Residual: 0.00275905 
iter = 341, Function value: -7.81004,  Residual: 0.00236444 
iter = 342, Function value: -7.81005,  Residual: 0.00126158 
iter = 343, Function value: -7.81007,  Residual: 0.0013511 
iter = 344, Function value: -7.81008,  Residual: 0.00159616 
iter = 345, Function value: -7.8101,  Residual: 0.00263468 
iter = 346, Function value: -7.81012,  Residual: 0.00130192 
iter = 347, Function value: -7.81013,  Residual: 0.00125099 
iter = 348, Function value: -7.81014,  Residual: 0.00134643 
iter = 349, Function value: -7.81015,  Residual: 0.00322428 
iter = 350, Function value: -7.81017,  Residual: 0.00112657 
iter = 351, Function value: -7.81017,  Residual: 0.00105449 
iter = 352, Function value: -7.81019,  Residual: 0.00124955 
iter = 353, Function value: -7.8102,  Residual: 0.00223142 
iter = 354, Function value: -7.81021,  Residual: 0.00113859 
iter = 355, Function value: -7.81022,  Residual: 0.00098257 
iter = 356, Function value: -7.81023,  Residual: 0.00131657 
iter = 357, Function value: -7.81024,  Residual: 0.00218694 
iter = 358, Function value: -7.81025,  Residual: 0.00104937 
iter = 359, Function value: -7.81025,  Residual: 0.000917616 
iter = 360, Function value: -7.81026,  Residual: 0.00108485 
iter = 361, Function value: -7.81027,  Residual: 0.00205437 
iter = 362, Function value: -7.81028,  Residual: 0.00123308 
iter = 363, Function value: -7.81029,  Residual: 0.000869878 
iter = 364, Function value: -7.8103,  Residual: 0.000962767 
iter = 365, Function value: -7.8103,  Residual: 0.00183068 
iter = 366, Function value: -7.81031,  Residual: 0.00111156 
iter = 367, Function value: -7.81032,  Residual: 0.000900357 
iter = 368, Function value: -7.81033,  Residual: 0.0010033 
iter = 369, Function value: -7.81034,  Residual: 0.00178238 
iter = 370, Function value: -7.81034,  Residual: 0.000996511 
iter = 371, Function value: -7.81035,  Residual: 0.000886717 
iter = 372, Function value: -7.81036,  Residual: 0.00106146 
iter = 373, Function value: -7.81036,  Residual: 0.00222379 
iter = 374, Function value: -7.81037,  Residual: 0.00099812 
iter = 375, Function value: -7.81038,  Residual: 0.000723174 
iter = 376, Function value: -7.81038,  Residual: 0.000738951 
iter = 377, Function value: -7.81039,  Residual: 0.00185185 
iter = 378, Function value: -7.8104,  Residual: 0.00075251 
iter = 379, Function value: -7.8104,  Residual: 0.000839343 
iter = 380, Function value: -7.81041,  Residual: 0.00103561 
iter = 381, Function value: -7.81041,  Residual: 0.0024586 
iter = 382, Function value: -7.81042,  Residual: 0.000744648 
iter = 383, Function value: -7.81042,  Residual: 0.000538622 
iter = 384, Function value: -7.81043,  Residual: 0.000718492 
iter = 385, Function value: -7.81043,  Residual: 0.00104014 
iter = 386, Function value: -7.81044,  Residual: 0.00136274 
iter = 387, Function value: -7.81044,  Residual: 0.00074841 
iter = 388, Function value: -7.81045,  Residual: 0.000785691 
iter = 389, Function value: -7.81045,  Residual: 0.000898177 
iter = 390, Function value: -7.81046,  Residual: 0.00146418 
iter = 391, Function value: -7.81046,  Residual: 0.000690708 
iter = 392, Function value: -7.81047,  Residual: 0.000647569 
iter = 393, Function value: -7.81047,  Residual: 0.000697967 
iter = 394, Function value: -7.81048,  Residual: 0.00131163 
iter = 395, Function value: -7.81048,  Residual: 0.000827399 
iter = 396, Function value: -7.81049,  Residual: 0.000845789 
iter = 397, Function value: -7.8105,  Residual: 0.00105409 
iter = 398, Function value: -7.8105,  Residual: 0.00161545 
iter = 399, Function value: -7.8105,  Residual: 0.000687262 
iter = 400, Function value: -7.81051,  Residual: 0.00059559 
