[petsc-users] Memory and Speed Issue of using MG as preconditioner

Alan zhenglun.wei at gmail.com
Tue Nov 5 21:21:01 CST 2013


Dear all,
I hope you're having a nice day.
Recently, I came across a problem on using MG as preconditioner.
Basically, to achieve the same finest mesh with pc_type = mg, the memory
usage for -da_refine 2 is much more than that for -da_refine 5. To my
limited knowledge, more refinement should consume more memory, which is
contradict to the behavior of pc_type = mg in PETsc.
Here, I provide two output files. They are all from
/src/ksp/ksp/example/tutorial/ex45.c with 32 processes.
The execute file for out-level2 is
mpiexec -np 32 ./ex45 -pc_type mg -ksp_type cg -da_refine 2
-pc_mg_galerkin -ksp_rtol 1.0e-7 -mg_levels_pc_type jacobi
-mg_levels_ksp_type chebyshev -dm_view -log_summary -pc_mg_log
-pc_mg_monitor -ksp_view -ksp_monitor > out &
and in ex45.c, KSPCreate is changed as:
ierr =
DMDACreate3d(PETSC_COMM_WORLD,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_STENCIL_STAR,-65,-33,-33,PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE,1,1,0,0,0,&da);CHKERRQ(ierr);
On the other hand, the execute file for out-level5 is
mpiexec -np 32 ./ex45 -pc_type mg -ksp_type cg -da_refine 5
-pc_mg_galerkin -ksp_rtol 1.0e-7 -mg_levels_pc_type jacobi
-mg_levels_ksp_type chebyshev -dm_view -log_summary -pc_mg_log
-pc_mg_monitor -ksp_view -ksp_monitor > out &
and in ex45.c, KSPCreate is changed as:
ierr =
DMDACreate3d(PETSC_COMM_WORLD,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_STENCIL_STAR,-9,-5,-5,PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE,1,1,0,0,0,&da);CHKERRQ(ierr);
In summary, the final finest meshes obtained for both cases are
257*129*129 as documented in both files. However, the out-level2 shows
that the Matrix requested 822871308 memory while out-level5 only need
36052932.
Furthermore, although the total iterations for KSP solver are shown as 5
times in both files. the wall time elapsed for out-level2 is around
150s, while out-level5 is about 4.7s.
At last, there is a minor question. In both files, under 'Down solver
(pre-smoother) on level 1' and 'Down solver (pre-smoother) on level 2',
the type of "KSP Object: (mg_levels_1_est_)" and "KSP Object:
(mg_levels_2_est_)" are all 'gmres'. Since I'm using uniformly Cartesian
mesh, would it be helpful to speed up the solver if the 'gmres' is
replaced by 'cg' here? If so, which PETSc option can change the type of
KSP object.

sincerely appreciate,
Alan



-------------- next part --------------
Processor [0] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 0 33
Processor [1] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 0 33
Processor [2] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 0 33
Processor [3] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 0 33
Processor [4] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 0 33
Processor [5] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 0 33
Processor [6] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 0 33
Processor [7] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 0 33
Processor [8] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 33 65
Processor [9] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 33 65
Processor [10] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 33 65
Processor [11] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 33 65
Processor [12] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 33 65
Processor [13] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 33 65
Processor [14] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 33 65
Processor [15] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 33 65
Processor [16] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 65 97
Processor [17] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 65 97
Processor [18] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 65 97
Processor [19] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 65 97
Processor [20] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 65 97
Processor [21] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 65 97
Processor [22] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 65 97
Processor [23] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 65 97
Processor [24] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 97 129
Processor [25] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 97 129
Processor [26] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 97 129
Processor [27] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 97 129
Processor [28] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 97 129
Processor [29] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 97 129
Processor [30] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 97 129
Processor [31] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 97 129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
Processor [0] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 0 17
Processor [1] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 0 17
Processor [2] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 0 17
Processor [3] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 0 17
Processor [4] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 0 17
Processor [5] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 0 17
Processor [6] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 0 17
Processor [7] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 0 17
Processor [8] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 17 33
Processor [9] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 17 33
Processor [10] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 17 33
Processor [11] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 17 33
Processor [12] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 17 33
Processor [13] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 17 33
Processor [14] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 17 33
Processor [15] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 17 33
Processor [16] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 33 49
Processor [17] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 33 49
Processor [18] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 33 49
Processor [19] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 33 49
Processor [20] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 33 49
Processor [21] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 33 49
Processor [22] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 33 49
Processor [23] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 33 49
Processor [24] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 49 65
Processor [25] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 49 65
Processor [26] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 49 65
Processor [27] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 49 65
Processor [28] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 49 65
Processor [29] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 49 65
Processor [30] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 49 65
Processor [31] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 49 65
Processor [0] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 0 9
Processor [1] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 0 9
Processor [2] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 0 9
Processor [3] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 0 9
Processor [4] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 0 9
Processor [5] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 0 9
Processor [6] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 0 9
Processor [7] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 0 9
Processor [8] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 9 17
Processor [9] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 9 17
Processor [10] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 9 17
Processor [11] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 9 17
Processor [12] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 9 17
Processor [13] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 9 17
Processor [14] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 9 17
Processor [15] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 9 17
Processor [16] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 17 25
Processor [17] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 17 25
Processor [18] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 17 25
Processor [19] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 17 25
Processor [20] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 17 25
Processor [21] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 17 25
Processor [22] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 17 25
Processor [23] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 17 25
Processor [24] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 25 33
Processor [25] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 25 33
Processor [26] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 25 33
Processor [27] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 25 33
Processor [28] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 25 33
Processor [29] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 25 33
Processor [30] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 25 33
Processor [31] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 25 33
  0 KSP Residual norm 2.036594349596e+03 
  1 KSP Residual norm 8.756270777762e+01 
  2 KSP Residual norm 3.092374574522e+00 
  3 KSP Residual norm 1.220382147945e-01 
  4 KSP Residual norm 2.871729837203e-02 
KSP Object: 32 MPI processes
  type: cg
  maximum iterations=10000
  tolerances:  relative=1e-07, absolute=1e-50, divergence=10000
  left preconditioning
  using nonzero initial guess
  using PRECONDITIONED norm type for convergence test
PC Object: 32 MPI processes
  type: mg
    MG: type is MULTIPLICATIVE, levels=3 cycles=v
      Cycles per PCApply=1
      Using Galerkin computed coarse grid matrices
  Coarse grid solver -- level -------------------------------
    KSP Object:    (mg_coarse_)     32 MPI processes
      type: preonly
      maximum iterations=1, initial guess is zero
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using NONE norm type for convergence test
    PC Object:    (mg_coarse_)     32 MPI processes
      type: redundant
        Redundant preconditioner: First (color=0) of 32 PCs follows
      KSP Object:      (mg_coarse_redundant_)       1 MPI processes
        type: preonly
        maximum iterations=10000, initial guess is zero
        tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
        left preconditioning
        using NONE norm type for convergence test
      PC Object:      (mg_coarse_redundant_)       1 MPI processes
        type: lu
          LU: out-of-place factorization
          tolerance for zero pivot 2.22045e-14
          using diagonal shift on blocks to prevent zero pivot
          matrix ordering: nd
          factor fill ratio given 5, needed 35.0339
            Factored matrix follows:
              Matrix Object:               1 MPI processes
                type: seqaij
                rows=70785, cols=70785
                package used to perform factorization: petsc
                total: nonzeros=63619375, allocated nonzeros=63619375
                total number of mallocs used during MatSetValues calls =0
                  not using I-node routines
        linear system matrix = precond matrix:
        Matrix Object:         1 MPI processes
          type: seqaij
          rows=70785, cols=70785
          total: nonzeros=1815937, allocated nonzeros=1911195
          total number of mallocs used during MatSetValues calls =0
            not using I-node routines
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=70785, cols=70785
        total: nonzeros=1815937, allocated nonzeros=1815937
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Down solver (pre-smoother) on level 1 -------------------------------
    KSP Object:    (mg_levels_1_)     32 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.231542, max = 2.54696
        Chebyshev: estimated using:  [0 0.1; 0 1.1]
        KSP Object:        (mg_levels_1_est_)         32 MPI processes
          type: gmres
            GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
            GMRES: happy breakdown tolerance 1e-30
          maximum iterations=10
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using nonzero initial guess
          using NONE norm type for convergence test
        PC Object:        (mg_levels_1_)         32 MPI processes
          type: jacobi
          linear system matrix = precond matrix:
          Matrix Object:           32 MPI processes
            type: mpiaij
            rows=545025, cols=545025
            total: nonzeros=14340865, allocated nonzeros=14340865
            total number of mallocs used during MatSetValues calls =0
              not using I-node (on process 0) routines
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_1_)     32 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=545025, cols=545025
        total: nonzeros=14340865, allocated nonzeros=14340865
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 2 -------------------------------
    KSP Object:    (mg_levels_2_)     32 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.155706, max = 1.71277
        Chebyshev: estimated using:  [0 0.1; 0 1.1]
        KSP Object:        (mg_levels_2_est_)         32 MPI processes
          type: gmres
            GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
            GMRES: happy breakdown tolerance 1e-30
          maximum iterations=10
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using nonzero initial guess
          using NONE norm type for convergence test
        PC Object:        (mg_levels_2_)         32 MPI processes
          type: jacobi
          linear system matrix = precond matrix:
          Matrix Object:           32 MPI processes
            type: mpiaij
            rows=4276737, cols=4276737
            total: nonzeros=29771265, allocated nonzeros=29771265
            total number of mallocs used during MatSetValues calls =0
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_2_)     32 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=4276737, cols=4276737
        total: nonzeros=29771265, allocated nonzeros=29771265
        total number of mallocs used during MatSetValues calls =0
  Up solver (post-smoother) same as down solver (pre-smoother)
  linear system matrix = precond matrix:
  Matrix Object:   32 MPI processes
    type: mpiaij
    rows=4276737, cols=4276737
    total: nonzeros=29771265, allocated nonzeros=29771265
    total number of mallocs used during MatSetValues calls =0
Residual norm 0.000941649
************************************************************************************************************************
***             WIDEN YOUR WINDOW TO 120 CHARACTERS.  Use 'enscript -r -fCourier9' to print this document            ***
************************************************************************************************************************

