[petsc-users] Galerkin projection using petsc4py
Mark Adams
mfadams at lbl.gov
Tue Oct 10 19:42:56 CDT 2023
This looks like a false positive or there is some subtle bug here that we
are not seeing.
Could this be the first time parallel PtAP has been used (and reported) in
petsc4py?
Mark
On Tue, Oct 10, 2023 at 8:27 PM Matthew Knepley <knepley at gmail.com> wrote:
> On Tue, Oct 10, 2023 at 5:34 PM Thanasis Boutsikakis <
> thanasis.boutsikakis at corintis.com> wrote:
>
>> Hi all,
>>
>> Revisiting my code and the proposed solution from Pierre, I realized this
>> works only in sequential. The reason is that PETSc partitions those
>> matrices only row-wise, which leads to an error due to the mismatch between
>> number of columns of A (non-partitioned) and the number of rows of Phi
>> (partitioned).
>>
>
> Are you positive about this? P^T A P is designed to run in this scenario,
> so either we have a bug or the diagnosis is wrong.
>
> Thanks,
>
> Matt
>
>
>> """Experimenting with PETSc mat-mat multiplication"""
>>
>> import time
>>
>> import numpy as np
>> from colorama import Fore
>> from firedrake import COMM_SELF, COMM_WORLD
>> from firedrake.petsc import PETSc
>> from mpi4py import MPI
>> from numpy.testing import assert_array_almost_equal
>>
>> from utilities import Print
>>
>> nproc = COMM_WORLD.size
>> rank = COMM_WORLD.rank
>>
>> def create_petsc_matrix(input_array, sparse=True):
>> """Create a PETSc matrix from an input_array
>>
>> Args:
>> input_array (np array): Input array
>> partition_like (PETSc mat, optional): Petsc matrix. Defaults to None.
>> sparse (bool, optional): Toggle for sparese or dense. Defaults to True.
>>
>> Returns:
>> PETSc mat: PETSc mpi matrix
>> """
>> # Check if input_array is 1D and reshape if necessary
>> assert len(input_array.shape) == 2, "Input array should be 2-dimensional"
>> global_rows, global_cols = input_array.shape
>> size = ((None, global_rows), (global_cols, global_cols))
>>
>> # Create a sparse or dense matrix based on the 'sparse' argument
>> if sparse:
>> matrix = PETSc.Mat().createAIJ(size=size, comm=COMM_WORLD)
>> else:
>> matrix = PETSc.Mat().createDense(size=size, comm=COMM_WORLD)
>> matrix.setUp()
>>
>> local_rows_start, local_rows_end = matrix.getOwnershipRange()
>>
>> for counter, i in enumerate(range(local_rows_start, local_rows_end)):
>> # Calculate the correct row in the array for the current process
>> row_in_array = counter + local_rows_start
>> matrix.setValues(
>> i, range(global_cols), input_array[row_in_array, :], addv=False
>> )
>>
>> # Assembly the matrix to compute the final structure
>> matrix.assemblyBegin()
>> matrix.assemblyEnd()
>>
>> return matrix
>>
>> # --------------------------------------------
>> # EXP: Galerkin projection of an mpi PETSc matrix A with an mpi PETSc
>> matrix Phi
>> # A' = Phi.T * A * Phi
>> # [k x k] <- [k x m] x [m x m] x [m x k]
>> # --------------------------------------------
>>
>> m, k = 100, 7
>> # Generate the random numpy matrices
>> np.random.seed(0) # sets the seed to 0
>> A_np = np.random.randint(low=0, high=6, size=(m, m))
>> Phi_np = np.random.randint(low=0, high=6, size=(m, k))
>>
>> # --------------------------------------------
>> # TEST: Galerking projection of numpy matrices A_np and Phi_np
>> # --------------------------------------------
>> Aprime_np = Phi_np.T @ A_np @ Phi_np
>> Print(f"MATRIX Aprime_np [{Aprime_np.shape[0]}x{Aprime_np.shape[1]}]")
>> Print(f"{Aprime_np}")
>>
>> # Create A as an mpi matrix distributed on each process
>> A = create_petsc_matrix(A_np, sparse=False)
>>
>> # Create Phi as an mpi matrix distributed on each process
>> Phi = create_petsc_matrix(Phi_np, sparse=False)
>>
>> # Create an empty PETSc matrix object to store the result of the PtAP
>> operation.