iter = 401, Function value: -7.81051,  Residual: 0.000752873 
iter = 402, Function value: -7.81051,  Residual: 0.00120154 
iter = 403, Function value: -7.81052,  Residual: 0.000798778 
iter = 404, Function value: -7.81052,  Residual: 0.000712079 
iter = 405, Function value: -7.81053,  Residual: 0.00110496 
iter = 406, Function value: -7.81053,  Residual: 0.00127187 
iter = 407, Function value: -7.81054,  Residual: 0.000842919 
iter = 408, Function value: -7.81055,  Residual: 0.00069032 
iter = 409, Function value: -7.81055,  Residual: 0.000841593 
iter = 410, Function value: -7.81056,  Residual: 0.0012262 
iter = 411, Function value: -7.81056,  Residual: 0.000918047 
iter = 412, Function value: -7.81057,  Residual: 0.0007945 
iter = 413, Function value: -7.81057,  Residual: 0.000866942 
iter = 414, Function value: -7.81058,  Residual: 0.00155323 
iter = 415, Function value: -7.81058,  Residual: 0.000891976 
iter = 416, Function value: -7.81059,  Residual: 0.000747428 
iter = 417, Function value: -7.81059,  Residual: 0.000821924 
iter = 418, Function value: -7.8106,  Residual: 0.00105041 
iter = 419, Function value: -7.8106,  Residual: 0.000994719 
iter = 420, Function value: -7.81061,  Residual: 0.00088687 
iter = 421, Function value: -7.81061,  Residual: 0.00103494 
iter = 422, Function value: -7.81062,  Residual: 0.00130036 
iter = 423, Function value: -7.81063,  Residual: 0.000908119 
iter = 424, Function value: -7.81063,  Residual: 0.000781051 
iter = 425, Function value: -7.81064,  Residual: 0.00113501 
iter = 426, Function value: -7.81064,  Residual: 0.000816488 
iter = 427, Function value: -7.81065,  Residual: 0.000743231 
iter = 428, Function value: -7.81065,  Residual: 0.00100657 
iter = 429, Function value: -7.81065,  Residual: 0.000910451 
iter = 430, Function value: -7.81066,  Residual: 0.00194077 
iter = 431, Function value: -7.81067,  Residual: 0.000792676 
iter = 432, Function value: -7.81067,  Residual: 0.000635068 
iter = 433, Function value: -7.81068,  Residual: 0.000844652 
iter = 434, Function value: -7.81068,  Residual: 0.00173968 
iter = 435, Function value: -7.81068,  Residual: 0.000718673 
iter = 436, Function value: -7.81069,  Residual: 0.000571681 
iter = 437, Function value: -7.81069,  Residual: 0.000659658 
iter = 438, Function value: -7.81069,  Residual: 0.0013505 
iter = 439, Function value: -7.8107,  Residual: 0.000568503 
iter = 440, Function value: -7.8107,  Residual: 0.000650747 
iter = 441, Function value: -7.8107,  Residual: 0.000749039 
iter = 442, Function value: -7.81071,  Residual: 0.00174564 
iter = 443, Function value: -7.81071,  Residual: 0.000662028 
iter = 444, Function value: -7.81071,  Residual: 0.000523397 
iter = 445, Function value: -7.81072,  Residual: 0.000656138 
iter = 446, Function value: -7.81072,  Residual: 0.00109849 
iter = 447, Function value: -7.81073,  Residual: 0.000874994 
iter = 448, Function value: -7.81073,  Residual: 0.000531464 
iter = 449, Function value: -7.81073,  Residual: 0.000593073 
iter = 450, Function value: -7.81073,  Residual: 0.000707091 
iter = 451, Function value: -7.81074,  Residual: 0.000810123 
iter = 452, Function value: -7.81074,  Residual: 0.000603729 
iter = 453, Function value: -7.81074,  Residual: 0.000561513 
iter = 454, Function value: -7.81075,  Residual: 0.000729322 
iter = 455, Function value: -7.81075,  Residual: 0.000673021 
iter = 456, Function value: -7.81075,  Residual: 0.000644186 
iter = 457, Function value: -7.81076,  Residual: 0.000523062 
iter = 458, Function value: -7.81076,  Residual: 0.000587717 
iter = 459, Function value: -7.81076,  Residual: 0.000496603 
iter = 460, Function value: -7.81076,  Residual: 0.000532727 
iter = 461, Function value: -7.81077,  Residual: 0.000998028 
