strange convergency behavior with petsc (intialy produces good result, suddenly diverges)

Shengyong lua.byhh at gmail.com
Mon Aug 18 12:01:27 CDT 2008


On Mon, Aug 18, 2008 at 11:24 PM, Barry Smith <bsmith at mcs.anl.gov> wrote:

>
> On Aug 18, 2008, at 12:35 AM, Shengyong wrote:
>
> hi, Barry
>>
>> Thanks for your kindly reply!
>>
>> Here I report some experiments accoording to your hints.
>>
>> -pc_type sor -pc_sor_local_symmetric _ksp_type cg failed.
>>
>
>   What does failed mean? Converged for a while then stagnated? Diverged
> (the residual norm got larger and larger)? Never converged at all?
>
>>
>> icc(1) also failed.
>>
>
>   What does failed mean?
>
>   I suggest running with -pc_type lu (keep the -ksp_type gmres) and see
> what happens? Does you simulation run fine for an unlimited number
> of timesteps? If not, how does it fail?
>
>   Barry
>
>
>
>>
>> When using -ksp_monitor_true _residual with icc(0), I have found the
>> precond residual is osillation around some value about 1.06e-004, the true
>> residual norm almost staying at 7.128 e-004.  The ||Ae||/||Ax|| also
>> stagnent at 6.3e-005.
>>
>> After the maximum number of iterations (=2000) reached, the iteration
>> fails. Even when I set iteration number to 10000, it seems that petsc also
>> fails.
>>
>> Below is some resiual information near iteration number 2000 when with
>> ksp_monitor_true_residual.
>>
>>
>> 1990 KSP preconditioned resid norm 1.064720311837e-004 true resid norm
>> 7.1284721
>> 18425e-004 ||Ae||/||Ax|| 6.302380221818e-005
>>
>> 1991 KSP preconditioned resid norm 1.062055494352e-004 true resid norm
>> 7.1281202
>> 17324e-004 ||Ae||/||Ax|| 6.302069101215e-005
>>
>> 1992 KSP preconditioned resid norm 1.061228895583e-004 true resid norm
>> 7.1277740
>> 15661e-004 ||Ae||/||Ax|| 6.301763019565e-005
>>
>> 1993 KSP preconditioned resid norm 1.062165148129e-004 true resid norm
>> 7.1274335
>> 10277e-004 ||Ae||/||Ax|| 6.301461974073e-005
>>
>> 1994 KSP preconditioned resid norm 1.064780917764e-004 true resid norm
>> 7.1270986
>> 90168e-004 ||Ae||/||Ax|| 6.301165955010e-005
>>
>> 1995 KSP preconditioned resid norm 1.068986431546e-004 true resid norm
>> 7.1267695
>> 37853e-004 ||Ae||/||Ax|| 6.300874946922e-005
>>
>> 1996 KSP preconditioned resid norm 1.074687043135e-004 true resid norm
>> 7.1264460
>> 30395e-004 ||Ae||/||Ax|| 6.300588929530e-005
>>
>> 1997 KSP preconditioned resid norm 1.081784773720e-004 true resid norm
>> 7.1261281
>> 40328e-004 ||Ae||/||Ax|| 6.300307878551e-005
>>
>> 1998 KSP preconditioned resid norm 1.090179775109e-004 true resid norm
>> 7.1258158
>> 36472e-004 ||Ae||/||Ax|| 6.300031766417e-005
>>
>> 1999 KSP preconditioned resid norm 1.099771672684e-004 true resid norm
>> 7.1255090
>> 84603e-004 ||Ae||/||Ax|| 6.299760562872e-005
>>
>> 2000 KSP preconditioned resid norm 1.110460758301e-004 true resid norm
>> 7.1252078
>> 48108e-004 ||Ae||/||Ax|| 6.299494235544e-005
>>
>> On Sun, Aug 17, 2008 at 10:32 PM, Barry Smith <bsmith at mcs.anl.gov> wrote:
>>
>>  Try using -pc_type sor -pc_sor_local_symmetric -ksp_type cg
>>
>>  Also try running the original icc one with the additional option
>> -ksp_monitor_true_residual, see if funky stuff starts to happen.
>>
>>  You could also try adding -pc_factor_levels 1 to try ICC(1) instead of
>> ICC(0).