---------------------------------------------- PETSc Performance Summary: ----------------------------------------------

./ex45 on a linux-gnu-c-nodebug named n042 with 32 processors, by zlwei Tue Nov  5 12:21:51 2013
Using Petsc Development GIT revision: d696997672013bb4513d3ff57c61cc10e09b71f6  GIT Date: 2013-06-13 10:28:37 -0500

                         Max       Max/Min        Avg      Total 
Time (sec):           5.699e+02      1.00005   5.699e+02
Objects:              1.750e+02      1.00000   1.750e+02
Flops:                7.470e+10      1.00022   7.468e+10  2.390e+12
Flops/sec:            1.311e+08      1.00020   1.310e+08  4.193e+09
MPI Messages:         1.594e+03      1.77506   1.234e+03  3.948e+04
MPI Message Lengths:  3.375e+07      1.17496   2.581e+04  1.019e+09
MPI Reductions:       3.500e+02      1.00000

Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
                            e.g., VecAXPY() for real vectors of length N --> 2N flops
                            and VecAXPY() for complex vectors of length N --> 8N flops

Summary of Stages:   ----- Time ------  ----- Flops -----  --- Messages ---  -- Message Lengths --  -- Reductions --
                        Avg     %Total     Avg     %Total   counts   %Total     Avg         %Total   counts   %Total 
 0:      Main Stage: 2.7734e+02  48.7%  2.3636e+12  98.9%  1.188e+04  30.1%  1.963e+04       76.0%  2.430e+02  69.4% 
 1:        MG Apply: 2.9257e+02  51.3%  2.6346e+10   1.1%  2.760e+04  69.9%  6.185e+03       24.0%  1.060e+02  30.3% 

------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
   Count: number of times phase was executed
   Time and Flops: Max - maximum over all processors
                   Ratio - ratio of maximum to minimum over all processors
   Mess: number of messages sent
   Avg. len: average message length (bytes)
   Reduct: number of global reductions
   Global: entire computation
   Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
      %T - percent time in this phase         %f - percent flops in this phase
      %M - percent messages in this phase     %L - percent message lengths in this phase
      %R - percent reductions in this phase
   Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------
Event                Count      Time (sec)     Flops                             --- Global ---  --- Stage ---   Total
                   Max Ratio  Max     Ratio   Max  Ratio  Mess   Avg len Reduct  %T %f %M %L %R  %T %f %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------

--- Event Stage 0: Main Stage

KSPSetUp               5 1.0 4.6016e-02 1.6 0.00e+00 0.0 0.0e+00 0.0e+00 1.8e+01  0  0  0  0  5   0  0  0  0  7     0
Warning -- total time of even greater than time of entire stage -- something is wrong with the timer
KSPSolve               1 1.0 5.6976e+02 1.0 7.47e+10 1.0 3.9e+04 2.6e+04 3.2e+02100100 99100 93 205101327131134  4194
VecTDot                9 1.0 1.4363e-01 3.3 2.51e+06 1.1 0.0e+00 0.0e+00 9.0e+00  0  0  0  0  3   0  0  0  0  4   536
VecNorm                6 1.0 3.8997e-0114.8 1.67e+06 1.1 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  2   0  0  0  0  2   132
VecCopy                2 1.0 6.8030e-0312.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet                12 1.0 2.0368e-03 6.8 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY                9 1.0 4.1642e-0215.4 2.51e+06 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0  1849
VecAYPX                3 1.0 2.5070e-0233.2 8.37e+05 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0  1024
VecScatterBegin        7 1.0 9.5501e-0321.5 0.00e+00 0.0 8.7e+02 1.7e+04 0.0e+00  0  0  2  1  0   0  0  7  2  0     0
VecScatterEnd          7 1.0 3.0083e-0255.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatMult                5 1.0 1.0018e-01 7.1 8.98e+06 1.1 6.4e+02 2.3e+04 0.0e+00  0  0  2  1  0   0  0  5  2  0  2758
MatMultTranspose       2 1.0 2.0180e-0212.1 1.04e+06 1.0 2.3e+02 2.1e+03 0.0e+00  0  0  1  0  0   0  0  2  0  0  1601
MatLUFactorSym         1 1.0 4.2020e+00 2.0 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+00  1  0  0  0  1   1  0  0  0  1     0
MatLUFactorNum         1 1.0 5.5597e+02 4.6 7.38e+10 1.0 0.0e+00 0.0e+00 0.0e+00 47 99  0  0  0  97100  0  0  0  4249
MatAssemblyBegin      11 1.0 4.3128e-01 2.9 0.00e+00 0.0 0.0e+00 0.0e+00 1.2e+01  0  0  0  0  3   0  0  0  0  5     0
MatAssemblyEnd        11 1.0 2.1238e-01 1.8 0.00e+00 0.0 2.2e+03 1.0e+03 4.0e+01  0  0  6  0 11   0  0 18  0 16     0
MatGetRowIJ            1 1.0 4.3992e-02 3.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatGetOrdering         1 1.0 3.3257e-01 2.6 0.00e+00 0.0 0.0e+00 0.0e+00 2.0e+00  0  0  0  0  1   0  0  0  0  1     0
MatView                8 1.3 4.6694e-03 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  2   0  0  0  0  2     0
MatPtAP                2 1.0 8.1194e-01 1.0 2.06e+07 1.1 3.9e+03 8.8e+03 5.0e+01  0  0 10  3 14   0  0 33  4 21   781
MatPtAPSymbolic        2 1.0 5.0288e-01 1.1 0.00e+00 0.0 2.2e+03 1.2e+04 3.0e+01  0  0  6  2  9   0  0 18  3 12     0
MatPtAPNumeric         2 1.0 3.5799e-01 1.2 2.06e+07 1.1 1.7e+03 5.2e+03 2.0e+01  0  0  4  1  6   0  0 14  1  8  1771
MatGetRedundant        1 1.0 2.1102e+00 1.2 0.00e+00 0.0 3.0e+03 2.3e+05 4.0e+00  0  0  8 68  1   1  0 25 89  2     0
MatGetLocalMat         2 1.0 4.9906e-02 6.4 0.00e+00 0.0 0.0e+00 0.0e+00 4.0e+00  0  0  0  0  1   0  0  0  0  2     0
MatGetBrAoCol          2 1.0 5.5355e-02 2.8 0.00e+00 0.0 1.5e+03 1.4e+04 4.0e+00  0  0  4  2  1   0  0 13  3  2     0
MatGetSymTrans         4 1.0 2.7369e-02 8.7 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
PCSetUp                1 1.0 5.6158e+02 4.5 7.38e+10 1.0 1.1e+04 7.2e+04 1.8e+02 48 99 27 74 51 100100 89 98 73  4208
Warning -- total time of even greater than time of entire stage -- something is wrong with the timer
PCApply                5 1.0 4.4313e+0259.4 8.32e+08 1.0 2.8e+04 8.8e+03 1.1e+02 51  1 70 24 30 105  1232 32 44    59
MGSetup Level 0        1 1.0 5.6044e+02 4.5 7.38e+10 1.0 5.1e+03 1.4e+05 2.7e+01 48 99 13 71  8  99100 43 93 11  4215
MGSetup Level 1        1 1.0 9.1751e-03 2.0 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  2   0  0  0  0  2     0
MGSetup Level 2        1 1.0 1.5626e-02 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  2   0  0  0  0  2     0