iter = 462, Function value: -7.81077,  Residual: 0.000573228 
iter = 463, Function value: -7.81077,  Residual: 0.000469068 
iter = 464, Function value: -7.81077,  Residual: 0.000588658 
iter = 465, Function value: -7.81077,  Residual: 0.000786977 
iter = 466, Function value: -7.81078,  Residual: 0.000519669 
iter = 467, Function value: -7.81078,  Residual: 0.00048518 
iter = 468, Function value: -7.81078,  Residual: 0.000624198 
iter = 469, Function value: -7.81078,  Residual: 0.000502941 
iter = 470, Function value: -7.81078,  Residual: 0.000492811 
iter = 471, Function value: -7.81079,  Residual: 0.00055812 
iter = 472, Function value: -7.81079,  Residual: 0.000851356 
iter = 473, Function value: -7.81079,  Residual: 0.00054883 
iter = 474, Function value: -7.81079,  Residual: 0.000465062 
iter = 475, Function value: -7.8108,  Residual: 0.000552709 
iter = 476, Function value: -7.8108,  Residual: 0.000708076 
iter = 477, Function value: -7.8108,  Residual: 0.000473574 
iter = 478, Function value: -7.8108,  Residual: 0.000442428 
iter = 479, Function value: -7.8108,  Residual: 0.000635062 
iter = 480, Function value: -7.81081,  Residual: 0.000419477 
iter = 481, Function value: -7.81081,  Residual: 0.000422442 
iter = 482, Function value: -7.81081,  Residual: 0.000578847 
iter = 483, Function value: -7.81081,  Residual: 0.000499854 
iter = 484, Function value: -7.81081,  Residual: 0.000460825 
iter = 485, Function value: -7.81081,  Residual: 0.000545967 
iter = 486, Function value: -7.81082,  Residual: 0.00060014 
iter = 487, Function value: -7.81082,  Residual: 0.000418945 
iter = 488, Function value: -7.81082,  Residual: 0.000410794 
iter = 489, Function value: -7.81082,  Residual: 0.000750432 
iter = 490, Function value: -7.81082,  Residual: 0.000379884 
iter = 491, Function value: -7.81082,  Residual: 0.000331549 
iter = 492, Function value: -7.81082,  Residual: 0.000416861 
iter = 493, Function value: -7.81083,  Residual: 0.000579213 
iter = 494, Function value: -7.81083,  Residual: 0.000378749 
iter = 495, Function value: -7.81083,  Residual: 0.000391863 
iter = 496, Function value: -7.81083,  Residual: 0.000469321 
iter = 497, Function value: -7.81083,  Residual: 0.000849723 
iter = 498, Function value: -7.81083,  Residual: 0.000365311 
iter = 499, Function value: -7.81083,  Residual: 0.00030933 
iter = 500, Function value: -7.81083,  Residual: 0.000356744 
iter = 501, Function value: -7.81084,  Residual: 0.000652476 
iter = 502, Function value: -7.81084,  Residual: 0.000389956 
iter = 503, Function value: -7.81084,  Residual: 0.00030185 
iter = 504, Function value: -7.81084,  Residual: 0.000430598 
iter = 505, Function value: -7.81084,  Residual: 0.000506603 
iter = 506, Function value: -7.81084,  Residual: 0.000319141 
iter = 507, Function value: -7.81084,  Residual: 0.000290193 
iter = 508, Function value: -7.81084,  Residual: 0.000334589 
iter = 509, Function value: -7.81084,  Residual: 0.000689399 
iter = 510, Function value: -7.81084,  Residual: 0.000335727 
iter = 511, Function value: -7.81084,  Residual: 0.000261672 
Tao Object: 16 MPI processes
  type: blmvm
      Gradient steps: 0
  TaoLineSearch Object:   16 MPI processes
    type: more-thuente
  Active Set subset type: subvec
  convergence tolerances: fatol=1e-08,   frtol=1e-08
  convergence tolerances: gatol=1e-08,   steptol=0,   gttol=0
  Residual in Function/Gradient:=0.000261672
  Objective value=-7.81084
  total number of iterations=511,                          (max: 50000)
  total number of function/gradient evaluations=512,      (max: 4000)
  Solution converged:   estimated |f(x)-f(X*)|/|f(X*)| <= frtol
it: 1	2.475548e+00	511	6.486348e+09

