[petsc-users] "error of the solution" of GMRES
Mark F. Adams
mark.adams at columbia.edu
Tue Feb 19 10:57:10 CST 2013
CG is a better method than GMRES for symmetric positive definite problems.
You want to use a better preconditioner. Try '-pc_type gamg -pc_gamg_agg_nsmooths 1'
On Feb 19, 2013, at 11:36 AM, Marcelo Xavier Guterres <m.guterres at gmail.com> wrote:
> Esteemed colleagues,
>
>
>
> My problem is:
>
> Div ( Grad ( phi ) ) = 0
>
> mesh:
>
> 0 < x < 1;
> 0 < y < 1;
>
> with boundary conditions:
>
> phi ( x , 0 ) = x;
> phi ( 0 ,y ) = x;
> phi ( x , 1 ) = x;
> phi ( 1 ,y ) = x;
>
> with serial processing.
>
>
> solved with ( KSPCG x PCJACOBI ) and (KSPGMRS x PCJACOBI). I have a question, why the "norm error of the solution" of GMRES is high, when the mesh is large. It is a problem in methods or truncation error?
>
>
> the results were:
>
>
> m n m x n error ( KSPCG x PCJACOBI ) error ( KSPGMRS x PCJACOBI )
> 3 3 9 1,92E−16 4,42E−16
>
> 4 4 16 2,08E−16 6,46E−16
>
> 5 5 25 4,41E−16 9,63E−16
>
> 6 6 36 8,77E−16 8,26E−16
>
> 7 7 49 2,37E−06 2,52E−06
>
> 8 8 64 1,17E−05 1,33E−05
>
> 9 9 81 9,32E−06 1,26E−05
>
> 10 10 100 7,33E−06 9,93E−06
>
> 20 20 400 4,22E−05 3,16E−04
>
> 30 30 900 1,06E−04 2,37E−02
>
> 40 40 1600 2,14E−04 3,77E−02
>
> 50 50 2500 3,37E−04 9,36E−03
>
> 100 100 10000 1,27E−03 6,53E−02
>
> 200 200 40000 4,32E−03 3,67E−01
>
> 300 300 90000 9,53E−02 1,02E+00
>
> 400 400 160000 1,68E−02 2,10E+00
>
> 500 500 250000 2,61E−02 3,66E+00
>
>
> how can I improve the performance of GMRES?
>
>
> a good week for all.
>
>
> --
> Ph.d student Marcelo Xavier Guterres
> Rio de Janeiro , Brazil.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20130219/d204c2be/attachment-0001.html>
More information about the petsc-users
mailing list