>>
>>  Your code looks fine, I don't see a problem there,
>>
>>  Barry
>>
>>
>>  Here is my guess, as the simulation proceeds the variable coefficient
>> problem changes enough so that the ICC produces
>> a badly scaled preconditioner that messes up the iterative method. I see
>> this on occasion and don't have a good fix, the shift
>> positive definite helps sometimes but not always.
>>
>>
>>
>>
>> On Aug 17, 2008, at 3:36 AM, Shengyong wrote:
>>
>> Hi,
>>
>> I am still struggling to use petsc to solve variable coefficient poisson
>> problems (which orinates from a multi-phase(liquid-gas two phase flow with
>> sharp interface method, the density ratio is 1000, and with surface tension)
>> flow problem) successively.
>>
>> Initially petsc produces good results with icc pc_type , cg iterative
>> method and with _pc_factor_shift_positive_define flag.  I follow petsc's
>> null space method to constrain the singular property of coefficient matrix.
>> However,  after several time steps good results of simulation, the KSP
>> Residual Norm suddenly reaches to a number greater than 1000. I guess that
>> petsc diverges. I have also tried to swith to other types of methods, e.g.
>> to gmeres, it just behaves similar to cg method.  However, when I use my
>> previous self-coded SOR iterative solver, it produces nice results.  And I
>> have tested the same petsc solver class for a single phase driven cavity
>> flow problem, it also produces nice results.
>>
>> It seems that I have missed something important setup procedure in my
>> solver class. could anyone to point me the problem ?  I have attached large
>> part of  the code  below:
>>
>> //in Header
>> class CPETScPoissonSolver
>> {
>>   typedef struct {
>>      Vec                  x,b;     //x, b
>>      Mat                 A;       //A
>>      KSP                ksp;   //Krylov subspace preconditioner
>>      PC                   pc;
>>      MatNullSpace  nullspace;
>>      PetscInt            l, m, n;//L, M, N
>>   } UserContext;
>>
>> public:
>>   CPETScPoissonSolver(int argc, char** argv);
>>   ~CPETScPoissonSolver(void);
>>
>>   //........
>>
>> private:
>>
>>   //Yale Sparse Matrix format matrix
>>    PetscScalar*  A;
>>    PetscInt     *   I;
>>    PetscInt     *   J;
>>
>>    // Number of Nonzero Element
>>    PetscInt          nnz;
>>    //grid step
>>    PetscInt          L, M, N;
>>    UserContext    userctx;
>> private:
>>   bool             FirstTime;
>> };
>>
>> //in cpp
>> static char helpPetscPoisson[] = "PETSc class Solves a variable Poisson
>> problem with Null Space Method.\n\n";
>>
>> CPETScPoissonSolver::CPETScPoissonSolver(int argc, char** argv)
>> {
>>   PetscInitialize(&argc, &argv, (char*)0, helpPetscPoisson);
>>   FirstTime=true;
>> }
>> CPETScPoissonSolver::~CPETScPoissonSolver(void)
>> {
>>   PetscFinalize();
>> }
>> ......
>> void CPETScPoissonSolver::SetAIJ(PetscScalar *a, PetscInt *i, PetscInt *j,
>> PetscInt Nnz)
>> {
>>   A= a; I=i; J=j; nnz = Nnz;
>> }
>>
>> PetscErrorCode CPETScPoissonSolver::UserInitializeLinearSolver()
>> {
>>   PetscErrorCode ierr = 0;
>>   PetscInt Num = L*M*N;
>>
>>   //Since we use successive solvers, so in the second time step we must
>> deallocate the original matrix then setup a new one
>>   if(FirstTime==true)
>>   {
