[petsc-users] [petsc-maint] norm L2 problemQuestion about changing the norm used in nonlinear solvers (L2 Euclidean vs. L2 Lebesgue)

Barry Smith bsmith at petsc.dev
Fri Jun 20 08:50:17 CDT 2025



> On Jun 20, 2025, at 5:10 AM, Ali ALI AHMAD <ali.ali_ahmad at utt.fr> wrote:
> 
> 
> * Yes, I am indeed using an inexact Newton method in my code. The descent direction is computed by solving a linear system involving the Jacobian, so the update follows the classical formula "J(un)^{-
> 1}d(un)=-F(un)"
>  I'm also trying to use a line search strategy based on a weighted L2 norm (in the Lebesgue sense), which a priori should lead to better accuracy and faster convergence in anisotropic settings.

   Ok, could you point to sample code (any language) or written algorithms where a different norm is used in the line search?

> 
> * During the subsequent iterations, I apply the Eisenstat–Walker method to adapt the tolerance, which should also involve modifying the norm used in the algorithm.
> 
> * The current implementation still uses the standard Euclidean L2 norm in PETSc's linear solver and in GMRES. I believe this should ideally be replaced by a weighted L2 norm consistent with the discretization. However, I haven't yet succeeded in modifying the norm used internally by the linear solver in PETSc, so, I'm not yet sure how much impact this change would have on the overall convergence, but I suspect it could improve robustness, especially for highly anisotropic problems. I would greatly appreciate any guidance on how to implement this properly in PETSc.

   Norms are used in multiple ways in GMRES. 

   1) defining convergence

   2) as part of preconditioning

  Again can you point to sample code (any language) or written algorithms that describe exactly what you would like to accomplish.