>> # This will hold the result A' = Phi.T * A * Phi after the computation.
>> A_prime = create_petsc_matrix(np.zeros((k, k)), sparse=False)
>>
>> # Perform the PtAP (Phi Transpose times A times Phi) operation.
>> # In mathematical terms, this operation is A' = Phi.T * A * Phi.
>> # A_prime will store the result of the operation.
>> A_prime = A.ptap(Phi)
>>
>> Here is the error
>>
>> MATRIX mpiaij A [100x100]
>> Assembled
>>
>> Partitioning for A:
>> Rank 0: Rows [0, 34)
>> Rank 1: Rows [34, 67)
>> Rank 2: Rows [67, 100)
>>
>> MATRIX mpiaij Phi [100x7]
>> Assembled
>>
>> Partitioning for Phi:
>> Rank 0: Rows [0, 34)
>> Rank 1: Rows [34, 67)
>> Rank 2: Rows [67, 100)
>>
>> Traceback (most recent call last):
>> File "/Users/boutsitron/work/galerkin_projection.py", line 87, in
>> <module>
>> A_prime = A.ptap(Phi)
>> ^^^^^^^^^^^
>> File "petsc4py/PETSc/Mat.pyx", line 1525, in petsc4py.PETSc.Mat.ptap
>> petsc4py.PETSc.Error: error code 60
>> [0] MatPtAP() at
>> /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matrix.c:9896
>> [0] MatProductSetFromOptions() at
>> /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matproduct.c:541
>> [0] MatProductSetFromOptions_Private() at
>> /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matproduct.c:435
>> [0] MatProductSetFromOptions_MPIAIJ() at
>> /Users/boutsitron/firedrake/src/petsc/src/mat/impls/aij/mpi/mpimatmatmult.c:2372
>> [0] MatProductSetFromOptions_MPIAIJ_PtAP() at
>> /Users/boutsitron/firedrake/src/petsc/src/mat/impls/aij/mpi/mpimatmatmult.c:2266
>> [0] Nonconforming object sizes
>> [0] Matrix local dimensions are incompatible, Acol (0, 100) != Prow (0,34)
>> Abort(1) on node 0 (rank 0 in comm 496): application called
>> MPI_Abort(PYOP2_COMM_WORLD, 1) - process 0
>>
>>
>> Any thoughts?
>>
>> Thanks,
>> Thanos
>>
>> On 5 Oct 2023, at 14:23, Thanasis Boutsikakis <
>> thanasis.boutsikakis at corintis.com> wrote:
>>
>> This works Pierre. Amazing input, thanks a lot!
>>
>> On 5 Oct 2023, at 14:17, Pierre Jolivet <pierre at joliv.et> wrote:
>>
>> Not a petsc4py expert here, but you may to try instead:
>> A_prime = A.ptap(Phi)
>>
>> Thanks,
>> Pierre
>>
>> On 5 Oct 2023, at 2:02 PM, Thanasis Boutsikakis <
>> thanasis.boutsikakis at corintis.com> wrote:
>>
>> Thanks Pierre! So I tried this and got a segmentation fault. Is this
>> supposed to work right off the bat or am I missing sth?
