[petsc-users] Memory and Speed Issue of using MG as preconditioner

Alan Z. Wei zhenglun.wei at gmail.com
Wed Nov 6 12:35:12 CST 2013


Thanks Dave,
     I further simulated the problem with -pc_mg_log and output these 
files in the attachments.
     I found that the smoothing process of the last level always 
consumes the most time, i.e. 'MGSmooth Level 5' in out-level5 and 
"MGSmooth Level 2' in out-level2. However, as I tested several other 
-mg_levels_pc_type such as 'bjacobi', 'asm' etc. The default one, which 
is 'jacobi', actually works the best. Therefore, I decide to keep using 
it. However, do you have any suggestions to speed up this smoothing 
process other than changing -mg_levels_pc_type?
      Also, as you suggested to change -mg_levels_ksp_type, it does not 
influence much if replacing 'chebyshev' by 'cg'. However, this part 
never change while I modify '-mg_levels_ksp_type':
PC Object:    (mg_coarse_)     32 MPI processes
       type: redundant
         Redundant preconditioner: First (color=0) of 32 PCs follows
       KSP Object:      (mg_coarse_redundant_)       1 MPI processes
         type: preonly
         maximum iterations=10000, initial guess is zero
         tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
         left preconditioning
         using NONE norm type for convergence test
       PC Object:      (mg_coarse_redundant_)       1 MPI processes
         type: lu
           LU: out-of-place factorization
       As you mentioned that the redundant LU for the coarse grid solver 
primarily cause the large memory request for the 2-level case. How could 
I change the coarse grid solver to reduce the memory requirement or 
speed up the solver.

thanks again,
Alan

> Hey Alan,
>
> 1/ One difference in the memory footprint is likely coming from your 
> coarse grid solver which is redundant LU.
> The 2 level case has a coarse grid problem with 70785 unknowns whilst 
> the 5 level case has a coarse grid problem with 225 unknowns.
>
> 2/ The solve time difference will be affected by your coarse grid 
> size. Add the command line argument
>   -pc_mg_log
> to profile the setup time spent on the coarse grid and all other levels.
> See
> http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/PC/PCMG.html
>
> 3/ You can change the smoother on all levels by using the command line 
> argument with the appropriate prefix, eg
>   -mg_levels_ksp_type cg
> Note the prefix is displayed in the result of -ksp_view
>
> Also, your mesh size can be altered at run time using arguments like
> -da_grid_x 5
> You shouldn't have to modify the source code each time
> See
> http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/DMDACreate3d.html
>
>
> Cheers,
>   Dave
>
>
> On 6 November 2013 04:21, Alan <zhenglun.wei at gmail.com 
> <mailto:zhenglun.wei at gmail.com>> wrote:
>
>     Dear all,
>     I hope you're having a nice day.
>     Recently, I came across a problem on using MG as preconditioner.
>     Basically, to achieve the same finest mesh with pc_type = mg, the
>     memory
>     usage for -da_refine 2 is much more than that for -da_refine 5. To my
>     limited knowledge, more refinement should consume more memory,
>     which is
>     contradict to the behavior of pc_type = mg in PETsc.
>     Here, I provide two output files. They are all from
>     /src/ksp/ksp/example/tutorial/ex45.c with 32 processes.
>     The execute file for out-level2 is
>     mpiexec -np 32 ./ex45 -pc_type mg -ksp_type cg -da_refine 2
>     -pc_mg_galerkin -ksp_rtol 1.0e-7 -mg_levels_pc_type jacobi
>     -mg_levels_ksp_type chebyshev -dm_view -log_summary -pc_mg_log
>     -pc_mg_monitor -ksp_view -ksp_monitor > out &
>     and in ex45.c, KSPCreate is changed as:
>     ierr =
>     DMDACreate3d(PETSC_COMM_WORLD,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_STENCIL_STAR,-65,-33,-33,PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE,1,1,0,0,0,&da);CHKERRQ(ierr);
>     On the other hand, the execute file for out-level5 is
>     mpiexec -np 32 ./ex45 -pc_type mg -ksp_type cg -da_refine 5
>     -pc_mg_galerkin -ksp_rtol 1.0e-7 -mg_levels_pc_type jacobi
>     -mg_levels_ksp_type chebyshev -dm_view -log_summary -pc_mg_log
>     -pc_mg_monitor -ksp_view -ksp_monitor > out &
>     and in ex45.c, KSPCreate is changed as:
>     ierr =
>     DMDACreate3d(PETSC_COMM_WORLD,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_STENCIL_STAR,-9,-5,-5,PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE,1,1,0,0,0,&da);CHKERRQ(ierr);
>     In summary, the final finest meshes obtained for both cases are
>     257*129*129 as documented in both files. However, the out-level2 shows
>     that the Matrix requested 822871308 memory while out-level5 only need
>     36052932.
>     Furthermore, although the total iterations for KSP solver are
>     shown as 5
>     times in both files. the wall time elapsed for out-level2 is around
>     150s, while out-level5 is about 4.7s.
>     At last, there is a minor question. In both files, under 'Down solver
>     (pre-smoother) on level 1' and 'Down solver (pre-smoother) on
>     level 2',
>     the type of "KSP Object: (mg_levels_1_est_)" and "KSP Object:
>     (mg_levels_2_est_)" are all 'gmres'. Since I'm using uniformly
>     Cartesian
>     mesh, would it be helpful to speed up the solver if the 'gmres' is
>     replaced by 'cg' here? If so, which PETSc option can change the
>     type of
>     KSP object.
>
>     sincerely appreciate,
>     Alan
>
>
>
>