--- Event Stage 1: MG Apply

KSPGMRESOrthog        20 1.0 4.6161e-01 2.0 3.47e+07 1.1 0.0e+00 0.0e+00 2.0e+01  0  0  0  0  6   0  4  0  0 19  2298
KSPSetUp               2 1.0 4.3606e+029821.1 0.00e+00 0.0 0.0e+00 0.0e+00 2.0e+01 50  0  0  0  6  98  0  0  0 19     0
KSPSolve              25 1.0 4.4278e+0262.2 8.08e+08 1.0 2.3e+04 9.7e+03 1.1e+02 51  1 58 22 30 100 97 83 90100    58
VecMDot               20 1.0 4.4832e-01 3.1 1.74e+07 1.1 0.0e+00 0.0e+00 2.0e+01  0  0  0  0  6   0  2  0  0 19  1183
VecNorm               22 1.0 2.1354e-01 2.9 3.47e+06 1.1 0.0e+00 0.0e+00 2.2e+01  0  0  0  0  6   0  0  0  0 21   497
VecScale              62 1.0 6.3914e-0213.6 4.90e+06 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  1  0  0  0  2339
VecCopy               12 1.0 2.0800e-0211.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet                51 1.0 2.0875e-0213.7 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY               84 1.0 8.1026e-02 8.7 1.33e+07 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  2  0  0  0  4999
VecAYPX               80 1.0 8.6726e-02 7.8 7.90e+06 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  1  0  0  0  2780
VecMAXPY              22 1.0 1.3574e-01 9.2 2.05e+07 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  2  0  0  0  4618
VecPointwiseMult      82 1.0 1.3558e-01 8.2 6.48e+06 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  1  0  0  0  1458
VecScatterBegin      112 1.0 8.0228e-02 8.3 0.00e+00 0.0 2.8e+04 8.8e+03 0.0e+00  0  0 70 24  0   0  0100100  0     0
VecScatterEnd        112 1.0 5.4348e+0012.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  1  0  0  0  0   1  0  0  0  0     0
VecNormalize          22 1.0 2.1602e-01 2.4 5.21e+06 1.1 0.0e+00 0.0e+00 2.2e+01  0  0  0  0  6   0  1  0  0 21   737
MatMult               82 1.0 4.7078e+00 4.2 1.12e+08 1.1 2.0e+04 7.5e+03 0.0e+00  0  0 52 15  0   1 13 74 62  0   726
MatMultAdd            10 1.0 2.7111e+0069.2 5.21e+06 1.0 1.2e+03 2.1e+03 0.0e+00  0  0  3  0  0   0  1  4  1  0    60
MatMultTranspose      10 1.0 1.4186e-0115.2 5.21e+06 1.0 1.2e+03 2.1e+03 0.0e+00  0  0  3  0  0   0  1  4  1  0  1139
MatSolve               5 1.0 4.9743e+00 6.4 6.36e+08 1.0 0.0e+00 0.0e+00 0.0e+00  0  1  0  0  0   1 77  0  0  0  4090
PCApply               87 1.0 5.2570e+00 5.0 6.42e+08 1.0 5.0e+03 1.8e+04 4.0e+00  0  1 13  9  1   1 78 18 36  4  3908
MGSmooth Level 0       5 1.0 5.0933e+00 5.1 6.36e+08 1.0 5.0e+03 1.8e+04 0.0e+00  0  1 13  9  0   1 77 18 36  0  3995
MGSmooth Level 1      10 1.0 4.4056e+00 9.2 4.25e+07 1.1 1.3e+04 2.1e+03 5.3e+01  0  0 34  3 15   1  5 48 11 50   287
MGResid Level 1        5 1.0 1.0928e-01 2.7 4.80e+06 1.1 1.8e+03 2.1e+03 0.0e+00  0  0  5  0  0   0  1  7  2  0  1312
MGInterp Level 1      10 1.0 2.6571e+00620.1 1.20e+06 1.1 1.2e+03 8.7e+02 0.0e+00  0  0  3  0  0   0  0  4  0  0    14
MGSmooth Level 2      10 1.0 4.3692e+02296.7 1.29e+08 1.1 4.6e+03 2.3e+04 5.3e+01 50  0 12 10 15  98 15 17 43 50     9
MGResid Level 2        5 1.0 1.4266e-01 2.4 9.67e+06 1.1 6.4e+02 2.3e+04 0.0e+00  0  0  2  1  0   0  1  2  6  0  2087
MGInterp Level 2      10 1.0 1.2601e-01 3.0 9.22e+06 1.0 1.2e+03 3.3e+03 0.0e+00  0  0  3  0  0   0  1  4  2  0  2276
------------------------------------------------------------------------------------------------------------------------

Memory usage is given in bytes:

Object Type          Creations   Destructions     Memory  Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

           Container     1              1          564     0
       Krylov Solver     7              7        66456     0
     DMKSP interface     2              2         1296     0
              Vector    46             78     36381912     0
      Vector Scatter    13             13        13676     0
              Matrix    21             21    822871308     0
    Distributed Mesh     3              3      1391808     0
     Bipartite Graph     6              6         4752     0
              Viewer     2              1          728     0
           Index Set    32             32      1989612     0
   IS L to G Mapping     3              3       690348     0
      Preconditioner     7              7         6432     0