==========================================
  Time summary:
==========================================
Creating DMPlex: 	1.16017
Distributing DMPlex: 	0.726076
Refining DMPlex: 	0.392075
Setting up problem: 	0.55005
Overall analysis time: 	2.88639
Overall FLOPS/s: 	5.35456e+09
************************************************************************************************************************
***             WIDEN YOUR WINDOW TO 120 CHARACTERS.  Use 'enscript -r -fCourier9' to print this document            ***
************************************************************************************************************************

---------------------------------------------- PETSc Performance Summary: ----------------------------------------------

./main_wolf on a arch-no-hdf5-opt named wf148.localdomain with 16 processors, by jychang48 Thu Jun 25 10:36:25 2015
Using Petsc Development GIT revision: unknown  GIT Date: unknown

                         Max       Max/Min        Avg      Total 
Time (sec):           5.725e+00      1.00016   5.724e+00
Objects:              3.920e+02      1.11681   3.536e+02
Flops:                1.079e+09      1.12340   1.013e+09  1.620e+10
Flops/sec:            1.885e+08      1.12351   1.769e+08  2.830e+09
MPI Messages:         5.470e+03      1.42250   4.807e+03  7.690e+04
MPI Message Lengths:  8.998e+07      5.60808   4.773e+03  3.671e+08
MPI Reductions:       1.332e+04      1.00000

Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
                            e.g., VecAXPY() for real vectors of length N --> 2N flops
                            and VecAXPY() for complex vectors of length N --> 8N flops

Summary of Stages:   ----- Time ------  ----- Flops -----  --- Messages ---  -- Message Lengths --  -- Reductions --
                        Avg     %Total     Avg     %Total   counts   %Total     Avg         %Total   counts   %Total 
 0:      Main Stage: 5.7241e+00 100.0%  1.6201e+10 100.0%  7.690e+04 100.0%  4.773e+03      100.0%  1.332e+04 100.0% 

------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
   Count: number of times phase was executed
   Time and Flops: Max - maximum over all processors
                   Ratio - ratio of maximum to minimum over all processors
   Mess: number of messages sent
   Avg. len: average message length (bytes)
   Reduct: number of global reductions
   Global: entire computation
   Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
      %T - percent time in this phase         %F - percent flops in this phase
      %M - percent messages in this phase     %L - percent message lengths in this phase
      %R - percent reductions in this phase
   Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------
Event                Count      Time (sec)     Flops                             --- Global ---  --- Stage ---   Total
                   Max Ratio  Max     Ratio   Max  Ratio  Mess   Avg len Reduct  %T %F %M %L %R  %T %F %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------