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20131106/20fed90e/attachment-0001.html>
-------------- next part --------------
Processor [0] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 0 33
Processor [1] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 0 33
Processor [2] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 0 33
Processor [3] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 0 33
Processor [4] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 0 33
Processor [5] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 0 33
Processor [6] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 0 33
Processor [7] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 0 33
Processor [8] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 33 65
Processor [9] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 33 65
Processor [10] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 33 65
Processor [11] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 33 65
Processor [12] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 33 65
Processor [13] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 33 65
Processor [14] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 33 65
Processor [15] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 33 65
Processor [16] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 65 97
Processor [17] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 65 97
Processor [18] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 65 97
Processor [19] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 65 97
Processor [20] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 65 97
Processor [21] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 65 97
Processor [22] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 65 97
Processor [23] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 65 97
Processor [24] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 97 129
Processor [25] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 97 129
Processor [26] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 97 129
Processor [27] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 97 129
Processor [28] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 97 129
Processor [29] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 97 129
Processor [30] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 97 129
Processor [31] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 97 129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
Processor [0] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 0 17
Processor [1] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 0 17
Processor [2] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 0 17
Processor [3] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 0 17
Processor [4] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 0 17
Processor [5] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 0 17
Processor [6] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 0 17
Processor [7] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 0 17
Processor [8] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 17 33
Processor [9] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 17 33
Processor [10] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 17 33
Processor [11] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 17 33
Processor [12] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 17 33
Processor [13] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 17 33
Processor [14] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 17 33
Processor [15] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 17 33
Processor [16] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 33 49
Processor [17] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 33 49
Processor [18] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 33 49
Processor [19] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 33 49
Processor [20] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 33 49
Processor [21] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 33 49
Processor [22] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 33 49
Processor [23] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 33 49
Processor [24] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 49 65
Processor [25] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 49 65
Processor [26] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 49 65
Processor [27] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 49 65
Processor [28] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 49 65
Processor [29] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 49 65
Processor [30] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 49 65
Processor [31] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 49 65
Processor [0] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 0 9
Processor [1] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 0 9
Processor [2] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 0 9
Processor [3] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 0 9
Processor [4] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 0 9
Processor [5] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 0 9
Processor [6] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 0 9
Processor [7] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 0 9
Processor [8] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 9 17
Processor [9] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 9 17
Processor [10] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 9 17
Processor [11] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 9 17
Processor [12] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 9 17
Processor [13] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 9 17
Processor [14] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 9 17
Processor [15] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 9 17
Processor [16] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 17 25
Processor [17] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 17 25
Processor [18] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 17 25
Processor [19] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 17 25
Processor [20] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 17 25
Processor [21] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 17 25
Processor [22] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 17 25
Processor [23] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 17 25
Processor [24] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 25 33
Processor [25] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 25 33
Processor [26] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 25 33
Processor [27] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 25 33
Processor [28] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 25 33
Processor [29] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 25 33
Processor [30] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 25 33
Processor [31] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 25 33
  0 KSP Residual norm 2.036594349596e+03 
  1 KSP Residual norm 8.756270777762e+01 
  2 KSP Residual norm 3.092374574522e+00 
  3 KSP Residual norm 1.220382147945e-01 
  4 KSP Residual norm 2.871729837207e-02 
KSP Object: 32 MPI processes
  type: cg
  maximum iterations=10000
  tolerances:  relative=1e-07, absolute=1e-50, divergence=10000
  left preconditioning
  using nonzero initial guess
  using PRECONDITIONED norm type for convergence test
PC Object: 32 MPI processes
  type: mg
    MG: type is MULTIPLICATIVE, levels=3 cycles=v
      Cycles per PCApply=1
      Using Galerkin computed coarse grid matrices
  Coarse grid solver -- level -------------------------------
    KSP Object:    (mg_coarse_)     32 MPI processes
      type: preonly
      maximum iterations=1, initial guess is zero
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using NONE norm type for convergence test
    PC Object:    (mg_coarse_)     32 MPI processes
      type: redundant
        Redundant preconditioner: First (color=0) of 32 PCs follows
      KSP Object:      (mg_coarse_redundant_)       1 MPI processes
        type: preonly
        maximum iterations=10000, initial guess is zero
        tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
        left preconditioning
        using NONE norm type for convergence test
      PC Object:      (mg_coarse_redundant_)       1 MPI processes
        type: lu
          LU: out-of-place factorization
          tolerance for zero pivot 2.22045e-14
          using diagonal shift on blocks to prevent zero pivot
          matrix ordering: nd
          factor fill ratio given 5, needed 35.0339
            Factored matrix follows:
              Matrix Object:               1 MPI processes
                type: seqaij
                rows=70785, cols=70785
                package used to perform factorization: petsc
                total: nonzeros=63619375, allocated nonzeros=63619375
                total number of mallocs used during MatSetValues calls =0
                  not using I-node routines
        linear system matrix = precond matrix:
        Matrix Object:         1 MPI processes
          type: seqaij
          rows=70785, cols=70785
          total: nonzeros=1815937, allocated nonzeros=1911195
          total number of mallocs used during MatSetValues calls =0
            not using I-node routines
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=70785, cols=70785
        total: nonzeros=1815937, allocated nonzeros=1815937
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Down solver (pre-smoother) on level 1 -------------------------------
    KSP Object:    (mg_levels_1_)     32 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.231542, max = 2.54696
        Chebyshev: estimated using:  [0 0.1; 0 1.1]
        KSP Object:        (mg_levels_1_est_)         32 MPI processes
          type: gmres
            GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
            GMRES: happy breakdown tolerance 1e-30
          maximum iterations=10
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using nonzero initial guess
          using NONE norm type for convergence test
        PC Object:        (mg_levels_1_)         32 MPI processes
          type: jacobi
          linear system matrix = precond matrix:
          Matrix Object:           32 MPI processes
            type: mpiaij
            rows=545025, cols=545025
            total: nonzeros=14340865, allocated nonzeros=14340865
            total number of mallocs used during MatSetValues calls =0
              not using I-node (on process 0) routines
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_1_)     32 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=545025, cols=545025
        total: nonzeros=14340865, allocated nonzeros=14340865
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 2 -------------------------------
    KSP Object:    (mg_levels_2_)     32 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.155706, max = 1.71277
        Chebyshev: estimated using:  [0 0.1; 0 1.1]
        KSP Object:        (mg_levels_2_est_)         32 MPI processes
          type: gmres
            GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
            GMRES: happy breakdown tolerance 1e-30
          maximum iterations=10
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using nonzero initial guess
          using NONE norm type for convergence test
        PC Object:        (mg_levels_2_)         32 MPI processes
          type: jacobi
          linear system matrix = precond matrix:
          Matrix Object:           32 MPI processes
            type: mpiaij
            rows=4276737, cols=4276737
            total: nonzeros=29771265, allocated nonzeros=29771265
            total number of mallocs used during MatSetValues calls =0
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_2_)     32 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=4276737, cols=4276737
        total: nonzeros=29771265, allocated nonzeros=29771265
        total number of mallocs used during MatSetValues calls =0
  Up solver (post-smoother) same as down solver (pre-smoother)
  linear system matrix = precond matrix:
  Matrix Object:   32 MPI processes
    type: mpiaij
    rows=4276737, cols=4276737
    total: nonzeros=29771265, allocated nonzeros=29771265
    total number of mallocs used during MatSetValues calls =0
Residual norm 0.000941649
Total Time Elapsed: 570.948138
Total Time Elapsed: 571.226165
Total Time Elapsed: 571.226142
Total Time Elapsed: 571.227743
Total Time Elapsed: 571.155077
Total Time Elapsed: 571.230839
Total Time Elapsed: 571.230841
Total Time Elapsed: 571.379246
Total Time Elapsed: 571.231696
Total Time Elapsed: 571.162397
Total Time Elapsed: 570.963429
Total Time Elapsed: 571.234322
Total Time Elapsed: 570.952416
Total Time Elapsed: 571.235487
Total Time Elapsed: 570.955526
Total Time Elapsed: 570.952019
Total Time Elapsed: 570.956828
Total Time Elapsed: 571.384060
Total Time Elapsed: 571.168546
Total Time Elapsed: 570.955564
Total Time Elapsed: 571.386214
Total Time Elapsed: 571.167004
Total Time Elapsed: 570.958710
Total Time Elapsed: 571.389300
Total Time Elapsed: 571.173462
Total Time Elapsed: 571.394695
Total Time Elapsed: 571.169628
Total Time Elapsed: 571.397931
Total Time Elapsed: 571.401814
************************************************************************************************************************
***             WIDEN YOUR WINDOW TO 120 CHARACTERS.  Use 'enscript -r -fCourier9' to print this document            ***
************************************************************************************************************************

---------------------------------------------- PETSc Performance Summary: ----------------------------------------------

Total Time Elapsed: 571.401327
./ex45 on a linux-gnu-c-nodebug named n042 with 32 processors, by zlwei Wed Nov  6 11:48:06 2013
Using Petsc Development GIT revision: d696997672013bb4513d3ff57c61cc10e09b71f6  GIT Date: 2013-06-13 10:28:37 -0500

                         Max       Max/Min        Avg      Total 
Total Time Elapsed: 571.186741
Total Time Elapsed: 571.188217
Time (sec):           5.710e+02      1.00007   5.709e+02
Objects:              1.750e+02      1.00000   1.750e+02
Flops:                7.470e+10      1.00022   7.468e+10  2.390e+12
Flops/sec:            1.308e+08      1.00018   1.308e+08  4.186e+09
MPI Messages:         1.594e+03      1.77506   1.234e+03  3.948e+04
MPI Message Lengths:  3.375e+07      1.17496   2.581e+04  1.019e+09
MPI Reductions:       3.500e+02      1.00000

Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
                            e.g., VecAXPY() for real vectors of length N --> 2N flops
                            and VecAXPY() for complex vectors of length N --> 8N flops

Summary of Stages:   ----- Time ------  ----- Flops -----  --- Messages ---  -- Message Lengths --  -- Reductions --
                        Avg     %Total     Avg     %Total   counts   %Total     Avg         %Total   counts   %Total 
 0:      Main Stage: 2.8451e+02  49.8%  2.3636e+12  98.9%  1.188e+04  30.1%  1.963e+04       76.0%  2.430e+02  69.4% 
 1:        MG Apply: 2.8643e+02  50.2%  2.6346e+10   1.1%  2.760e+04  69.9%  6.185e+03       24.0%  1.060e+02  30.3% 