--- Event Stage 1: MG Apply

              Vector    32              0            0     0
========================================================================================================================
Average time to get PetscTime(): 5.00679e-07
Average time for MPI_Barrier(): 0.000607204
Average time for zero size MPI_Send(): 0.000628747
#PETSc Option Table entries:
-da_refine 2
-dm_view
-ksp_monitor
-ksp_rtol 1.0e-7
-ksp_type cg
-ksp_view
-log_summary
-mg_levels_ksp_type chebyshev
-mg_levels_pc_type jacobi
-pc_mg_galerkin
-pc_mg_log
-pc_mg_monitor
-pc_type mg
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 4
Configure run at: Thu Jun 13 15:51:55 2013
Configure options: --download-f-blas-lapack --download-hypre --download-mpich --with-cc=gcc --with-debugging=no --with-fc=gfortran PETSC_ARCH=linux-gnu-c-nodebug
-----------------------------------------
Libraries compiled on Thu Jun 13 15:51:55 2013 on login1.ittc.ku.edu 
Machine characteristics: Linux-2.6.32-220.13.1.el6.x86_64-x86_64-with-redhat-6.2-Santiago
Using PETSc directory: /bio/work1/zlwei/PETSc/petsc-dev
Using PETSc arch: linux-gnu-c-nodebug
-----------------------------------------

Using C compiler: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpicc  -fPIC -Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -O  ${COPTFLAGS} ${CFLAGS}
Using Fortran compiler: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpif90  -fPIC  -Wall -Wno-unused-variable -O  ${FOPTFLAGS} ${FFLAGS} 
-----------------------------------------

Using include paths: -I/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/include -I/bio/work1/zlwei/PETSc/petsc-dev/include -I/bio/work1/zlwei/PETSc/petsc-dev/include -I/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/include
-----------------------------------------