--- Event Stage 0: Main Stage

CreateMesh           513 1.0 2.8079e+00 1.0 2.95e+08 1.1 7.4e+04 3.7e+03 1.0e+03 49 27 96 74  8  49 27 96 74  8  1581
VecView                1 1.0 2.8341e-03 2.4 6.20e+04 2.6 8.6e+01 2.5e+04 0.0e+00  0  0  0  1  0   0  0  0  1  0   257
VecDot             11208 1.0 5.5847e-01 1.3 3.79e+08 1.1 0.0e+00 0.0e+00 1.1e+04  9 35  0  0 84   9 35  0  0 84 10179
VecNorm              512 1.0 2.0345e-02 1.5 1.73e+07 1.1 0.0e+00 0.0e+00 5.1e+02  0  2  0  0  4   0  2  0  0  4 12765
VecScale            2043 1.0 3.0195e-02 1.1 3.46e+07 1.1 0.0e+00 0.0e+00 0.0e+00  1  3  0  0  0   1  3  0  0  0 17159
VecCopy             6638 1.0 1.8342e-01 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  3  0  0  0  0   3  0  0  0  0     0
VecSet                11 1.0 1.5627e-02 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY             8653 1.0 2.8274e-01 1.2 3.01e+08 1.1 0.0e+00 0.0e+00 0.0e+00  4 28  0  0  0   4 28  0  0  0 15981
VecAYPX             1020 1.0 3.0797e-02 1.5 1.73e+07 1.1 0.0e+00 0.0e+00 0.0e+00  0  2  0  0  0   0  2  0  0  0  8400
VecWAXPY               1 1.0 4.1008e-05 1.9 1.69e+04 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0  6185
VecPointwiseMult    3061 1.0 7.7274e-02 1.1 5.18e+07 1.1 0.0e+00 0.0e+00 0.0e+00  1  5  0  0  0   1  5  0  0  0 10046
VecScatterBegin      513 1.0 2.4148e-02 1.5 0.00e+00 0.0 7.2e+04 2.5e+03 0.0e+00  0  0 93 49  0   0  0 93 49  0     0
VecScatterEnd        513 1.0 2.4307e-02 1.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatMult              513 1.0 4.5839e-01 1.1 2.44e+08 1.1 7.2e+04 2.5e+03 0.0e+00  8 23 93 49  0   8 23 93 49  0  8002
MatAssemblyBegin       2 1.0 2.8213e-0212.5 0.00e+00 0.0 2.1e+02 7.3e+04 4.0e+00  0  0  0  4  0   0  0  0  4  0     0
MatAssemblyEnd         2 1.0 1.2559e-02 1.6 0.00e+00 0.0 2.8e+02 6.3e+02 8.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatZeroEntries         1 1.0 3.2997e-04 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
Mesh Partition         1 1.0 6.5906e-01 1.1 0.00e+00 0.0 1.6e+03 1.1e+04 4.0e+00 11  0  2  5  0  11  0  2  5  0     0
Mesh Migration         1 1.0 8.5906e-02 1.0 0.00e+00 0.0 3.0e+02 2.0e+05 2.0e+00  1  0  0 16  0   1  0  0 16  0     0
DMPlexInterp           3 1.0 9.6569e-014074.8 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  1  0  0  0  0   1  0  0  0  0     0