------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
   Count: number of times phase was executed
   Time and Flops: Max - maximum over all processors
                   Ratio - ratio of maximum to minimum over all processors
   Mess: number of messages sent
   Avg. len: average message length (bytes)
   Reduct: number of global reductions
   Global: entire computation
   Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
      %T - percent time in this phase         %f - percent flops in this phase
      %M - percent messages in this phase     %L - percent message lengths in this phase
      %R - percent reductions in this phase
   Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------
Event                Count      Time (sec)     Flops                             --- Global ---  --- Stage ---   Total
                   Max Ratio  Max     Ratio   Max  Ratio  Mess   Avg len Reduct  %T %f %M %L %R  %T %f %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------

--- Event Stage 0: Main Stage

KSPSetUp               5 1.0 4.9497e-02 1.4 0.00e+00 0.0 0.0e+00 0.0e+00 1.8e+01  0  0  0  0  5   0  0  0  0  7     0
Warning -- total time of even greater than time of entire stage -- something is wrong with the timer
KSPSolve               1 1.0 5.7077e+02 1.0 7.47e+10 1.0 3.9e+04 2.6e+04 3.2e+02100100 99100 93 201101327131134  4187
VecTDot                9 1.0 1.3759e-01 2.2 2.51e+06 1.1 0.0e+00 0.0e+00 9.0e+00  0  0  0  0  3   0  0  0  0  4   560
VecNorm                6 1.0 3.9218e-0117.3 1.67e+06 1.1 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  2   0  0  0  0  2   131
VecCopy                2 1.0 6.6240e-03 9.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet                12 1.0 1.3879e-0242.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY                9 1.0 3.7683e-0214.0 2.51e+06 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0  2043
VecAYPX                3 1.0 7.1573e-03 7.7 8.37e+05 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0  3585
VecScatterBegin        7 1.0 5.3980e-03 9.0 0.00e+00 0.0 8.7e+02 1.7e+04 0.0e+00  0  0  2  1  0   0  0  7  2  0     0
VecScatterEnd          7 1.0 3.0406e-0248.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatMult                5 1.0 1.0779e-01 4.6 8.98e+06 1.1 6.4e+02 2.3e+04 0.0e+00  0  0  2  1  0   0  0  5  2  0  2564
MatMultTranspose       2 1.0 1.7044e-02 6.5 1.04e+06 1.0 2.3e+02 2.1e+03 0.0e+00  0  0  1  0  0   0  0  2  0  0  1896
MatLUFactorSym         1 1.0 3.1107e+00 2.5 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+00  0  0  0  0  1   1  0  0  0  1     0
MatLUFactorNum         1 1.0 5.5701e+02 7.3 7.38e+10 1.0 0.0e+00 0.0e+00 0.0e+00 49 99  0  0  0  98100  0  0  0  4241
MatAssemblyBegin      11 1.0 5.8176e-01 4.1 0.00e+00 0.0 0.0e+00 0.0e+00 1.2e+01  0  0  0  0  3   0  0  0  0  5     0
MatAssemblyEnd        11 1.0 2.9766e-01 2.0 0.00e+00 0.0 2.2e+03 1.0e+03 4.0e+01  0  0  6  0 11   0  0 18  0 16     0
MatGetRowIJ            1 1.0 6.0652e-02 7.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatGetOrdering         1 1.0 3.3588e-01 3.4 0.00e+00 0.0 0.0e+00 0.0e+00 2.0e+00  0  0  0  0  1   0  0  0  0  1     0
MatView                8 1.3 4.5514e-03 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  2   0  0  0  0  2     0
MatPtAP                2 1.0 7.9281e-01 1.0 2.06e+07 1.1 3.9e+03 8.8e+03 5.0e+01  0  0 10  3 14   0  0 33  4 21   800
MatPtAPSymbolic        2 1.0 4.4065e-01 1.1 0.00e+00 0.0 2.2e+03 1.2e+04 3.0e+01  0  0  6  2  9   0  0 18  3 12     0
MatPtAPNumeric         2 1.0 3.9084e-01 1.1 2.06e+07 1.1 1.7e+03 5.2e+03 2.0e+01  0  0  4  1  6   0  0 14  1  8  1623
MatGetRedundant        1 1.0 1.8018e+00 1.3 0.00e+00 0.0 3.0e+03 2.3e+05 4.0e+00  0  0  8 68  1   1  0 25 89  2     0
MatGetLocalMat         2 1.0 5.1957e-02 6.7 0.00e+00 0.0 0.0e+00 0.0e+00 4.0e+00  0  0  0  0  1   0  0  0  0  2     0
MatGetBrAoCol          2 1.0 6.7300e-02 2.9 0.00e+00 0.0 1.5e+03 1.4e+04 4.0e+00  0  0  4  2  1   0  0 13  3  2     0
MatGetSymTrans         4 1.0 2.9506e-02 8.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
PCSetUp                1 1.0 5.6251e+02 7.0 7.38e+10 1.0 1.1e+04 7.2e+04 1.8e+02 50 99 27 74 51 100100 89 98 73  4201
Warning -- total time of even greater than time of entire stage -- something is wrong with the timer
PCApply                5 1.0 4.8945e+0265.0 8.32e+08 1.0 2.8e+04 8.8e+03 1.1e+02 50  1 70 24 30 101  1232 32 44    54
MGSetup Level 0        1 1.0 5.6137e+02 7.1 7.38e+10 1.0 5.1e+03 1.4e+05 2.7e+01 49 99 13 71  8  99100 43 93 11  4208
MGSetup Level 1        1 1.0 8.1902e-03 2.0 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  2   0  0  0  0  2     0
MGSetup Level 2        1 1.0 1.7457e-02 1.5 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  2   0  0  0  0  2     0

--- Event Stage 1: MG Apply

KSPGMRESOrthog        20 1.0 4.4386e-01 1.9 3.47e+07 1.1 0.0e+00 0.0e+00 2.0e+01  0  0  0  0  6   0  4  0  0 19  2390
KSPSetUp               2 1.0 4.8228e+029246.6 0.00e+00 0.0 0.0e+00 0.0e+00 2.0e+01 49  0  0  0  6  97  0  0  0 19     0
KSPSolve              25 1.0 4.8849e+0270.1 8.08e+08 1.0 2.3e+04 9.7e+03 1.1e+02 50  1 58 22 30  99 97 83 90100    52
VecMDot               20 1.0 4.1889e-01 3.0 1.74e+07 1.1 0.0e+00 0.0e+00 2.0e+01  0  0  0  0  6   0  2  0  0 19  1266
VecNorm               22 1.0 2.4155e-01 2.4 3.47e+06 1.1 0.0e+00 0.0e+00 2.2e+01  0  0  0  0  6   0  0  0  0 21   439
VecScale              62 1.0 6.6617e-0213.4 4.90e+06 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  1  0  0  0  2244
VecCopy               12 1.0 1.9117e-0210.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet                51 1.0 3.4841e-0229.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY               84 1.0 9.3068e-02 9.6 1.33e+07 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  2  0  0  0  4352
VecAYPX               80 1.0 8.7920e-02 8.3 7.90e+06 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  1  0  0  0  2742
VecMAXPY              22 1.0 1.4221e-01 7.5 2.05e+07 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  2  0  0  0  4408
VecPointwiseMult      82 1.0 1.4117e-01 9.0 6.48e+06 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  1  0  0  0  1400
VecScatterBegin      112 1.0 1.0815e-01 8.5 0.00e+00 0.0 2.8e+04 8.8e+03 0.0e+00  0  0 70 24  0   0  0100100  0     0
VecScatterEnd        112 1.0 5.3921e+0012.6 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  1  0  0  0  0   1  0  0  0  0     0
VecNormalize          22 1.0 2.4458e-01 1.9 5.21e+06 1.1 0.0e+00 0.0e+00 2.2e+01  0  0  0  0  6   0  1  0  0 21   651
MatMult               82 1.0 4.5575e+00 4.0 1.12e+08 1.1 2.0e+04 7.5e+03 0.0e+00  0  0 52 15  0   1 13 74 62  0   750
MatMultAdd            10 1.0 2.4382e+0030.3 5.21e+06 1.0 1.2e+03 2.1e+03 0.0e+00  0  0  3  0  0   0  1  4  1  0    66
MatMultTranspose      10 1.0 1.6895e-0117.1 5.21e+06 1.0 1.2e+03 2.1e+03 0.0e+00  0  0  3  0  0   0  1  4  1  0   956
MatSolve               5 1.0 5.0062e+00 7.7 6.36e+08 1.0 0.0e+00 0.0e+00 0.0e+00  0  1  0  0  0   1 77  0  0  0  4064
PCApply               87 1.0 5.3308e+00 5.4 6.42e+08 1.0 5.0e+03 1.8e+04 4.0e+00  0  1 13  9  1   1 78 18 36  4  3854
MGSmooth Level 0       5 1.0 5.1727e+00 5.6 6.36e+08 1.0 5.0e+03 1.8e+04 0.0e+00  0  1 13  9  0   1 77 18 36  0  3934
MGSmooth Level 1      10 1.0 4.2581e+00 9.2 4.25e+07 1.1 1.3e+04 2.1e+03 5.3e+01  0  0 34  3 15   1  5 48 11 50   297
MGResid Level 1        5 1.0 1.1527e-01 3.0 4.80e+06 1.1 1.8e+03 2.1e+03 0.0e+00  0  0  5  0  0   0  1  7  2  0  1244
MGInterp Level 1      10 1.0 2.3899e+0026.1 1.20e+06 1.1 1.2e+03 8.7e+02 0.0e+00  0  0  3  0  0   0  0  4  0  0    15
MGSmooth Level 2      10 1.0 4.8321e+02325.1 1.29e+08 1.1 4.6e+03 2.3e+04 5.3e+01 49  0 12 10 15  98 15 17 43 50     8
MGResid Level 2        5 1.0 1.5715e-01 2.6 9.67e+06 1.1 6.4e+02 2.3e+04 0.0e+00  0  0  2  1  0   0  1  2  6  0  1894
MGInterp Level 2      10 1.0 1.4948e-01 3.1 9.22e+06 1.0 1.2e+03 3.3e+03 0.0e+00  0  0  3  0  0   0  1  4  2  0  1919
------------------------------------------------------------------------------------------------------------------------