Using C linker: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpicc
Using Fortran linker: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpif90
Using libraries: -Wl,-rpath,/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -L/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -lpetsc -Wl,-rpath,/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -L/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -lHYPRE -Wl,-rpath,/usr/lib/gcc/x86_64-redhat-linux/4.4.6 -L/usr/lib/gcc/x86_64-redhat-linux/4.4.6 -lmpichcxx -lstdc++ -lflapack -lfblas -lX11 -lpthread -lmpichf90 -lgfortran -lm -lm -lmpichcxx -lstdc++ -lmpichcxx -lstdc++ -ldl -lmpich -lopa -lmpl -lrt -lpthread -lgcc_s -ldl 
-----------------------------------------
-------------- next part --------------
Processor [0] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 0 33
Processor [1] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 0 33
Processor [2] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 0 33
Processor [3] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 0 33
Processor [4] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 0 33
Processor [5] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 0 33
Processor [6] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 0 33
Processor [7] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 0 33
Processor [8] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 33 65
Processor [9] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 33 65
Processor [10] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 33 65
Processor [11] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 33 65
Processor [12] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 33 65
Processor [13] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 33 65
Processor [14] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 33 65
Processor [15] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 33 65
Processor [16] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 65 97
Processor [17] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 65 97
Processor [18] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 65 97
Processor [19] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 65 97
Processor [20] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 65 97
Processor [21] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 65 97
Processor [22] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 65 97
Processor [23] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 65 97
Processor [24] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 0 65, Z range of indices: 97 129
Processor [25] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 0 65, Z range of indices: 97 129
Processor [26] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 0 65, Z range of indices: 97 129
Processor [27] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 0 65, Z range of indices: 97 129
Processor [28] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 65, Y range of indices: 65 129, Z range of indices: 97 129
Processor [29] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 129, Y range of indices: 65 129, Z range of indices: 97 129
Processor [30] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 129 193, Y range of indices: 65 129, Z range of indices: 97 129
Processor [31] M 257 N 129 P 129 m 4 n 2 p 4 w 1 s 1
X range of indices: 193 257, Y range of indices: 65 129, Z range of indices: 97 129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
mx = 257, my = 129, mz =129
Processor [0] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 0 17
Processor [1] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 0 17
Processor [2] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 0 17
Processor [3] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 0 17
Processor [4] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 0 17
Processor [5] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 0 17
Processor [6] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 0 17
Processor [7] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 0 17
Processor [8] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 17 33
Processor [9] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 17 33
Processor [10] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 17 33
Processor [11] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 17 33
Processor [12] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 17 33
Processor [13] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 17 33
Processor [14] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 17 33
Processor [15] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 17 33
Processor [16] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 33 49
Processor [17] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 33 49
Processor [18] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 33 49
Processor [19] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 33 49
Processor [20] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 33 49
Processor [21] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 33 49
Processor [22] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 33 49
Processor [23] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 33 49
Processor [24] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 0 33, Z range of indices: 49 65
Processor [25] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 0 33, Z range of indices: 49 65
Processor [26] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 0 33, Z range of indices: 49 65
Processor [27] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 0 33, Z range of indices: 49 65
Processor [28] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 33, Y range of indices: 33 65, Z range of indices: 49 65
Processor [29] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 65, Y range of indices: 33 65, Z range of indices: 49 65
Processor [30] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 65 97, Y range of indices: 33 65, Z range of indices: 49 65
Processor [31] M 129 N 65 P 65 m 4 n 2 p 4 w 1 s 1
X range of indices: 97 129, Y range of indices: 33 65, Z range of indices: 49 65
Processor [0] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 0 9
Processor [1] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 0 9
Processor [2] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 0 9
Processor [3] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 0 9
Processor [4] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 0 9
Processor [5] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 0 9
Processor [6] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 0 9
Processor [7] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 0 9
Processor [8] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 9 17
Processor [9] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 9 17
Processor [10] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 9 17
Processor [11] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 9 17
Processor [12] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 9 17
Processor [13] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 9 17
Processor [14] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 9 17
Processor [15] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 9 17
Processor [16] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 17 25
Processor [17] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 17 25
Processor [18] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 17 25
Processor [19] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 17 25
Processor [20] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 17 25
Processor [21] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 17 25
Processor [22] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 17 25
Processor [23] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 17 25
Processor [24] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 0 17, Z range of indices: 25 33
Processor [25] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 0 17, Z range of indices: 25 33
Processor [26] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 0 17, Z range of indices: 25 33
Processor [27] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 0 17, Z range of indices: 25 33
Processor [28] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 17, Y range of indices: 17 33, Z range of indices: 25 33
Processor [29] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 33, Y range of indices: 17 33, Z range of indices: 25 33
Processor [30] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 33 49, Y range of indices: 17 33, Z range of indices: 25 33
Processor [31] M 65 N 33 P 33 m 4 n 2 p 4 w 1 s 1
X range of indices: 49 65, Y range of indices: 17 33, Z range of indices: 25 33
Processor [0] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 0 9, Z range of indices: 0 5
Processor [1] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 0 9, Z range of indices: 0 5
Processor [2] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 0 9, Z range of indices: 0 5
Processor [3] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 0 9, Z range of indices: 0 5
Processor [4] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 9 17, Z range of indices: 0 5
Processor [5] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 9 17, Z range of indices: 0 5
Processor [6] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 9 17, Z range of indices: 0 5
Processor [7] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 9 17, Z range of indices: 0 5
Processor [8] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 0 9, Z range of indices: 5 9
Processor [9] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 0 9, Z range of indices: 5 9
Processor [10] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 0 9, Z range of indices: 5 9
Processor [11] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 0 9, Z range of indices: 5 9
Processor [12] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 9 17, Z range of indices: 5 9
Processor [13] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 9 17, Z range of indices: 5 9
Processor [14] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 9 17, Z range of indices: 5 9
Processor [15] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 9 17, Z range of indices: 5 9
Processor [16] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 0 9, Z range of indices: 9 13
Processor [17] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 0 9, Z range of indices: 9 13
Processor [18] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 0 9, Z range of indices: 9 13
Processor [19] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 0 9, Z range of indices: 9 13
Processor [20] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 9 17, Z range of indices: 9 13
Processor [21] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 9 17, Z range of indices: 9 13
Processor [22] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 9 17, Z range of indices: 9 13
Processor [23] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 9 17, Z range of indices: 9 13
Processor [24] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 0 9, Z range of indices: 13 17
Processor [25] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 0 9, Z range of indices: 13 17
Processor [26] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 0 9, Z range of indices: 13 17
Processor [27] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 0 9, Z range of indices: 13 17
Processor [28] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 9, Y range of indices: 9 17, Z range of indices: 13 17
Processor [29] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 17, Y range of indices: 9 17, Z range of indices: 13 17
Processor [30] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 17 25, Y range of indices: 9 17, Z range of indices: 13 17
Processor [31] M 33 N 17 P 17 m 4 n 2 p 4 w 1 s 1
X range of indices: 25 33, Y range of indices: 9 17, Z range of indices: 13 17
Processor [0] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 0 5, Z range of indices: 0 3
Processor [1] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 0 5, Z range of indices: 0 3
Processor [2] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 0 5, Z range of indices: 0 3
Processor [3] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 0 5, Z range of indices: 0 3
Processor [4] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 5 9, Z range of indices: 0 3
Processor [5] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 5 9, Z range of indices: 0 3
Processor [6] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 5 9, Z range of indices: 0 3
Processor [7] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 5 9, Z range of indices: 0 3
Processor [8] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 0 5, Z range of indices: 3 5
Processor [9] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 0 5, Z range of indices: 3 5
Processor [10] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 0 5, Z range of indices: 3 5
Processor [11] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 0 5, Z range of indices: 3 5
Processor [12] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 5 9, Z range of indices: 3 5
Processor [13] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 5 9, Z range of indices: 3 5
Processor [14] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 5 9, Z range of indices: 3 5
Processor [15] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 5 9, Z range of indices: 3 5
Processor [16] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 0 5, Z range of indices: 5 7
Processor [17] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 0 5, Z range of indices: 5 7
Processor [18] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 0 5, Z range of indices: 5 7
Processor [19] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 0 5, Z range of indices: 5 7
Processor [20] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 5 9, Z range of indices: 5 7
Processor [21] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 5 9, Z range of indices: 5 7
Processor [22] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 5 9, Z range of indices: 5 7
Processor [23] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 5 9, Z range of indices: 5 7
Processor [24] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 0 5, Z range of indices: 7 9
Processor [25] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 0 5, Z range of indices: 7 9
Processor [26] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 0 5, Z range of indices: 7 9
Processor [27] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 0 5, Z range of indices: 7 9
Processor [28] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 5, Y range of indices: 5 9, Z range of indices: 7 9
Processor [29] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 9, Y range of indices: 5 9, Z range of indices: 7 9
Processor [30] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 9 13, Y range of indices: 5 9, Z range of indices: 7 9
Processor [31] M 17 N 9 P 9 m 4 n 2 p 4 w 1 s 1
X range of indices: 13 17, Y range of indices: 5 9, Z range of indices: 7 9
Processor [0] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 0 3, Z range of indices: 0 2
Processor [1] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 0 3, Z range of indices: 0 2
Processor [2] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 0 3, Z range of indices: 0 2
Processor [3] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 0 3, Z range of indices: 0 2
Processor [4] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 3 5, Z range of indices: 0 2
Processor [5] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 3 5, Z range of indices: 0 2
Processor [6] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 3 5, Z range of indices: 0 2
Processor [7] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 3 5, Z range of indices: 0 2
Processor [8] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 0 3, Z range of indices: 2 3
Processor [9] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 0 3, Z range of indices: 2 3
Processor [10] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 0 3, Z range of indices: 2 3
Processor [11] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 0 3, Z range of indices: 2 3
Processor [12] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 3 5, Z range of indices: 2 3
Processor [13] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 3 5, Z range of indices: 2 3
Processor [14] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 3 5, Z range of indices: 2 3
Processor [15] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 3 5, Z range of indices: 2 3
Processor [16] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 0 3, Z range of indices: 3 4
Processor [17] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 0 3, Z range of indices: 3 4
Processor [18] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 0 3, Z range of indices: 3 4
Processor [19] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 0 3, Z range of indices: 3 4
Processor [20] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 3 5, Z range of indices: 3 4
Processor [21] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 3 5, Z range of indices: 3 4
Processor [22] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 3 5, Z range of indices: 3 4
Processor [23] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 3 5, Z range of indices: 3 4
Processor [24] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 0 3, Z range of indices: 4 5
Processor [25] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 0 3, Z range of indices: 4 5
Processor [26] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 0 3, Z range of indices: 4 5
Processor [27] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 0 3, Z range of indices: 4 5
Processor [28] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 0 3, Y range of indices: 3 5, Z range of indices: 4 5
Processor [29] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 3 5, Y range of indices: 3 5, Z range of indices: 4 5
Processor [30] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 5 7, Y range of indices: 3 5, Z range of indices: 4 5
Processor [31] M 9 N 5 P 5 m 4 n 2 p 4 w 1 s 1
X range of indices: 7 9, Y range of indices: 3 5, Z range of indices: 4 5
  0 KSP Residual norm 1.990474015208e+03 
  1 KSP Residual norm 1.163078153200e+02 
  2 KSP Residual norm 2.809444096980e+00 
  3 KSP Residual norm 2.139770554363e-01 
  4 KSP Residual norm 4.835908670272e-02 
KSP Object: 32 MPI processes
  type: cg
  maximum iterations=10000
  tolerances:  relative=1e-07, absolute=1e-50, divergence=10000
  left preconditioning
  using nonzero initial guess
  using PRECONDITIONED norm type for convergence test
PC Object: 32 MPI processes
  type: mg
    MG: type is MULTIPLICATIVE, levels=6 cycles=v
      Cycles per PCApply=1
      Using Galerkin computed coarse grid matrices
  Coarse grid solver -- level -------------------------------
    KSP Object:    (mg_coarse_)     32 MPI processes
      type: preonly
      maximum iterations=1, initial guess is zero
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using NONE norm type for convergence test
    PC Object:    (mg_coarse_)     32 MPI processes
      type: redundant
        Redundant preconditioner: First (color=0) of 32 PCs follows
      KSP Object:      (mg_coarse_redundant_)       1 MPI processes
        type: preonly
        maximum iterations=10000, initial guess is zero
        tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
        left preconditioning
        using NONE norm type for convergence test
      PC Object:      (mg_coarse_redundant_)       1 MPI processes
        type: lu
          LU: out-of-place factorization
          tolerance for zero pivot 2.22045e-14
          using diagonal shift on blocks to prevent zero pivot
          matrix ordering: nd
          factor fill ratio given 5, needed 3.15101
            Factored matrix follows:
              Matrix Object:               1 MPI processes
                type: seqaij
                rows=225, cols=225
                package used to perform factorization: petsc
                total: nonzeros=13313, allocated nonzeros=13313
                total number of mallocs used during MatSetValues calls =0
                  using I-node routines: found 174 nodes, limit used is 5
        linear system matrix = precond matrix:
        Matrix Object:         1 MPI processes
          type: seqaij
          rows=225, cols=225
          total: nonzeros=4225, allocated nonzeros=6075
          total number of mallocs used during MatSetValues calls =0
            not using I-node routines
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=225, cols=225
        total: nonzeros=4225, allocated nonzeros=4225
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Down solver (pre-smoother) on level 1 -------------------------------
    KSP Object:    (mg_levels_1_)     32 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.283115, max = 3.11426
        Chebyshev: estimated using:  [0 0.1; 0 1.1]
        KSP Object:        (mg_levels_1_est_)         32 MPI processes
          type: gmres
            GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
            GMRES: happy breakdown tolerance 1e-30
          maximum iterations=10
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using nonzero initial guess
          using NONE norm type for convergence test
        PC Object:        (mg_levels_1_)         32 MPI processes
          type: jacobi
          linear system matrix = precond matrix:
          Matrix Object:           32 MPI processes
            type: mpiaij
            rows=1377, cols=1377
            total: nonzeros=30625, allocated nonzeros=30625
            total number of mallocs used during MatSetValues calls =0
              not using I-node (on process 0) routines
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_1_)     32 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=1377, cols=1377
        total: nonzeros=30625, allocated nonzeros=30625
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 2 -------------------------------
    KSP Object:    (mg_levels_2_)     32 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.285627, max = 3.1419
        Chebyshev: estimated using:  [0 0.1; 0 1.1]
        KSP Object:        (mg_levels_2_est_)         32 MPI processes
          type: gmres
            GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
            GMRES: happy breakdown tolerance 1e-30
          maximum iterations=10
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using nonzero initial guess
          using NONE norm type for convergence test
        PC Object:        (mg_levels_2_)         32 MPI processes
          type: jacobi
          linear system matrix = precond matrix:
          Matrix Object:           32 MPI processes
            type: mpiaij
            rows=9537, cols=9537
            total: nonzeros=232897, allocated nonzeros=232897
            total number of mallocs used during MatSetValues calls =0
              not using I-node (on process 0) routines
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_2_)     32 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=9537, cols=9537
        total: nonzeros=232897, allocated nonzeros=232897
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 3 -------------------------------
    KSP Object:    (mg_levels_3_)     32 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.275571, max = 3.03128
        Chebyshev: estimated using:  [0 0.1; 0 1.1]
        KSP Object:        (mg_levels_3_est_)         32 MPI processes
          type: gmres
            GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
            GMRES: happy breakdown tolerance 1e-30
          maximum iterations=10
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using nonzero initial guess
          using NONE norm type for convergence test
        PC Object:        (mg_levels_3_)         32 MPI processes
          type: jacobi
          linear system matrix = precond matrix:
          Matrix Object:           32 MPI processes
            type: mpiaij
            rows=70785, cols=70785
            total: nonzeros=1815937, allocated nonzeros=1815937
            total number of mallocs used during MatSetValues calls =0
              not using I-node (on process 0) routines
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_3_)     32 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=70785, cols=70785
        total: nonzeros=1815937, allocated nonzeros=1815937
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 4 -------------------------------
    KSP Object:    (mg_levels_4_)     32 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.231542, max = 2.54696
        Chebyshev: estimated using:  [0 0.1; 0 1.1]
        KSP Object:        (mg_levels_4_est_)         32 MPI processes
          type: gmres
            GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
            GMRES: happy breakdown tolerance 1e-30
          maximum iterations=10
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using nonzero initial guess
          using NONE norm type for convergence test
        PC Object:        (mg_levels_4_)         32 MPI processes
          type: jacobi
          linear system matrix = precond matrix:
          Matrix Object:           32 MPI processes
            type: mpiaij
            rows=545025, cols=545025
            total: nonzeros=14340865, allocated nonzeros=14340865
            total number of mallocs used during MatSetValues calls =0
              not using I-node (on process 0) routines
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_4_)     32 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=545025, cols=545025
        total: nonzeros=14340865, allocated nonzeros=14340865
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 5 -------------------------------
    KSP Object:    (mg_levels_5_)     32 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.155706, max = 1.71277
        Chebyshev: estimated using:  [0 0.1; 0 1.1]
        KSP Object:        (mg_levels_5_est_)         32 MPI processes
          type: gmres
            GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
            GMRES: happy breakdown tolerance 1e-30
          maximum iterations=10
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using nonzero initial guess
          using NONE norm type for convergence test
        PC Object:        (mg_levels_5_)         32 MPI processes
          type: jacobi
          linear system matrix = precond matrix:
          Matrix Object:           32 MPI processes
            type: mpiaij
            rows=4276737, cols=4276737
            total: nonzeros=29771265, allocated nonzeros=29771265
            total number of mallocs used during MatSetValues calls =0
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_5_)     32 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       32 MPI processes
        type: mpiaij
        rows=4276737, cols=4276737
        total: nonzeros=29771265, allocated nonzeros=29771265
        total number of mallocs used during MatSetValues calls =0
  Up solver (post-smoother) same as down solver (pre-smoother)
  linear system matrix = precond matrix:
  Matrix Object:   32 MPI processes
    type: mpiaij
    rows=4276737, cols=4276737
    total: nonzeros=29771265, allocated nonzeros=29771265
    total number of mallocs used during MatSetValues calls =0
Residual norm 0.000947651
************************************************************************************************************************
***             WIDEN YOUR WINDOW TO 120 CHARACTERS.  Use 'enscript -r -fCourier9' to print this document            ***
************************************************************************************************************************