>>
>> [0]PETSC ERROR:
>> ------------------------------------------------------------------------
>> [0]PETSC ERROR: Caught signal number 11 SEGV: Segmentation Violation,
>> probably memory access out of range
>> [0]PETSC ERROR: Try option -start_in_debugger or -on_error_attach_debugger
>> [0]PETSC ERROR: or see https://petsc.org/release/faq/#valgrind and
>> https://petsc.org/release/faq/
>> [0]PETSC ERROR: configure using --with-debugging=yes, recompile, link,
>> and run
>> [0]PETSC ERROR: to get more information on the crash.
>> [0]PETSC ERROR: Run with -malloc_debug to check if memory corruption is
>> causing the crash.
>> Abort(59) on node 0 (rank 0 in comm 0): application called
>> MPI_Abort(MPI_COMM_WORLD, 59) - process 0
>>
>> """Experimenting with PETSc mat-mat multiplication"""
>>
>> import time
>>
>> import numpy as np
>> from colorama import Fore
>> from firedrake import COMM_SELF, COMM_WORLD
>> from firedrake.petsc import PETSc
>> from mpi4py import MPI
>> from numpy.testing import assert_array_almost_equal
>>
>> from utilities import (
>> Print,
>> create_petsc_matrix,
>> print_matrix_partitioning,
>> )
>>
>> nproc = COMM_WORLD.size
>> rank = COMM_WORLD.rank
>>
>> # --------------------------------------------
>> # EXP: Galerkin projection of an mpi PETSc matrix A with an mpi PETSc
>> matrix Phi
>> # A' = Phi.T * A * Phi
>> # [k x k] <- [k x m] x [m x m] x [m x k]
>> # --------------------------------------------
>>
>> m, k = 11, 7
>> # Generate the random numpy matrices
>> np.random.seed(0) # sets the seed to 0
>> A_np = np.random.randint(low=0, high=6, size=(m, m))
>> Phi_np = np.random.randint(low=0, high=6, size=(m, k))
>>
>> # --------------------------------------------
>> # TEST: Galerking projection of numpy matrices A_np and Phi_np
>> # --------------------------------------------
>> Aprime_np = Phi_np.T @ A_np @ Phi_np
>> Print(f"MATRIX Aprime_np [{Aprime_np.shape[0]}x{Aprime_np.shape[1]}]")
>> Print(f"{Aprime_np}")
>>
>> # Create A as an mpi matrix distributed on each process
>> A = create_petsc_matrix(A_np, sparse=False)
>>
>> # Create Phi as an mpi matrix distributed on each process
>> Phi = create_petsc_matrix(Phi_np, sparse=False)
>>
>> # Create an empty PETSc matrix object to store the result of the PtAP
>> operation.
>> # This will hold the result A' = Phi.T * A * Phi after the computation.
>> A_prime = create_petsc_matrix(np.zeros((k, k)), sparse=False)
>>
>> # Perform the PtAP (Phi Transpose times A times Phi) operation.
>> # In mathematical terms, this operation is A' = Phi.T * A * Phi.
>> # A_prime will store the result of the operation.
>> Phi.PtAP(A, A_prime)
>>
>> On 5 Oct 2023, at 13:22, Pierre Jolivet <pierre at joliv.et> wrote:
>>
>> How about using ptap which will use MatPtAP?
>> It will be more efficient (and it will help you bypass the issue).
>>
>> Thanks,
>> Pierre
>>
>> On 5 Oct 2023, at 1:18 PM, Thanasis Boutsikakis <
>> thanasis.boutsikakis at corintis.com> wrote:
>>
>> Sorry, forgot function create_petsc_matrix()
>>
>> def create_petsc_matrix(input_array sparse=True):
>> """Create a PETSc matrix from an input_array
>>
>> Args:
>> input_array (np array): Input array
>> partition_like (PETSc mat, optional): Petsc matrix. Defaults to None.
>> sparse (bool, optional): Toggle for sparese or dense. Defaults to True.