Memory usage is given in bytes:

Object Type          Creations   Destructions     Memory  Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

           Container     1              1          564     0
       Krylov Solver     7              7        66456     0
     DMKSP interface     2              2         1296     0
              Vector    46             78     36381912     0
      Vector Scatter    13             13        13676     0
              Matrix    21             21    822871308     0
    Distributed Mesh     3              3      1391808     0
     Bipartite Graph     6              6         4752     0
              Viewer     2              1          728     0
           Index Set    32             32      1989612     0
   IS L to G Mapping     3              3       690348     0
      Preconditioner     7              7         6432     0

--- Event Stage 1: MG Apply

              Vector    32              0            0     0
========================================================================================================================
Average time to get PetscTime(): 5.00679e-07
Average time for MPI_Barrier(): 0.000592613
Average time for zero size MPI_Send(): 0.000596561
#PETSc Option Table entries:
-da_refine 2
-dm_view
-ksp_monitor
-ksp_rtol 1.0e-7
-ksp_type cg
-ksp_view
-log_summary
-mg_levels_ksp_type chebyshev
-mg_levels_pc_type jacobi
-pc_mg_galerkin
-pc_mg_log
-pc_mg_monitor
-pc_type mg
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 4
Configure run at: Thu Jun 13 15:51:55 2013
Configure options: --download-f-blas-lapack --download-hypre --download-mpich --with-cc=gcc --with-debugging=no --with-fc=gfortran PETSC_ARCH=linux-gnu-c-nodebug
-----------------------------------------
Libraries compiled on Thu Jun 13 15:51:55 2013 on login1.ittc.ku.edu 
Machine characteristics: Linux-2.6.32-220.13.1.el6.x86_64-x86_64-with-redhat-6.2-Santiago
Using PETSc directory: /bio/work1/zlwei/PETSc/petsc-dev
Using PETSc arch: linux-gnu-c-nodebug
-----------------------------------------

Using C compiler: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpicc  -fPIC -Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -O  ${COPTFLAGS} ${CFLAGS}
Using Fortran compiler: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpif90  -fPIC  -Wall -Wno-unused-variable -O  ${FOPTFLAGS} ${FFLAGS} 
-----------------------------------------

Using include paths: -I/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/include -I/bio/work1/zlwei/PETSc/petsc-dev/include -I/bio/work1/zlwei/PETSc/petsc-dev/include -I/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/include
-----------------------------------------

Using C linker: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpicc
Using Fortran linker: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpif90
Using libraries: -Wl,-rpath,/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -L/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -lpetsc -Wl,-rpath,/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -L/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -lHYPRE -Wl,-rpath,/usr/lib/gcc/x86_64-redhat-linux/4.4.6 -L/usr/lib/gcc/x86_64-redhat-linux/4.4.6 -lmpichcxx -lstdc++ -lflapack -lfblas -lX11 -lpthread -lmpichf90 -lgfortran -lm -lm -lmpichcxx -lstdc++ -lmpichcxx -lstdc++ -ldl -lmpich -lopa -lmpl -lrt -lpthread -lgcc_s -ldl 
-----------------------------------------