DMPlexDistribute       1 1.0 7.5649e-01 1.0 0.00e+00 0.0 1.9e+03 4.7e+04 6.0e+00 13  0  3 25  0  13  0  3 25  0     0
DMPlexDistCones        1 1.0 5.5471e-02 1.0 0.00e+00 0.0 1.3e+02 3.5e+05 0.0e+00  1  0  0 12  0   1  0  0 12  0     0
DMPlexDistLabels       1 1.0 2.6703e-0429.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
DMPlexDistField        2 1.0 2.6206e-02 1.1 0.00e+00 0.0 2.6e+02 7.8e+04 4.0e+00  0  0  0  5  0   0  0  0  5  0     0
DMPlexDistData         1 1.0 4.4285e-0131.5 0.00e+00 0.0 1.6e+03 7.0e+03 0.0e+00  7  0  2  3  0   7  0  2  3  0     0
DMPlexStratify        12 1.2 3.5430e-01 4.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  2  0  0  0  0   2  0  0  0  0     0
DMPlexPrealloc         1 1.0 1.9255e-01 1.0 0.00e+00 0.0 1.7e+03 5.2e+03 1.7e+01  3  0  2  2  0   3  0  2  2  0     0
DMPlexResidualFE       1 1.0 1.0427e-01 1.1 5.23e+06 1.1 0.0e+00 0.0e+00 0.0e+00  2  0  0  0  0   2  0  0  0  0   771
DMPlexJacobianFE       1 1.0 2.9981e-01 1.0 1.06e+07 1.1 2.1e+02 7.3e+04 2.0e+00  5  1  0  4  0   5  1  0  4  0   545
SFSetGraph            22 1.0 1.2753e-02 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
SFBcastBegin          35 1.0 4.5945e-01 7.6 0.00e+00 0.0 3.6e+03 3.0e+04 0.0e+00  8  0  5 29  0   8  0  5 29  0     0
SFBcastEnd            35 1.0 8.2271e-02 2.7 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  1  0  0  0  0   1  0  0  0  0     0
SFReduceBegin          6 1.0 1.3219e-0210.0 0.00e+00 0.0 8.0e+02 1.9e+04 0.0e+00  0  0  1  4  0   0  0  1  4  0     0
SFReduceEnd            6 1.0 1.8614e-02 3.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
SFFetchOpBegin         1 1.0 7.2002e-0517.8 0.00e+00 0.0 7.0e+01 1.2e+04 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
SFFetchOpEnd           1 1.0 4.7493e-04 2.1 0.00e+00 0.0 7.0e+01 1.2e+04 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
SNESFunctionEval       1 1.0 1.0910e-01 1.1 5.23e+06 1.1 1.7e+02 2.5e+04 0.0e+00  2  0  0  1  0   2  0  0  1  0   737
SNESJacobianEval       1 1.0 3.0030e-01 1.0 1.06e+07 1.1 4.2e+02 4.4e+04 2.0e+00  5  1  1  5  0   5  1  1  5  0   544
TaoSolve               1 1.0 2.0681e+00 1.0 1.05e+09 1.1 7.2e+04 2.5e+03 1.3e+04 36 98 93 49100  36 98 93 49100  7643
TaoLineSearchApply     511 1.0 8.0252e-01 1.0 3.81e+08 1.1 7.2e+04 2.5e+03 4.1e+03 14 35 93 49 31  14 35 93 49 31  7136
------------------------------------------------------------------------------------------------------------------------