---------------------------------------------- PETSc Performance Summary: ----------------------------------------------

./ex45 on a linux-gnu-c-nodebug named n042 with 32 processors, by zlwei Tue Nov  5 15:22:44 2013
Using Petsc Development GIT revision: d696997672013bb4513d3ff57c61cc10e09b71f6  GIT Date: 2013-06-13 10:28:37 -0500

                         Max       Max/Min        Avg      Total 
Time (sec):           4.761e+00      1.00178   4.756e+00
Objects:              3.570e+02      1.00000   3.570e+02
Flops:                2.438e+08      1.08372   2.320e+08  7.424e+09
Flops/sec:            5.127e+07      1.08375   4.879e+07  1.561e+09
MPI Messages:         4.234e+03      2.12444   3.045e+03  9.745e+04
MPI Message Lengths:  9.073e+06      1.78864   2.350e+03  2.291e+08
MPI Reductions:       7.370e+02      1.00000

Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
                            e.g., VecAXPY() for real vectors of length N --> 2N flops
                            and VecAXPY() for complex vectors of length N --> 8N flops

Summary of Stages:   ----- Time ------  ----- Flops -----  --- Messages ---  -- Message Lengths --  -- Reductions --
                        Avg     %Total     Avg     %Total   counts   %Total     Avg         %Total   counts   %Total 
 0:      Main Stage: 2.3328e+00  49.1%  1.2102e+09  16.3%  2.114e+04  21.7%  6.174e+02       26.3%  4.710e+02  63.9% 
 1:        MG Apply: 2.4230e+00  50.9%  6.2142e+09  83.7%  7.631e+04  78.3%  1.733e+03       73.7%  2.650e+02  36.0% 

------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
   Count: number of times phase was executed
   Time and Flops: Max - maximum over all processors
                   Ratio - ratio of maximum to minimum over all processors
   Mess: number of messages sent
   Avg. len: average message length (bytes)
   Reduct: number of global reductions
   Global: entire computation
   Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
      %T - percent time in this phase         %f - percent flops in this phase
      %M - percent messages in this phase     %L - percent message lengths in this phase
      %R - percent reductions in this phase
   Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------
Event                Count      Time (sec)     Flops                             --- Global ---  --- Stage ---   Total
                   Max Ratio  Max     Ratio   Max  Ratio  Mess   Avg len Reduct  %T %f %M %L %R  %T %f %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------