>>
>> Returns:
>> PETSc mat: PETSc matrix
>> """
>> # Check if input_array is 1D and reshape if necessary
>> assert len(input_array.shape) == 2, "Input array should be 2-dimensional"
>> global_rows, global_cols = input_array.shape
>>
>> size = ((None, global_rows), (global_cols, global_cols))
>>
>> # Create a sparse or dense matrix based on the 'sparse' argument
>> if sparse:
>> matrix = PETSc.Mat().createAIJ(size=size, comm=COMM_WORLD)
>> else:
>> matrix = PETSc.Mat().createDense(size=size, comm=COMM_WORLD)
>> matrix.setUp()
>>
>> local_rows_start, local_rows_end = matrix.getOwnershipRange()
>>
>> for counter, i in enumerate(range(local_rows_start, local_rows_end)):
>> # Calculate the correct row in the array for the current process
>> row_in_array = counter + local_rows_start
>> matrix.setValues(
>> i, range(global_cols), input_array[row_in_array, :], addv=False
>> )
>>
>> # Assembly the matrix to compute the final structure
>> matrix.assemblyBegin()
>> matrix.assemblyEnd()
>>
>> return matrix
>>
>> On 5 Oct 2023, at 13:09, Thanasis Boutsikakis <
>> thanasis.boutsikakis at corintis.com> wrote:
>>
>> Hi everyone,
>>
>> I am trying a Galerkin projection (see MFE below) and I cannot get the
>> Phi.transposeMatMult(A, A1) work. The error is
>>
>> Phi.transposeMatMult(A, A1)
>> File "petsc4py/PETSc/Mat.pyx", line 1514, in
>> petsc4py.PETSc.Mat.transposeMatMult
>> petsc4py.PETSc.Error: error code 56
>> [0] MatTransposeMatMult() at
>> /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matrix.c:10135
>> [0] MatProduct_Private() at
>> /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matrix.c:9989
>> [0] No support for this operation for this object type
>> [0] Call MatProductCreate() first
>>
>> Do you know if these exposed to petsc4py or maybe there is another way? I
>> cannot get the MFE to work (neither in sequential nor in parallel)
>>
>> """Experimenting with PETSc mat-mat multiplication"""
>>
>> import time
>>
>> import numpy as np
>> from colorama import Fore
>> from firedrake import COMM_SELF, COMM_WORLD
>> from firedrake.petsc import PETSc
>> from mpi4py import MPI
>> from numpy.testing import assert_array_almost_equal
>>
>> from utilities import (
>> Print,
>> create_petsc_matrix,
>> )
>>
>> nproc = COMM_WORLD.size
>> rank = COMM_WORLD.rank
>>
>> # --------------------------------------------
>> # EXP: Galerkin projection of an mpi PETSc matrix A with an mpi PETSc
>> matrix Phi
>> # A' = Phi.T * A * Phi
>> # [k x k] <- [k x m] x [m x m] x [m x k]
>> # --------------------------------------------
>>
>> m, k = 11, 7
>> # Generate the random numpy matrices
>> np.random.seed(0) # sets the seed to 0
>> A_np = np.random.randint(low=0, high=6, size=(m, m))
>> Phi_np = np.random.randint(low=0, high=6, size=(m, k))
>>
>> # Create A as an mpi matrix distributed on each process
>> A = create_petsc_matrix(A_np)
>>
>> # Create Phi as an mpi matrix distributed on each process
>> Phi = create_petsc_matrix(Phi_np)
>>
>> A1 = create_petsc_matrix(np.zeros((k, m)))
>>
>> # Now A1 contains the result of Phi^T * A
>> Phi.transposeMatMult(A, A1)
>>
>>
>>
>>
>>
>>
>>
>>
>
> --
> What most experimenters take for granted before they begin their
> experiments is infinitely more interesting than any results to which their
> experiments lead.
> -- Norbert Wiener
>
> https://www.cse.buffalo.edu/~knepley/
> <http://www.cse.buffalo.edu/~knepley/>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20231010/d35bdb30/attachment-0001.html>
More information about the petsc-users
mailing list