Memory usage is given in bytes:

Object Type          Creations   Destructions     Memory  Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

              Viewer     4              3         2264     0
              Object     7              7         4032     0
           Container     7              7         3976     0
              Vector    49             49     35398640     0
      Vector Scatter     1              1         1088     0
              Matrix     4              4      3128844     0
    Distributed Mesh    30             30       139040     0
    GraphPartitioner    12             12         7248     0
Star Forest Bipartite Graph    78             78        63576     0
     Discrete System    30             30        25440     0
           Index Set    85             85     12912584     0
   IS L to G Mapping     2              2      3821272     0
             Section    70             70        46480     0
                SNES     1              1         1332     0
      SNESLineSearch     1              1          864     0
              DMSNES     1              1          664     0
       Krylov Solver     1              1         1216     0
      Preconditioner     1              1          848     0
        Linear Space     2              2         1280     0
          Dual Space     2              2         1312     0
            FE Space     2              2         1496     0
                 Tao     1              1         1752     0
       TaoLineSearch     1              1          880     0
========================================================================================================================
Average time to get PetscTime(): 5.96046e-07
Average time for MPI_Barrier(): 3.19481e-06
Average time for zero size MPI_Send(): 1.68383e-06
#PETSc Option Table entries:
-al 1
-am 0
-at 0.001
-bcloc 0,1,0,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,1,1,0,1,0.45,0.55,0.45,0.55,0.45,0.55
-bcnum 7
-bcval 0,0,0,0,0,0,1
-dim 3
-dm_refine 1
-dt 0.001
-edges 3,3
-floc 0.25,0.75,0.25,0.75,0.25,0.75
-fnum 0
-ftime 0,99
-fval 1
-ksp_max_it 50000
-ksp_rtol 1.0e-10
-ksp_type cg
-log_summary
-lower 0,0
-mat_petscspace_order 0
-mesh datafiles/cube_with_hole4_mesh.dat
-mu 1
-nonneg 1
-numsteps 0
-options_left 0
-pc_type jacobi
-petscpartitioner_type parmetis
-progress 0
-simplex 1
-solution_petscspace_order 1
-tao_fatol 1e-8
-tao_frtol 1e-8
-tao_max_it 50000
-tao_monitor
-tao_type blmvm
-tao_view
-trans datafiles/cube_with_hole4_trans.dat
-upper 1,1
-vtuname figures/cube_with_hole_4
-vtuprint 1
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 4
Configure options: --download-f2cblaslapack=/turquoise/users/jychang48/petsc-externalpackages/f2cblaslapack-3.4.2.q1.tar.gz --download-metis=/turquoise/users/jychang48/petsc-externalpackages/metis-5.1.0-p1.tar.gz --download-openmpi=/turquoise/users/jychang48/petsc-externalpackages/openmpi-1.8.5.tar.gz --download-parmetis=/turquoise/users/jychang48/petsc-externalpackages/parmetis-4.0.3-p1.tar.gz --download-sowing=/turquoise/users/jychang48/petsc-externalpackages/sowing-1.1.17-p1.tar.gz --with-cc=gcc --with-cxx=g++ --with-debugging=0 --with-fc=gfortran COPTFLAGS="-O3 -march=native -mtune=native" CXXOPTFLAGS="-O3 -march=native -mtune=native" PETSC_ARCH=arch-no-hdf5-opt --download-chaco=/turquoise/users/jychang48/petsc-externalpackages/Chaco-2.2-p2.tar.gz
-----------------------------------------
Libraries compiled on Tue Jun 23 12:16:19 2015 on wf-fe2.lanl.gov 
Machine characteristics: Linux-2.6.32-431.29.2.2chaos.ch5.2.x86_64-x86_64-with-redhat-6.6-Santiago
Using PETSc directory: /turquoise/users/jychang48/petsc-master
Using PETSc arch: arch-no-hdf5-opt
-----------------------------------------

Using C compiler: /turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/bin/mpicc  -fPIC -Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -O3 -march=native -mtune=native  ${COPTFLAGS} ${CFLAGS}
Using Fortran compiler: /turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/bin/mpif90  -fPIC  -Wall -Wno-unused-variable -ffree-line-length-0 -Wno-unused-dummy-argument -O  ${FOPTFLAGS} ${FFLAGS} 
-----------------------------------------

Using include paths: -I/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/include -I/turquoise/users/jychang48/petsc-master/include -I/turquoise/users/jychang48/petsc-master/include -I/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/include
-----------------------------------------

Using C linker: /turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/bin/mpicc
Using Fortran linker: /turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/bin/mpif90
Using libraries: -Wl,-rpath,/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/lib -L/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/lib -lpetsc -Wl,-rpath,/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/lib -L/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/lib -lf2clapack -lf2cblas -lm -lparmetis -lmetis -lchaco -lX11 -lhwloc -lssl -lcrypto -lm -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc/x86_64-unknown-linux-gnu/4.8.2 -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc/x86_64-unknown-linux-gnu/4.8.2 -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib64 -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib64 -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib -lmpi_usempi -lmpi_mpifh -lgfortran -lm -lgfortran -lm -lquadmath -lm -lmpi_cxx -lstdc++ -Wl,-rpath,/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/lib -L/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/lib -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc/x86_64-unknown-linux-gnu/4.8.2 -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc/x86_64-unknown-linux-gnu/4.8.2 -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib/gcc -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib64 -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib64 -Wl,-rpath,/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib -L/turquoise/usr/projects/hpcsoft/toss2/common/gcc/4.8.2/lib -ldl -Wl,-rpath,/turquoise/users/jychang48/petsc-master/arch-no-hdf5-opt/lib -lmpi -lgcc_s -lpthread -ldl 
-----------------------------------------


More information about the petsc-users mailing list