-------------- next part --------------
Processor [0] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 0 33
Processor [1] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 0 33
Processor [2] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 0 33
Processor [3] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 0 33
Processor [4] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 0 33
Processor [5] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 0 33
Processor [6] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 0 33
Processor [7] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 0 33
Processor [8] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 33 65
Processor [9] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 33 65
Processor [10] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 33 65
Processor [11] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 33 65
Processor [12] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 33 65
Processor [13] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 33 65
Processor [14] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 33 65
Processor [15] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 33 65
Processor [16] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 65 97
Processor [17] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 65 97
Processor [18] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 65 97
Processor [19] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 65 97
Processor [20] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 65 97
Processor [21] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 65 97
Processor [22] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 65 97
Processor [23] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 65 97
Processor [24] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 97 129
Processor [25] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 97 129
Processor [26] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 97 129
Processor [27] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 97 129
Processor [28] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 97 129
Processor [29] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 97 129
Processor [30] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 97 129
Processor [31] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 97 129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
Processor [0] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 0 17
Processor [1] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 0 17
Processor [2] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 0 17
Processor [3] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 0 17
Processor [4] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 0 17
Processor [5] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 0 17
Processor [6] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 0 17
Processor [7] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 0 17
Processor [8] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 17 33
Processor [9] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 17 33
Processor [10] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 17 33
Processor [11] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 17 33
Processor [12] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 17 33
Processor [13] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 17 33
Processor [14] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 17 33
Processor [15] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 17 33
Processor [16] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 33 49
Processor [17] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 33 49
Processor [18] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 33 49
Processor [19] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 33 49
Processor [20] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 33 49
Processor [21] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 33 49
Processor [22] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 33 49
Processor [23] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 33 49
Processor [24] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 49 65
Processor [25] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 49 65
Processor [26] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 49 65
Processor [27] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 49 65
Processor [28] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 49 65
Processor [29] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 49 65
Processor [30] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 49 65
Processor [31] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 49 65
Processor [0] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 0 9
Processor [1] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 0 9
Processor [2] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 0 9
Processor [3] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 0 9
Processor [4] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 0 9
Processor [5] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 0 9
Processor [6] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 0 9
Processor [7] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 0 9
Processor [8] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 9 17
Processor [9] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 9 17
Processor [10] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 9 17
Processor [11] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 9 17
Processor [12] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 9 17
Processor [13] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 9 17
Processor [14] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 9 17
Processor [15] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 9 17
Processor [16] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 17 25
Processor [17] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 17 25
Processor [18] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 17 25
Processor [19] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 17 25
Processor [20] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 17 25
Processor [21] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 17 25
Processor [22] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 17 25
Processor [23] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 17 25
Processor [24] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 25 33
Processor [25] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 25 33
Processor [26] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 25 33
Processor [27] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 25 33
Processor [28] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 25 33
Processor [29] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 25 33
Processor [30] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 25 33
Processor [31] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 25 33
Processor [0] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 0 9, Z range of indices: 0 5
Processor [1] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 0 9, Z range of indices: 0 5
Processor [2] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 0 9, Z range of indices: 0 5
Processor [3] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 0 9, Z range of indices: 0 5
Processor [4] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 9 17, Z range of indices: 0 5
Processor [5] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 9 17, Z range of indices: 0 5
Processor [6] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 9 17, Z range of indices: 0 5
Processor [7] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 9 17, Z range of indices: 0 5
Processor [8] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 0 9, Z range of indices: 5 9
Processor [9] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 0 9, Z range of indices: 5 9
Processor [10] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 0 9, Z range of indices: 5 9
Processor [11] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 0 9, Z range of indices: 5 9
Processor [12] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 9 17, Z range of indices: 5 9
Processor [13] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 9 17, Z range of indices: 5 9
Processor [14] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 9 17, Z range of indices: 5 9
Processor [15] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 9 17, Z range of indices: 5 9
Processor [16] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 0 9, Z range of indices: 9 13
Processor [17] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 0 9, Z range of indices: 9 13
Processor [18] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 0 9, Z range of indices: 9 13
Processor [19] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 0 9, Z range of indices: 9 13
Processor [20] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 9 17, Z range of indices: 9 13
Processor [21] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 9 17, Z range of indices: 9 13
Processor [22] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 9 17, Z range of indices: 9 13
Processor [23] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 9 17, Z range of indices: 9 13
Processor [24] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 0 9, Z range of indices: 13 17
Processor [25] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 0 9, Z range of indices: 13 17
Processor [26] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 0 9, Z range of indices: 13 17
Processor [27] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 0 9, Z range of indices: 13 17
Processor [28] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 9 17, Z range of indices: 13 17
Processor [29] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 9 17, Z range of indices: 13 17
Processor [30] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 9 17, Z range of indices: 13 17
Processor [31] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 9 17, Z range of indices: 13 17
Processor [0] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 0 5, Z range of indices: 0 3
Processor [1] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 0 5, Z range of indices: 0 3
Processor [2] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 0 5, Z range of indices: 0 3
Processor [3] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 0 5, Z range of indices: 0 3
Processor [4] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 5 9, Z range of indices: 0 3
Processor [5] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 5 9, Z range of indices: 0 3
Processor [6] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 5 9, Z range of indices: 0 3
Processor [7] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 5 9, Z range of indices: 0 3
Processor [8] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 0 5, Z range of indices: 3 5
Processor [9] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 0 5, Z range of indices: 3 5
Processor [10] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 0 5, Z range of indices: 3 5
Processor [11] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 0 5, Z range of indices: 3 5
Processor [12] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 5 9, Z range of indices: 3 5
Processor [13] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 5 9, Z range of indices: 3 5
Processor [14] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 5 9, Z range of indices: 3 5
Processor [15] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 5 9, Z range of indices: 3 5
Processor [16] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 0 5, Z range of indices: 5 7
Processor [17] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 0 5, Z range of indices: 5 7
Processor [18] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 0 5, Z range of indices: 5 7
Processor [19] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 0 5, Z range of indices: 5 7
Processor [20] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 5 9, Z range of indices: 5 7
Processor [21] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 5 9, Z range of indices: 5 7
Processor [22] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 5 9, Z range of indices: 5 7
Processor [23] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 5 9, Z range of indices: 5 7
Processor [24] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 0 5, Z range of indices: 7 9
Processor [25] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 0 5, Z range of indices: 7 9
Processor [26] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 0 5, Z range of indices: 7 9
Processor [27] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 0 5, Z range of indices: 7 9
Processor [28] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 5 9, Z range of indices: 7 9
Processor [29] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 5 9, Z range of indices: 7 9
Processor [30] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 5 9, Z range of indices: 7 9
Processor [31] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 5 9, Z range of indices: 7 9
Processor [0] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 0 3, Z range of indices: 0 2
Processor [1] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 0 3, Z range of indices: 0 2
Processor [2] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 0 3, Z range of indices: 0 2
Processor [3] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 0 3, Z range of indices: 0 2
Processor [4] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 3 5, Z range of indices: 0 2
Processor [5] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 3 5, Z range of indices: 0 2
Processor [6] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 3 5, Z range of indices: 0 2
Processor [7] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 3 5, Z range of indices: 0 2
Processor [8] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 0 3, Z range of indices: 2 3
Processor [9] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 0 3, Z range of indices: 2 3
Processor [10] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 0 3, Z range of indices: 2 3
Processor [11] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 0 3, Z range of indices: 2 3
Processor [12] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 3 5, Z range of indices: 2 3
Processor [13] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 3 5, Z range of indices: 2 3
Processor [14] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 3 5, Z range of indices: 2 3
Processor [15] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 3 5, Z range of indices: 2 3
Processor [16] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 0 3, Z range of indices: 3 4
Processor [17] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 0 3, Z range of indices: 3 4
Processor [18] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 0 3, Z range of indices: 3 4
Processor [19] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 0 3, Z range of indices: 3 4
Processor [20] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 3 5, Z range of indices: 3 4
Processor [21] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 3 5, Z range of indices: 3 4
Processor [22] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 3 5, Z range of indices: 3 4
Processor [23] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 3 5, Z range of indices: 3 4
Processor [24] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 0 3, Z range of indices: 4 5
Processor [25] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 0 3, Z range of indices: 4 5
Processor [26] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 0 3, Z range of indices: 4 5
Processor [27] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 0 3, Z range of indices: 4 5
Processor [28] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 3 5, Z range of indices: 4 5
Processor [29] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 3 5, Z range of indices: 4 5
Processor [30] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 3 5, Z range of indices: 4 5
Processor [31] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 3 5, Z range of indices: 4 5
  0 KSP Residual norm 1.990474015208e+03 
  1 KSP Residual norm 1.163078153200e+02 
  2 KSP Residual norm 2.809444096980e+00 
  3 KSP Residual norm 2.139770554363e-01 
  4 KSP Residual norm 4.835908670273e-02 
KSP Object: 32 MPI processes
  type: cg
  maximum iterations=10000
  tolerances:  relative=1e-07, absolute=1e-50, divergence=10000
  left preconditioning
  using nonzero initial guess
  using PRECONDITIONED norm type for convergence test
PC Object: 32 MPI processes
  type: mg
    MG: type is MULTIPLICATIVE, levels=6 cycles=v
      Cycles per PCApply=1
      Using Galerkin computed coarse grid matrices
  Coarse grid solver -- level -------------------------------
    KSP Object:    (mg_coarse_)     32 MPI processes
      type: preonly
      maximum iterations=1, initial guess is zero
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using NONE norm type for convergence test
    PC Object:    (mg_coarse_)     32 MPI processes
      type: redundant
        Redundant preconditioner: First (color=0) of 32 PCs follows
      KSP Object:      (mg_coarse_redundant_)       1 MPI processes
        type: preonly
        maximum iterations=10000, initial guess is zero
        tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
        left preconditioning
        using NONE norm type for convergence test
      PC Object:      (mg_coarse_redundant_)       1 MPI processes
        type: lu
          LU: out-of-place factorization
          tolerance for zero pivot 2.22045e-14
          using diagonal shift on blocks to prevent zero pivot
          matrix ordering: nd
          factor fill ratio given 5, needed 3.15101
            Factored matrix follows:
              Matrix Object:               1 MPI processes
                type: seqaij
                rows=225, cols=225
                package used to perform factorization: petsc
                total: nonzeros=13313, allocated nonzeros=13313
                total number of mallocs used during MatSetValues calls =0
                  using I-node routines: found 174 nodes, limit used is 5
        linear system matrix = precond matrix:
        Matrix Object:         1 MPI processes
          type: seqaij
          rows=225, cols=225
          total: nonzeros=4225, allocated nonzeros=6075
          total number of mallocs used during MatSetValues calls =0
            not using I-node routines
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=225, cols=225
        total: nonzeros=4225, allocated nonzeros=4225
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Down solver (pre-smoother) on level 1 -------------------------------
    KSP Object:    (mg_levels_1_)     32 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.283115, max = 3.11426
        Chebyshev: estimated using:  [0 0.1; 0 1.1]
        KSP Object:        (mg_levels_1_est_)         32 MPI processes
          type: gmres
            GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
            GMRES: happy breakdown tolerance 1e-30
          maximum iterations=10
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using nonzero initial guess
          using NONE norm type for convergence test
        PC Object:        (mg_levels_1_)         32 MPI processes
          type: jacobi
          linear system matrix = precond matrix:
          Matrix Object:           32 MPI processes
            type: mpiaij
            rows=1377, cols=1377
            total: nonzeros=30625, allocated nonzeros=30625
            total number of mallocs used during MatSetValues calls =0
              not using I-node (on process 0) routines
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_1_)     32 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=1377, cols=1377
        total: nonzeros=30625, allocated nonzeros=30625
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 2 -------------------------------
    KSP Object:    (mg_levels_2_)     32 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.285627, max = 3.1419
        Chebyshev: estimated using:  [0 0.1; 0 1.1]
        KSP Object:        (mg_levels_2_est_)         32 MPI processes
          type: gmres
            GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
            GMRES: happy breakdown tolerance 1e-30
          maximum iterations=10
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using nonzero initial guess
          using NONE norm type for convergence test
        PC Object:        (mg_levels_2_)         32 MPI processes
          type: jacobi
          linear system matrix = precond matrix:
          Matrix Object:           32 MPI processes
            type: mpiaij
            rows=9537, cols=9537
            total: nonzeros=232897, allocated nonzeros=232897
            total number of mallocs used during MatSetValues calls =0
              not using I-node (on process 0) routines
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_2_)     32 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=9537, cols=9537
        total: nonzeros=232897, allocated nonzeros=232897
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 3 -------------------------------
    KSP Object:    (mg_levels_3_)     32 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.275571, max = 3.03128
        Chebyshev: estimated using:  [0 0.1; 0 1.1]
        KSP Object:        (mg_levels_3_est_)         32 MPI processes
          type: gmres
            GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
            GMRES: happy breakdown tolerance 1e-30
          maximum iterations=10
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using nonzero initial guess
          using NONE norm type for convergence test
        PC Object:        (mg_levels_3_)         32 MPI processes
          type: jacobi
          linear system matrix = precond matrix:
          Matrix Object:           32 MPI processes
            type: mpiaij
            rows=70785, cols=70785
            total: nonzeros=1815937, allocated nonzeros=1815937
            total number of mallocs used during MatSetValues calls =0
              not using I-node (on process 0) routines
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_3_)     32 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=70785, cols=70785
        total: nonzeros=1815937, allocated nonzeros=1815937
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 4 -------------------------------
    KSP Object:    (mg_levels_4_)     32 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.231542, max = 2.54696
        Chebyshev: estimated using:  [0 0.1; 0 1.1]
        KSP Object:        (mg_levels_4_est_)         32 MPI processes
          type: gmres
            GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
            GMRES: happy breakdown tolerance 1e-30
          maximum iterations=10
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using nonzero initial guess
          using NONE norm type for convergence test
        PC Object:        (mg_levels_4_)         32 MPI processes
          type: jacobi
          linear system matrix = precond matrix:
          Matrix Object:           32 MPI processes
            type: mpiaij
            rows=545025, cols=545025
            total: nonzeros=14340865, allocated nonzeros=14340865
            total number of mallocs used during MatSetValues calls =0
              not using I-node (on process 0) routines
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_4_)     32 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=545025, cols=545025
        total: nonzeros=14340865, allocated nonzeros=14340865
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 5 -------------------------------
    KSP Object:    (mg_levels_5_)     32 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.155706, max = 1.71277
        Chebyshev: estimated using:  [0 0.1; 0 1.1]
        KSP Object:        (mg_levels_5_est_)         32 MPI processes
          type: gmres
            GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
            GMRES: happy breakdown tolerance 1e-30
          maximum iterations=10
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using nonzero initial guess
          using NONE norm type for convergence test
        PC Object:        (mg_levels_5_)         32 MPI processes
          type: jacobi
          linear system matrix = precond matrix:
          Matrix Object:           32 MPI processes
            type: mpiaij
            rows=4276737, cols=4276737
            total: nonzeros=29771265, allocated nonzeros=29771265
            total number of mallocs used during MatSetValues calls =0
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_5_)     32 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=4276737, cols=4276737
        total: nonzeros=29771265, allocated nonzeros=29771265
        total number of mallocs used during MatSetValues calls =0
  Up solver (post-smoother) same as down solver (pre-smoother)
  linear system matrix = precond matrix:
  Matrix Object:   32 MPI processes
    type: mpiaij
    rows=4276737, cols=4276737
    total: nonzeros=29771265, allocated nonzeros=29771265
    total number of mallocs used during MatSetValues calls =0
Residual norm 0.000947651
Total Time Elapsed: 5.583765
************************************************************************************************************************
***             WIDEN YOUR WINDOW TO 120 CHARACTERS.  Use 'enscript -r -fCourier9' to print this document            ***
************************************************************************************************************************

