[petsc-users] Dense Matrix Factorization/Solve
Barry Smith
bsmith at petsc.dev
Wed Jul 24 14:07:56 CDT 2024
For one MPI rank, it looks like you can use -pc_type cholesky -pc_factor_mat_solver_type cupm though it is not documented in https://urldefense.us/v3/__https://petsc.org/release/overview/linear_solve_table/*direct-solvers__;Iw!!G_uCfscf7eWS!YpFrRe8Wul8hbJjnWia9KlpTHLeU2HBIpo45YA5ZnmqISNTy0txGndaBOsORw3xw3Q0Uhvq0Bsb5eJhCKlCe9Bk$
Of if you also ./configure --download-kokkos --download-kokkos-kernels you can use -pc_factor_mat_solver_type kokkos if you also this may also work for multiple GPUs but that is not documented in the table either (Junchao) Nor are sparse Kokkos or CUDA stuff documented (if they exist) in the table.
Barry
> On Jul 24, 2024, at 2:44 PM, Sreeram R Venkat <srvenkat at utexas.edu> wrote:
>
> This Message Is From an External Sender
> This message came from outside your organization.
> I have an SPD dense matrix of size NxN, where N can range from 10^4-10^5. Are there any Cholesky factorization/solve routines for it in PETSc (or in any of the external libraries)? If possible, I want to use GPU acceleration with 1 or more GPUs. The matrix type can be MATSEQDENSE/MATMPIDENSE or MATSEQDENSECUDA/MATMPIDENSECUDA accordingly. If it is possible to do the factorization beforehand and store it to do the triangular solves later, that would be great.
>
> Thanks,
> Sreeram
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20240724/e75d5f6b/attachment-0001.html>
More information about the petsc-users
mailing list