[hpc-announce] [DEADLINE EXTENSION] CFP: ARC-LG’2025: New Approaches for Addressing the Computing Requirements of LLMs and GNNs

Prakash, Pavana prakash at hpe.com
Mon Apr 14 19:29:05 CDT 2025


Deadline Extension for Call for Papers!

Dear Colleagues and Researchers,
We hope this message finds you well! We are pleased to announce that based on many requests, we are extending the submission deadline of the ARC-LG'25 workshop (held in conjunction with ISCA) by a week, to April 22nd, 2025.
This extension aims to accommodate the busy schedules of our valued contributors and provide ample opportunity for those who wish to share their innovative research and insights with our community.


Workshop Details:
Title: ARC-LG’2025: New Approaches for Addressing the Computing Requirements of LLMs and GNNs.
Date: 22 June 2025
Location: Tokyo, Japan (held in conjunction with ISCA’2025)
Website: https://urldefense.us/v3/__https://llm-gnn.org/__;!!G_uCfscf7eWS!YAUwSgTGGEYcs31yTzTUP-JViAekr3B-lRYxD4AXlKFD5aw8srbIvgrU169IoVMGOfV6hFsPCnlLmqP-xt3p$ 

Overview:
Training and deployment of huge machine learning models, such as GPT, Llama, or large GNNs, require a vast amount of compute resources, power, storage, memory. The size of such models is growing exponentially, as is the training time and the resources required. The cost to train large foundation models has become prohibitive for everyone but very few large players. While the challenges are most visible in training, similar considerations apply to deploying and serving large foundation models for a large user base.

The proposed workshop aims to bring together AI/ML researchers, computer architects, and engineers working on a range of topics focused on training and serving large ML models. The workshop will provide a forum for presenting and exchanging new ideas and experiences in this area and to discuss and explore hardware/software techniques and tools to lower the significant barrier of entry in the computation requirements of AI foundation models.
We are seeking innovative, evolutionary and revolutionary ideas around software and hardware architectures for training such challenging models and strive to present and discuss new approaches that may lead to alternative solutions.

Submissions:
Authors can submit either 8-page full papers or up to 4-page short papers. In the short paper format, out-of-the box ideas and position papers are especially encouraged.  See the website <https://urldefense.us/v3/__https://llm-gnn.org/__;!!G_uCfscf7eWS!YAUwSgTGGEYcs31yTzTUP-JViAekr3B-lRYxD4AXlKFD5aw8srbIvgrU169IoVMGOfV6hFsPCnlLmqP-xt3p$ > for submission details.

Topics:
The workshop will present original works in areas such as (but not inclusive to): workload characterization, inference serving at scale, distributed training, novel networking and interconnect approaches for large AI/ML workloads, addressing resilience of large training runs, data reduction techniques, better model partitioning, data formats and precision, efficient hardware and competitive accelerators.

IMPORTANT DATES - All times below are 11:59 pm (anywhere on earth):
Workshop papers:
- Paper submission due: 22 April 2025
- Acceptance notification: 10 May 2025
- Workshop date: 22 June 2025

Program co-chairs:
Avi Mendelson, Technion (avi.mendelson at technion.ac.il<mailto:avi.mendelson at technion.ac.il>),
David Kaeli, Northeastern University (kaeli at ece.neu.edu<mailto:kaeli at ece.neu.edu>
Dejan S. Milojicic, Hewlett Packard Labs (dejan.milojicic at hpe.com<mailto:dejan.milojicic at hpe.com>)

Program Committee:
Jose Luis Abellan - University of Murcia                                                   Paolo Faraboschi – Hewlett Packard Labs
Rosa M Badia – Barcelona Supercomputer Center                                 Alexandra Posoldova – Sigma
Chaim Baskin – Technion                                                                            Chang Qiong - Institute of Science Tokyo
Jose Cano - University of Glasgow                                                            Bin Ren - William and Mary
Freddy Gabbay – Ruppin College                                                              Carole Jean Wu - META
John Kim – KAIST                                                                                                   Kaustubh Shivdikar - Northeastern University
                                                                                                                                     Zlatan Feric - Northeastern University

Publicity Chair:
Pavana Prakash -- Hewlett Packard Labs

Web Chair:
Zlatan Feric, Northeastern University

Regards,
Pavana Prakash
Research Scientist, Systems Architecture Lab
Hewlett Packard Labs


More information about the hpc-announce mailing list