>>       ierr = MatCreateSeqAIJWithArrays(PETSC_COMM_SELF,  Num,  Num,  I,
>>  J,  A, &userctx.A); CHKERRQ(ierr);
>>   }
>>   else
>>   {
>>         FirstTime = false;
>>         ierr = MatDestroy(userctx.A);CHKERRQ(ierr);
>>         ierr = MatCreateSeqAIJWithArrays(PETSC_COMM_SELF,  Num,  Num,  I,
>>  J,  A, &userctx.A); CHKERRQ(ierr);
>>   }
>>
>>   if(FirstTime==true)
>>   {
>>
>>       ierr =
>> VecCreateSeqWithArray(PETSC_COMM_SELF,Num,PETSC_NULL,&userctx.b);CHKERRQ(ierr);
>>       ierr = VecDuplicate(userctx.b,&userctx.x);CHKERRQ(ierr);
>>       ierr = MatNullSpaceCreate(PETSC_COMM_SELF, PETSC_TRUE, 0,
>> PETSC_NULL, &userctx.nullspace); CHKERRQ(ierr);
>>       ierr = KSPCreate(PETSC_COMM_SELF,&userctx.ksp);CHKERRQ(ierr);
>>       /*Set Null Space for KSP*/
>>       ierr = KSPSetNullSpace(userctx.ksp,
>> userctx.nullspace);CHKERRQ(ierr);
>>   }
>>   return 0;
>> }
>>
>>
>> PetscErrorCode CPETScPoissonSolver::UserSetBX(PetscScalar *x, PetscScalar
>> *b)
>> {
>>     PetscErrorCode ierr ;
>>     //below code we must set it every time step
>>     ierr = VecPlaceArray(userctx.x,x);CHKERRQ(ierr);
>>     ierr = VecPlaceArray(userctx.b,b);CHKERRQ(ierr);
>>     ierr =  MatNullSpaceRemove(userctx.nullspace,userctx.b,
>> PETSC_NULL);CHKERRQ(ierr);
>>     return 0;
>> }
>>
>> PetscInt CPETScPoissonSolver::UserSolve()
>> {
>>     PetscErrorCode ierr;
>>     ierr =
>> KSPSetOperators(userctx.ksp,userctx.A,userctx.A,SAME_NONZERO_PATTERN);CHKERRQ(ierr);
>>     ierr = KSPSetType(userctx.ksp, KSPCG);
>>     ierr = KSPSetInitialGuessNonzero(userctx.ksp, PETSC_TRUE);
>>     ierr = KSPGetPC(userctx.ksp,&userctx.pc);CHKERRQ(ierr);
>>     ierr = PCSetType(userctx.pc,PCICC);CHKERRQ(ierr);
>>     ierr = PCFactorSetShiftPd(userctx.pc, PETSC_TRUE);
>>     ierr =
>> KSPSetTolerances(userctx.ksp,1.e-4,PETSC_DEFAULT,PETSC_DEFAULT,2000);
>>     ierr = KSPSetFromOptions(userctx.ksp);CHKERRQ(ierr);
>>     /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
>>                         Solve the linear system
>>        - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
>> */
>>     ierr = KSPSolve(userctx.ksp,userctx.b,userctx.x);CHKERRQ(ierr);
>>
>>     ierr = VecResetArray(userctx.x);CHKERRQ(ierr);
>>     ierr = VecResetArray(userctx.b);CHKERRQ(ierr);
>>
>>     return 0;
>> }
>>
>> PetscErrorCode CPETScPoissonSolver::ReleaseMem()
>> {
>>     PetscErrorCode ierr;
>>     ierr = KSPDestroy(userctx.ksp);CHKERRQ(ierr);
>>     ierr = VecDestroy(userctx.x);     CHKERRQ(ierr);
>>     ierr = VecDestroy(userctx.b);     CHKERRQ(ierr);
>>     ierr = MatDestroy(userctx.A);    CHKERRQ(ierr);
>>     ierr = MatNullSpaceDestroy(userctx.nullspace); CHKERRQ(ierr);
>>     return 0;
>> }
>>
>> Thanks very much!
>>
>>
>> --
>> Pang Shengyong
>> Solidification Simulation Lab,
>> State Key Lab of Mould & Die Technology,
>> Huazhong Univ. of Sci. & Tech. China
>>
>>
>>
>>
>> --
>> Pang Shengyong
>> Solidification Simulation Lab,
>> State Key Lab of Mould & Die Technology,
>> Huazhong Univ. of Sci. & Tech. China
>>
>
>


-- 
Pang Shengyong
Solidification Simulation Lab,
State Key Lab of Mould & Die Technology,
Huazhong Univ. of Sci. & Tech. China
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20080819/658db9de/attachment.htm>


More information about the petsc-users mailing list