---------------------------------------------- PETSc Performance Summary: ----------------------------------------------

./ex45 on a linux-gnu-c-nodebug named n042 with 32 processors, by zlwei Wed Nov  6 11:35:09 2013
Total Time Elapsed: 5.584491
Using Petsc Development GIT revision: d696997672013bb4513d3ff57c61cc10e09b71f6  GIT Date: 2013-06-13 10:28:37 -0500

                         Max       Max/Min        Avg      Total 
Total Time Elapsed: 5.245622
Total Time Elapsed: 5.245764
Total Time Elapsed: 5.585519
Total Time Elapsed: 5.245926
Total Time Elapsed: 5.585674
Total Time Elapsed: 4.979911
Total Time Elapsed: 4.983441
Total Time Elapsed: 4.980154
Total Time Elapsed: 4.983256
Total Time Elapsed: 4.979283
Total Time Elapsed: 4.983043
Total Time Elapsed: 4.982123
Total Time Elapsed: 5.247401
Total Time Elapsed: 5.247372
Total Time Elapsed: 5.247512
Total Time Elapsed: 5.248704
Total Time Elapsed: 5.588453
Total Time Elapsed: 5.248888
Total Time Elapsed: 4.987055
Total Time Elapsed: 5.589496
Total Time Elapsed: 5.113992
Total Time Elapsed: 5.117246
Total Time Elapsed: 5.591055
Total Time Elapsed: 5.591275
Total Time Elapsed: 5.116060
Total Time Elapsed: 5.119928
Total Time Elapsed: 5.114534
Total Time Elapsed: 5.118732
Total Time Elapsed: 5.123729
Total Time Elapsed: 5.125026
Time (sec):           4.978e+00      1.00287   4.969e+00
Objects:              3.570e+02      1.00000   3.570e+02
Flops:                2.438e+08      1.08372   2.320e+08  7.424e+09
Flops/sec:            4.911e+07      1.08434   4.669e+07  1.494e+09
MPI Messages:         4.234e+03      2.12444   3.045e+03  9.745e+04
MPI Message Lengths:  9.073e+06      1.78864   2.350e+03  2.291e+08
MPI Reductions:       7.370e+02      1.00000

Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
                            e.g., VecAXPY() for real vectors of length N --> 2N flops
                            and VecAXPY() for complex vectors of length N --> 8N flops

Summary of Stages:   ----- Time ------  ----- Flops -----  --- Messages ---  -- Message Lengths --  -- Reductions --
                        Avg     %Total     Avg     %Total   counts   %Total     Avg         %Total   counts   %Total 
 0:      Main Stage: 2.5054e+00  50.4%  1.2102e+09  16.3%  2.114e+04  21.7%  6.174e+02       26.3%  4.710e+02  63.9% 
 1:        MG Apply: 2.4639e+00  49.6%  6.2142e+09  83.7%  7.631e+04  78.3%  1.733e+03       73.7%  2.650e+02  36.0% 