--- Event Stage 0: Main Stage

KSPSetUp               8 1.0 6.4316e-02 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 3.6e+01  1  0  0  0  5   2  0  0  0  8     0
Warning -- total time of even greater than time of entire stage -- something is wrong with the timer
KSPSolve               1 1.0 4.6004e+00 1.0 2.41e+08 1.1 9.7e+04 2.3e+03 7.1e+02 97 99 99 98 96 197607458373150  1598
VecTDot                9 1.0 1.2305e-01 2.1 2.51e+06 1.1 0.0e+00 0.0e+00 9.0e+00  2  1  0  0  1   4  6  0  0  2   626
VecNorm                6 1.0 4.0866e-0115.1 1.67e+06 1.1 0.0e+00 0.0e+00 6.0e+00  4  1  0  0  1   9  4  0  0  1   126
VecCopy                2 1.0 9.8240e-03 7.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet                27 1.0 1.7531e-03 3.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY                9 1.0 3.7209e-0213.7 2.51e+06 1.1 0.0e+00 0.0e+00 0.0e+00  0  1  0  0  0   1  6  0  0  0  2069
VecAYPX                3 1.0 1.4415e-0219.0 8.37e+05 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  2  0  0  0  1780
VecScatterBegin       10 1.0 1.0550e-0217.5 0.00e+00 0.0 1.2e+03 1.2e+04 0.0e+00  0  0  1  7  0   0  0  6 25  0     0
VecScatterEnd         10 1.0 3.9624e-0252.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatMult                5 1.0 9.6178e-02 4.1 8.98e+06 1.1 6.4e+02 2.3e+04 0.0e+00  1  4  1  6  0   2 23  3 24  0  2873
MatMultTranspose       5 1.0 2.2073e-0210.4 1.06e+06 1.0 5.8e+02 9.0e+02 0.0e+00  0  0  1  0  0   0  3  3  1  0  1488
MatLUFactorSym         1 1.0 9.3551e-0325.4 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+00  0  0  0  0  0   0  0  0  0  1     0
MatLUFactorNum         1 1.0 3.3901e-03 6.0 4.79e+05 1.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  1  0  0  0  4518
MatAssemblyBegin      23 1.0 5.2334e-01 5.1 0.00e+00 0.0 0.0e+00 0.0e+00 2.4e+01  7  0  0  0  3  14  0  0  0  5     0
MatAssemblyEnd        23 1.0 1.9211e-01 1.4 0.00e+00 0.0 5.1e+03 4.5e+02 8.8e+01  3  0  5  1 12   7  0 24  4 19     0
MatGetRowIJ            1 1.0 1.4806e-04 4.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatGetOrdering         1 1.0 3.9680e-0327.4 0.00e+00 0.0 0.0e+00 0.0e+00 2.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatView               14 1.2 8.8232e-03 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 1.2e+01  0  0  0  0  2   0  0  0  0  3     0
MatPtAP                5 1.0 8.5644e-01 1.0 2.14e+07 1.1 1.1e+04 3.4e+03 1.2e+02 18  9 11 16 17  37 54 51 61 27   765
MatPtAPSymbolic        5 1.0 5.1170e-01 1.1 0.00e+00 0.0 6.5e+03 4.1e+03 7.5e+01 10  0  7 12 10  21  0 31 45 16     0
MatPtAPNumeric         5 1.0 3.8337e-01 1.1 2.14e+07 1.1 4.3e+03 2.2e+03 5.0e+01  8  9  4  4  7  15 54 20 16 11  1708
MatGetRedundant        1 1.0 1.8767e-02 2.7 0.00e+00 0.0 3.0e+03 5.5e+02 4.0e+00  0  0  3  1  1   0  0 14  3  1     0
MatGetLocalMat         5 1.0 6.9065e-02 8.1 0.00e+00 0.0 0.0e+00 0.0e+00 1.0e+01  0  0  0  0  1   1  0  0  0  2     0
MatGetBrAoCol          5 1.0 9.8569e-02 2.5 0.00e+00 0.0 4.8e+03 4.6e+03 1.0e+01  1  0  5 10  1   3  0 23 37  2     0
MatGetSymTrans        10 1.0 1.9155e-02 5.8 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
PCSetUp                1 1.0 1.3558e+00 1.0 2.29e+07 1.1 2.0e+04 2.1e+03 4.0e+02 28  9 20 18 54  58 58 94 70 85   518
Warning -- total time of even greater than time of entire stage -- something is wrong with the timer
PCApply                5 1.0 2.6004e+00 1.2 2.04e+08 1.1 7.6e+04 2.2e+03 2.6e+02 51 84 78 74 36 104513361281 56  2390
MGSetup Level 0        1 1.0 5.4679e-02 1.3 4.79e+05 1.0 5.1e+03 3.4e+02 2.7e+01  1  0  5  1  4   2  1 24  3  6   280
MGSetup Level 1        1 1.0 9.1040e-03 2.1 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  1   0  0  0  0  1     0
MGSetup Level 2        1 1.0 5.1131e-03 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  1   0  0  0  0  1     0
MGSetup Level 3        1 1.0 4.5691e-03 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  1   0  0  0  0  1     0
MGSetup Level 4        1 1.0 6.5250e-03 1.5 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  1   0  0  0  0  1     0
MGSetup Level 5        1 1.0 2.0500e-02 1.4 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  1   1  0  0  0  1     0