   Barry

> 
> Do not hesitate to contact me again if anything remains unclear or if you need further information.
> 
> Best regards,
> Ali ALI AHMAD
> 
> De: "Barry Smith" <bsmith at petsc.dev>
> À: "Ali ALI AHMAD" <ali.ali_ahmad at utt.fr>
> Cc: "petsc-users" <petsc-users at mcs.anl.gov>, "petsc-maint" <petsc-maint at mcs.anl.gov>
> Envoyé: Samedi 14 Juin 2025 01:06:52
> Objet: Re: [petsc-maint] norm L2 problemQuestion about changing the norm used in nonlinear solvers (L2 Euclidean vs. L2 Lebesgue)
> 
> I appreciate the clarification. I would call 3) preconditioning. 
>    To increase my understanding, you are already using Newton's method? That is, you compute the Jacobian of the function and use  - J^{-1}(u^n) F(u^n) as your update direction? 
> 
>     When you switch the inner product (or precondition) how will the search direction be different?
> 
>    Thanks
> 
>    Barry
> 
> The case you need support for is becoming important to PETSc so we need to understand it well and support it well which is why I am asking these (perhaps to you) trivial questions.
> 
> 
> 
> On Jun 13, 2025, at 4:55 AM, Ali ALI AHMAD <ali.ali_ahmad at utt.fr> wrote:
> 
> Thank you for your message.
> 
> To answer your question: I would like to use the L2 norm in the sense of Lebesgue for all three purposes, especially the third one.
> 
> 1- For displaying residuals during the nonlinear iterations, I would like to observe the convergence behavior using a norm that better reflects the physical properties of the problem.
> 
> 2- For convergence testing, I would like the stopping criterion to be based on a weighted L2 norm that accounts for the geometry of the mesh (since I am working with unstructured, anisotropic triangular meshes).
> 
> 3 - Most importantly, I would like to modify the inner product used in the algorithm so that it aligns with the weighted L2 norm (since I am working with unstructured, anisotropic triangular meshes).
> 
> Best regards,
> Ali ALI AHMAD
> De: "Barry Smith" <bsmith at petsc.dev>
> À: "Ali ALI AHMAD" <ali.ali_ahmad at utt.fr>
> Cc: "petsc-users" <petsc-users at mcs.anl.gov>, "petsc-maint" <petsc-maint at mcs.anl.gov>
> Envoyé: Vendredi 13 Juin 2025 03:14:06
> Objet: Re: [petsc-maint] norm L2 problemQuestion about changing the norm used in nonlinear solvers (L2 Euclidean vs. L2 Lebesgue)
> 
> You haven't answered my question. Where (conceptually) and for what purpose do you want to use the L2 norm.
>     1) displaying norms to observe the convergence behavior
> 
>      2) in the convergence testing to determine when to stop
> 
>      3) changing the "inner product" in the algorithm which amounts to preconditioning.
> 
>   Barry
> 
> 
> On Jun 12, 2025, at 9:42 AM, Ali ALI AHMAD <ali.ali_ahmad at utt.fr> wrote:
> 
> Thank you for your answer.
> 
> I am currently working with the nonlinear solvers newtonls (with bt, l2, etc.) and newtontr (using newton, cauchy, and dogleg strategies) combined with the linear solver gmres and the ILU preconditioner, since my Jacobian matrix is nonsymmetric.
> 
> I also use the Eisenstat-Walker method for newtonls, as my initial guess is often very far from the exact solution.
> 
> What I would like to do now is to replace the standard Euclidean L2 norm with the L2 norm in the Lebesgue sense in the above numerical algorithm, because my problem is defined on an unstructured, anisotropic triangular mesh where a weighted norm would be more physically appropriate.
> 
> Would you be able to advise me on how to implement this change properly?
> 
> I would deeply appreciate any guidance or suggestions you could provide.
> 
> Thank you in advance for your help.
> 
> Best regards,
> Ali ALI AHMAD
> 
> De: "Ali ALI AHMAD" <ali.ali_ahmad at utt.fr>
> À: "Barry Smith" <bsmith at petsc.dev>
> Cc: "petsc-users" <petsc-users at mcs.anl.gov>, "petsc-maint" <petsc-maint at mcs.anl.gov>
> Envoyé: Jeudi 12 Juin 2025 15:28:02
> Objet: Re: [petsc-maint] norm L2 problemQuestion about changing the norm used in nonlinear solvers (L2 Euclidean vs. L2 Lebesgue)
> 
> Thank you for your answer.
> 
> I am currently working with the nonlinear solvers newtonls (with bt, l2, etc.) and newtontr (using newton, cauchy, and dogleg strategies) combined with the linear solver gmres and the ILU preconditioner, since my Jacobian matrix is nonsymmetric.
> 
> I also use the Eisenstat-Walker method for newtonls, as my initial guess is often very far from the exact solution.
> 
> What I would like to do now is to replace the standard Euclidean L2 norm with the L2 norm in the Lebesgue sense, because my problem is defined on an unstructured, anisotropic triangular mesh where a weighted norm would be more physically appropriate.
> 
> Would you be able to advise me on how to implement this change properly?
> 
> I would deeply appreciate any guidance or suggestions you could provide.
> 
> Thank you in advance for your help.
> 
> Best regards,
> Ali ALI AHMAD
> De: "Barry Smith" <bsmith at petsc.dev>
> À: "Ali ALI AHMAD" <ali.ali_ahmad at utt.fr>
> Cc: "petsc-users" <petsc-users at mcs.anl.gov>, "petsc-maint" <petsc-maint at mcs.anl.gov>
> Envoyé: Jeudi 12 Juin 2025 14:57:40
> Objet: Re: [petsc-maint] norm L2 problemQuestion about changing the norm used in nonlinear solvers (L2 Euclidean vs. L2 Lebesgue)
> 
>   Do you wish to use a different norm 
> 
>    1) ONLY for displaying (printing out) the residual norms to track progress
> 
>    2) in the convergence testing
> 
>    3) to change the numerical algorithm (for example using the L2 inner product instead of the usual linear algebra R^N l2 inner product).
> 
>    For 1) use SNESMonitorSet() and in your monitor function use SNESGetSolution() to grab the solution and then VecGetArray(). Now you can compute any weighted norm you want on the solution.
> 
>    For 2) similar but you need to use SNESSetConvergenceTest
> 
>    For 3) yes, but you need to ask us specifically.
> 
>   Barry
> 
> 
> On Jun 11, 2025, at 4:45 AM, Ali ALI AHMAD <ali.ali_ahmad at utt.fr> wrote:
> 
> Dear PETSc team,
> 
> I hope this message finds you well.
> 
> I am currently using PETSc in a C++, where I rely on the nonlinear solvers `SNES` with either `newtonls` or `newtontr` methods. I would like to ask if it is possible to change the default norm used (typically the L2 Euclidean norm) to a custom norm, specifically the L2 norm in the sense of Lebesgue (e.g., involving cell-wise weighted integrals over the domain).
> 
> My main goal is to define a custom residual norm that better reflects the physical quantities of interest in my simulation.
> 
> Would this be feasible within the PETSc framework? If so, could you point me to the recommended approach (e.g., redefining the norm manually, using specific PETSc hooks or options)?
> 
> Thank you very much in advance for your help and for the great work on PETSc!
> 
> Best regards,  
> 
> Ali ALI AHMAD
> PhD Student
> University of Technology of Troyes - UTT - France
> GAMMA3 Project - Office H008 - Phone No: +33 7 67 44 68 18
> 12 rue Marie Curie - CS 42060 10004 TROYES Cedex
> 
> 
> 

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20250620/a0f277df/attachment.html>


More information about the petsc-users mailing list