------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
   Count: number of times phase was executed
   Time and Flops: Max - maximum over all processors
                   Ratio - ratio of maximum to minimum over all processors
   Mess: number of messages sent
   Avg. len: average message length (bytes)
   Reduct: number of global reductions
   Global: entire computation
   Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
      %T - percent time in this phase         %f - percent flops in this phase
      %M - percent messages in this phase     %L - percent message lengths in this phase
      %R - percent reductions in this phase
   Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------
Event                Count      Time (sec)     Flops                             --- Global ---  --- Stage ---   Total
                   Max Ratio  Max     Ratio   Max  Ratio  Mess   Avg len Reduct  %T %f %M %L %R  %T %f %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------

--- Event Stage 0: Main Stage

KSPSetUp               8 1.0 6.8008e-02 1.4 0.00e+00 0.0 0.0e+00 0.0e+00 3.6e+01  1  0  0  0  5   2  0  0  0  8     0
Warning -- total time of even greater than time of entire stage -- something is wrong with the timer
KSPSolve               1 1.0 4.7911e+00 1.0 2.41e+08 1.1 9.7e+04 2.3e+03 7.1e+02 96 99 99 98 96 191607458373150  1535
VecTDot                9 1.0 1.3888e-01 4.1 2.51e+06 1.1 0.0e+00 0.0e+00 9.0e+00  2  1  0  0  1   4  6  0  0  2   554
VecNorm                6 1.0 3.6860e-0110.9 1.67e+06 1.1 0.0e+00 0.0e+00 6.0e+00  4  1  0  0  1   8  4  0  0  1   139
VecCopy                2 1.0 3.1111e-03 4.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet                27 1.0 1.3712e-0241.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY                9 1.0 3.5091e-0213.5 2.51e+06 1.1 0.0e+00 0.0e+00 0.0e+00  0  1  0  0  0   0  6  0  0  0  2194
VecAYPX                3 1.0 2.2887e-0224.0 8.37e+05 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  2  0  0  0  1121
VecScatterBegin       10 1.0 3.3240e-03 5.2 0.00e+00 0.0 1.2e+03 1.2e+04 0.0e+00  0  0  1  7  0   0  0  6 25  0     0
VecScatterEnd         10 1.0 3.6685e-0251.7 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   1  0  0  0  0     0
MatMult                5 1.0 9.9055e-02 5.5 8.98e+06 1.1 6.4e+02 2.3e+04 0.0e+00  1  4  1  6  0   2 23  3 24  0  2790
MatMultTranspose       5 1.0 2.3519e-02 8.9 1.06e+06 1.0 5.8e+02 9.0e+02 0.0e+00  0  0  1  0  0   0  3  3  1  0  1397
MatLUFactorSym         1 1.0 3.5100e-0310.2 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+00  0  0  0  0  0   0  0  0  0  1     0
MatLUFactorNum         1 1.0 3.3560e-03 6.0 4.79e+05 1.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  1  0  0  0  4564
MatAssemblyBegin      23 1.0 5.5205e-01 4.4 0.00e+00 0.0 0.0e+00 0.0e+00 2.4e+01  6  0  0  0  3  13  0  0  0  5     0
MatAssemblyEnd        23 1.0 2.5726e-01 1.6 0.00e+00 0.0 5.1e+03 4.5e+02 8.8e+01  4  0  5  1 12   8  0 24  4 19     0
MatGetRowIJ            1 1.0 1.5712e-04 6.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatGetOrdering         1 1.0 5.7721e-04 4.2 0.00e+00 0.0 0.0e+00 0.0e+00 2.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatView               14 1.2 7.8599e-03 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 1.2e+01  0  0  0  0  2   0  0  0  0  3     0
MatPtAP                5 1.0 8.9238e-01 1.0 2.14e+07 1.1 1.1e+04 3.4e+03 1.2e+02 18  9 11 16 17  36 54 51 61 27   734
MatPtAPSymbolic        5 1.0 5.3509e-01 1.1 0.00e+00 0.0 6.5e+03 4.1e+03 7.5e+01 10  0  7 12 10  21  0 31 45 16     0
MatPtAPNumeric         5 1.0 3.8300e-01 1.1 2.14e+07 1.1 4.3e+03 2.2e+03 5.0e+01  7  9  4  4  7  15 54 20 16 11  1710
MatGetRedundant        1 1.0 2.0813e-02 3.6 0.00e+00 0.0 3.0e+03 5.5e+02 4.0e+00  0  0  3  1  1   0  0 14  3  1     0
MatGetLocalMat         5 1.0 7.4365e-02 8.8 0.00e+00 0.0 0.0e+00 0.0e+00 1.0e+01  1  0  0  0  1   1  0  0  0  2     0
MatGetBrAoCol          5 1.0 9.1380e-02 2.3 0.00e+00 0.0 4.8e+03 4.6e+03 1.0e+01  1  0  5 10  1   3  0 23 37  2     0
MatGetSymTrans        10 1.0 2.0689e-02 5.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
PCSetUp                1 1.0 1.4868e+00 1.0 2.29e+07 1.1 2.0e+04 2.1e+03 4.0e+02 30  9 20 18 54  59 58 94 70 85   473
PCApply                5 1.0 2.6097e+00 1.1 2.04e+08 1.1 7.6e+04 2.2e+03 2.6e+02 50 84 78 74 36  98513361281 56  2381
MGSetup Level 0        1 1.0 5.2823e-02 1.4 4.79e+05 1.0 5.1e+03 3.4e+02 2.7e+01  1  0  5  1  4   2  1 24  3  6   290
MGSetup Level 1        1 1.0 9.4671e-03 2.1 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  1   0  0  0  0  1     0
MGSetup Level 2        1 1.0 4.6070e-03 1.5 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  1   0  0  0  0  1     0
MGSetup Level 3        1 1.0 4.6048e-03 1.4 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  1   0  0  0  0  1     0
MGSetup Level 4        1 1.0 6.0458e-03 1.5 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  1   0  0  0  0  1     0
MGSetup Level 5        1 1.0 2.0175e-02 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  1   1  0  0  0  1     0