--- Event Stage 1: MG Apply

KSPGMRESOrthog        50 1.0 4.9737e-01 1.9 3.54e+07 1.1 0.0e+00 0.0e+00 5.0e+01  8 15  0  0  7  16 17  0  0 19  2169
KSPSetUp               5 1.0 1.6936e-01 2.5 0.00e+00 0.0 0.0e+00 0.0e+00 5.0e+01  2  0  0  0  7   5  0  0  0 19     0
KSPSolve              55 1.0 2.2558e+00 1.2 1.79e+08 1.1 6.3e+04 2.3e+03 2.6e+02 44 73 64 63 36  87 87 82 85100  2404
VecMDot               50 1.0 4.7352e-01 2.6 1.77e+07 1.1 0.0e+00 0.0e+00 5.0e+01  7  7  0  0  7  14  9  0  0 19  1139
VecNorm               55 1.0 2.4168e-01 2.1 3.54e+06 1.1 0.0e+00 0.0e+00 5.5e+01  4  1  0  0  7   8  2  0  0 21   446
VecScale             155 1.0 7.0602e-0214.9 4.99e+06 1.1 0.0e+00 0.0e+00 0.0e+00  0  2  0  0  0   1  2  0  0  0  2153
VecCopy               30 1.0 2.8271e-0214.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet               105 1.0 1.3875e-0210.7 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY              210 1.0 7.9889e-02 8.2 1.35e+07 1.1 0.0e+00 0.0e+00 0.0e+00  1  6  0  0  0   2  7  0  0  0  5156
VecAYPX              200 1.0 8.6185e-02 7.8 8.05e+06 1.1 0.0e+00 0.0e+00 0.0e+00  1  3  0  0  0   2  4  0  0  0  2845
VecMAXPY              55 1.0 1.3215e-0110.3 2.09e+07 1.1 0.0e+00 0.0e+00 0.0e+00  1  9  0  0  0   2 10  0  0  0  4824
VecPointwiseMult     205 1.0 1.3009e-01 7.2 6.60e+06 1.1 0.0e+00 0.0e+00 0.0e+00  1  3  0  0  0   3  3  0  0  0  1545
VecScatterBegin      265 1.0 9.1651e-02 5.2 0.00e+00 0.0 7.6e+04 2.2e+03 0.0e+00  1  0 78 74  0   2  0100100  0     0
VecScatterEnd        265 1.0 1.2055e+00 3.6 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 16  0  0  0  0  31  0  0  0  0     0
VecNormalize          55 1.0 2.4665e-01 2.0 5.31e+06 1.1 0.0e+00 0.0e+00 5.5e+01  4  2  0  0  7   8  3  0  0 21   656
MatMult              205 1.0 1.3930e+00 1.4 1.18e+08 1.1 6.6e+04 2.5e+03 0.0e+00 26 48 67 71  0  51 58 86 97  0  2575
MatMultAdd            25 1.0 1.4686e-01 4.6 5.31e+06 1.0 2.9e+03 9.0e+02 0.0e+00  2  2  3  1  0   3  3  4  2  0  1118
MatMultTranspose      25 1.0 1.0048e-01 9.3 5.31e+06 1.0 2.9e+03 9.0e+02 0.0e+00  1  2  3  1  0   2  3  4  2  0  1635
MatSolve               5 1.0 5.9199e-04 2.9 1.32e+05 1.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0  7135
PCApply              210 1.0 1.8144e-01 2.6 6.73e+06 1.1 5.0e+03 5.6e+01 1.0e+01  3  3  5  0  1   5  3  6  0  4  1131
MGSmooth Level 0       5 1.0 1.7867e-02 4.3 1.32e+05 1.0 5.0e+03 5.6e+01 0.0e+00  0  0  5  0  0   1  0  6  0  0   236
MGSmooth Level 1      10 1.0 7.2614e-02 1.1 1.45e+05 2.5 1.3e+04 5.3e+01 5.3e+01  1  0 14  0  7   3  0 17  0 20    38
MGResid Level 1        5 1.0 9.3150e-03 2.7 1.57e+04 2.6 1.8e+03 5.3e+01 0.0e+00  0  0  2  0  0   0  0  2  0  0    33
MGInterp Level 1      10 1.0 1.1652e-02 7.1 3.92e+03 1.8 1.2e+03 2.4e+01 0.0e+00  0  0  1  0  0   0  0  2  0  0     7
MGSmooth Level 2      10 1.0 8.3309e-02 1.1 8.54e+05 1.6 1.3e+04 1.6e+02 5.3e+01  2  0 14  1  7   3  0 17  1 20   250
MGResid Level 2        5 1.0 6.0241e-03 1.9 9.46e+04 1.6 1.8e+03 1.6e+02 0.0e+00  0  0  2  0  0   0  0  2  0  0   387
MGInterp Level 2      10 1.0 6.3021e-03 2.4 2.37e+04 1.4 1.2e+03 7.1e+01 0.0e+00  0  0  1  0  0   0  0  2  0  0    97
MGSmooth Level 3      10 1.0 1.6508e-01 1.5 5.79e+06 1.3 1.3e+04 5.7e+02 5.3e+01  3  2 14  3  7   6  3 17  4 20   975
MGResid Level 3        5 1.0 1.8781e-02 3.5 6.50e+05 1.3 1.8e+03 5.7e+02 0.0e+00  0  0  2  0  0   0  0  2  1  0   967
MGInterp Level 3      10 1.0 1.3515e-0212.8 1.62e+05 1.2 1.2e+03 2.4e+02 0.0e+00  0  0  1  0  0   0  0  2  0  0   345
MGSmooth Level 4      10 1.0 6.3244e-01 1.5 4.25e+07 1.1 1.3e+04 2.1e+03 5.3e+01 11 17 14 12  7  22 20 17 17 20  2001
MGResid Level 4        5 1.0 1.0258e-01 3.5 4.80e+06 1.1 1.8e+03 2.1e+03 0.0e+00  1  2  2  2  0   2  2  2  2  0  1398
MGInterp Level 4      10 1.0 3.4274e-02 3.4 1.20e+06 1.1 1.2e+03 8.7e+02 0.0e+00  0  0  1  0  0   1  1  2  1  0  1060
MGSmooth Level 5      10 1.0 1.5438e+00 1.6 1.29e+08 1.1 4.6e+03 2.3e+04 5.3e+01 27 53  5 46  7  53 64  6 62 20  2571
MGResid Level 5        5 1.0 1.3734e-01 1.7 9.67e+06 1.1 6.4e+02 2.3e+04 0.0e+00  2  4  1  6  0   4  5  1  9  0  2168
MGInterp Level 5      10 1.0 1.3824e-01 3.1 9.22e+06 1.0 1.2e+03 3.3e+03 0.0e+00  2  4  1  2  0   4  5  2  2  0  2075
------------------------------------------------------------------------------------------------------------------------

Memory usage is given in bytes:

Object Type          Creations   Destructions     Memory  Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

           Container     1              1          564     0
       Krylov Solver    13             13       160752     0
     DMKSP interface     4              4         2592     0
              Vector    91            171     35911200     0
      Vector Scatter    25             25        26300     0
              Matrix    45             45     36052932     0
    Distributed Mesh     6              6      1412736     0
     Bipartite Graph    12             12         9504     0
              Viewer     2              1          728     0
           Index Set    59             59       788488     0
   IS L to G Mapping     6              6       695256     0
      Preconditioner    13             13        11736     0

--- Event Stage 1: MG Apply

              Vector    80              0            0     0
========================================================================================================================
Average time to get PetscTime(): 5.00679e-07
Average time for MPI_Barrier(): 0.000676203
Average time for zero size MPI_Send(): 0.000420213
#PETSc Option Table entries:
-da_refine 5
-dm_view
-ksp_monitor
-ksp_rtol 1.0e-7
-ksp_type cg
-ksp_view
-log_summary
-mg_levels_ksp_type chebyshev
-mg_levels_pc_type jacobi
-pc_mg_galerkin
-pc_mg_log
-pc_mg_monitor
-pc_type mg
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 4
Configure run at: Thu Jun 13 15:51:55 2013
Configure options: --download-f-blas-lapack --download-hypre --download-mpich --with-cc=gcc --with-debugging=no --with-fc=gfortran PETSC_ARCH=linux-gnu-c-nodebug
-----------------------------------------
Libraries compiled on Thu Jun 13 15:51:55 2013 on login1.ittc.ku.edu 
Machine characteristics: Linux-2.6.32-220.13.1.el6.x86_64-x86_64-with-redhat-6.2-Santiago
Using PETSc directory: /bio/work1/zlwei/PETSc/petsc-dev
Using PETSc arch: linux-gnu-c-nodebug
-----------------------------------------

Using C compiler: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpicc  -fPIC -Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -O  ${COPTFLAGS} ${CFLAGS}
Using Fortran compiler: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpif90  -fPIC  -Wall -Wno-unused-variable -O  ${FOPTFLAGS} ${FFLAGS} 
-----------------------------------------

Using include paths: -I/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/include -I/bio/work1/zlwei/PETSc/petsc-dev/include -I/bio/work1/zlwei/PETSc/petsc-dev/include -I/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/include
-----------------------------------------

Using C linker: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpicc
Using Fortran linker: /bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/bin/mpif90
Using libraries: -Wl,-rpath,/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -L/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -lpetsc -Wl,-rpath,/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -L/bio/work1/zlwei/PETSc/petsc-dev/linux-gnu-c-nodebug/lib -lHYPRE -Wl,-rpath,/usr/lib/gcc/x86_64-redhat-linux/4.4.6 -L/usr/lib/gcc/x86_64-redhat-linux/4.4.6 -lmpichcxx -lstdc++ -lflapack -lfblas -lX11 -lpthread -lmpichf90 -lgfortran -lm -lm -lmpichcxx -lstdc++ -lmpichcxx -lstdc++ -ldl -lmpich -lopa -lmpl -lrt -lpthread -lgcc_s -ldl 
-----------------------------------------


More information about the petsc-users mailing list