--- Event Stage 1: MG Apply

KSPGMRESOrthog        50 1.0 5.0590e-01 1.9 3.54e+07 1.1 0.0e+00 0.0e+00 5.0e+01  8 15  0  0  7  16 17  0  0 19  2132
KSPSetUp               5 1.0 1.7280e-01 3.1 0.00e+00 0.0 0.0e+00 0.0e+00 5.0e+01  2  0  0  0  7   4  0  0  0 19     0
KSPSolve              55 1.0 2.2699e+00 1.2 1.79e+08 1.1 6.3e+04 2.3e+03 2.6e+02 43 73 64 63 36  86 87 82 85100  2389
VecMDot               50 1.0 4.8221e-01 2.4 1.77e+07 1.1 0.0e+00 0.0e+00 5.0e+01  7  7  0  0  7  14  9  0  0 19  1119
VecNorm               55 1.0 2.5947e-01 2.1 3.54e+06 1.1 0.0e+00 0.0e+00 5.5e+01  4  1  0  0  7   8  2  0  0 21   416
VecScale             155 1.0 5.0950e-02 9.8 4.99e+06 1.1 0.0e+00 0.0e+00 0.0e+00  0  2  0  0  0   1  2  0  0  0  2983
VecCopy               30 1.0 1.3113e-02 7.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet               105 1.0 1.9075e-0219.7 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY              210 1.0 8.1555e-02 8.1 1.35e+07 1.1 0.0e+00 0.0e+00 0.0e+00  1  6  0  0  0   2  7  0  0  0  5050
VecAYPX              200 1.0 8.0734e-02 7.4 8.05e+06 1.1 0.0e+00 0.0e+00 0.0e+00  1  3  0  0  0   2  4  0  0  0  3037
VecMAXPY              55 1.0 1.2952e-01 9.1 2.09e+07 1.1 0.0e+00 0.0e+00 0.0e+00  1  9  0  0  0   2 10  0  0  0  4921
VecPointwiseMult     205 1.0 1.2314e-01 8.1 6.60e+06 1.1 0.0e+00 0.0e+00 0.0e+00  1  3  0  0  0   3  3  0  0  0  1633
VecScatterBegin      265 1.0 1.2376e-01 6.9 0.00e+00 0.0 7.6e+04 2.2e+03 0.0e+00  1  0 78 74  0   2  0100100  0     0
VecScatterEnd        265 1.0 1.2838e+00 3.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 16  0  0  0  0  33  0  0  0  0     0
VecNormalize          55 1.0 2.6221e-01 1.8 5.31e+06 1.1 0.0e+00 0.0e+00 5.5e+01  4  2  0  0  7   8  3  0  0 21   617
MatMult              205 1.0 1.4328e+00 1.4 1.18e+08 1.1 6.6e+04 2.5e+03 0.0e+00 25 48 67 71  0  51 58 86 97  0  2503
MatMultAdd            25 1.0 1.4013e-01 2.4 5.31e+06 1.0 2.9e+03 9.0e+02 0.0e+00  2  2  3  1  0   3  3  4  2  0  1172
MatMultTranspose      25 1.0 1.2134e-0111.7 5.31e+06 1.0 2.9e+03 9.0e+02 0.0e+00  1  2  3  1  0   3  3  4  2  0  1354
MatSolve               5 1.0 6.1536e-04 3.8 1.32e+05 1.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0  6865
PCApply              210 1.0 1.7584e-01 2.9 6.73e+06 1.1 5.0e+03 5.6e+01 1.0e+01  2  3  5  0  1   5  3  6  0  4  1167
MGSmooth Level 0       5 1.0 1.6812e-02 3.7 1.32e+05 1.0 5.0e+03 5.6e+01 0.0e+00  0  0  5  0  0   0  0  6  0  0   251
MGSmooth Level 1      10 1.0 7.2483e-02 1.1 1.45e+05 2.5 1.3e+04 5.3e+01 5.3e+01  1  0 14  0  7   3  0 17  0 20    39
MGResid Level 1        5 1.0 8.1933e-03 2.0 1.57e+04 2.6 1.8e+03 5.3e+01 0.0e+00  0  0  2  0  0   0  0  2  0  0    37
MGInterp Level 1      10 1.0 1.0109e-0210.1 3.92e+03 1.8 1.2e+03 2.4e+01 0.0e+00  0  0  1  0  0   0  0  2  0  0     8
MGSmooth Level 2      10 1.0 7.6197e-02 1.1 8.54e+05 1.6 1.3e+04 1.6e+02 5.3e+01  1  0 14  1  7   3  0 17  1 20   273
MGResid Level 2        5 1.0 6.6566e-03 2.0 9.46e+04 1.6 1.8e+03 1.6e+02 0.0e+00  0  0  2  0  0   0  0  2  0  0   350
MGInterp Level 2      10 1.0 7.4329e-03 4.0 2.37e+04 1.4 1.2e+03 7.1e+01 0.0e+00  0  0  1  0  0   0  0  2  0  0    82
MGSmooth Level 3      10 1.0 1.4607e-01 1.4 5.79e+06 1.3 1.3e+04 5.7e+02 5.3e+01  3  2 14  3  7   5  3 17  4 20  1102
MGResid Level 3        5 1.0 1.9478e-02 3.1 6.50e+05 1.3 1.8e+03 5.7e+02 0.0e+00  0  0  2  0  0   0  0  2  1  0   932
MGInterp Level 3      10 1.0 1.0718e-02 3.6 1.62e+05 1.2 1.2e+03 2.4e+02 0.0e+00  0  0  1  0  0   0  0  2  0  0   435
MGSmooth Level 4      10 1.0 6.5122e-01 1.4 4.25e+07 1.1 1.3e+04 2.1e+03 5.3e+01 12 17 14 12  7  23 20 17 17 20  1943
MGResid Level 4        5 1.0 1.2598e-01 5.1 4.80e+06 1.1 1.8e+03 2.1e+03 0.0e+00  1  2  2  2  0   2  2  2  2  0  1138
MGInterp Level 4      10 1.0 4.8600e-02 5.7 1.20e+06 1.1 1.2e+03 8.7e+02 0.0e+00  0  0  1  0  0   1  1  2  1  0   747
MGSmooth Level 5      10 1.0 1.5219e+00 1.5 1.29e+08 1.1 4.6e+03 2.3e+04 5.3e+01 26 53  5 46  7  52 64  6 62 20  2608
MGResid Level 5        5 1.0 1.6775e-01 2.4 9.67e+06 1.1 6.4e+02 2.3e+04 0.0e+00  2  4  1  6  0   4  5  1  9  0  1775
MGInterp Level 5      10 1.0 1.9435e-01 3.1 9.22e+06 1.0 1.2e+03 3.3e+03 0.0e+00  2  4  1  2  0   4  5  2  2  0  1476
------------------------------------------------------------------------------------------------------------------------

Memory usage is given in bytes:

Object Type          Creations   Destructions     Memory  Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

           Container     1              1          564     0
       Krylov Solver    13             13       160752     0
     DMKSP interface     4              4         2592     0
              Vector    91            171     35911200     0
      Vector Scatter    25             25        26300     0
              Matrix    45             45     36052932     0
    Distributed Mesh     6              6      1412736     0
     Bipartite Graph    12             12         9504     0
              Viewer     2              1          728     0
           Index Set    59             59       788488     0
   IS L to G Mapping     6              6       695256     0
      Preconditioner    13             13        11736     0

--- Event Stage 1: MG Apply

              Vector    80              0            0     0
========================================================================================================================
Average time to get PetscTime(): 5.00679e-07
Average time for MPI_Barrier(): 0.000635576
Average time for zero size MPI_Send(): 0.000971369
#PETSc Option Table entries:
-da_refine 5
-dm_view
-ksp_monitor
-ksp_rtol 1.0e-7
-ksp_type cg
-ksp_view
-log_summary
-mg_levels_ksp_type chebyshev
-mg_levels_pc_type jacobi
-pc_mg_galerkin
-pc_mg_log
-pc_mg_monitor
-pc_type mg
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 4
Configure run at: Thu Jun 13 15:51:55 2013
Configure options: --download-f-blas-lapack --download-hypre --download-mpich --with-cc=gcc --with-debugging=no --with-fc=gfortran PETSC_ARCH=linux-gnu-c-nodebug
-----------------------------------------
Libraries compiled on Thu Jun 13 15:51:55 2013 on login1.ittc.ku.edu 
Machine characteristics: Linux-2.6.32-220.13.1.el6.x86_64-x86_64-with-redhat-6.2-Santiago
Using PETSc directory: /bio/work1/zlwei/PETSc/petsc-dev
Using PETSc arch: linux-gnu-c-nodebug
-----------------------------------------

Using C compiler: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpicc  -fPIC -Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -O  ${COPTFLAGS} ${CFLAGS}
Using Fortran compiler: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpif90  -fPIC  -Wall -Wno-unused-variable -O  ${FOPTFLAGS} ${FFLAGS} 
-----------------------------------------

Using include paths: -I/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/include -I/bio/work1/zlwei/PETSc/petsc-dev/include -I/bio/work1/zlwei/PETSc/petsc-dev/include -I/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/include
-----------------------------------------

Using C linker: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpicc
Using Fortran linker: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpif90
Using libraries: -Wl,-rpath,/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -L/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -lpetsc -Wl,-rpath,/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -L/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -lHYPRE -Wl,-rpath,/usr/lib/gcc/x86_64-redhat-linux/4.4.6 -L/usr/lib/gcc/x86_64-redhat-linux/4.4.6 -lmpichcxx -lstdc++ -lflapack -lfblas -lX11 -lpthread -lmpichf90 -lgfortran -lm -lm -lmpichcxx -lstdc++ -lmpichcxx -lstdc++ -ldl -lmpich -lopa -lmpl -lrt -lpthread -lgcc_s -ldl 
-----------------------------------------



More information about the petsc-users mailing list