[petsc-users] Galerkin projection using petsc4py
Thanasis Boutsikakis
thanasis.boutsikakis at corintis.com
Thu Oct 5 07:23:20 CDT 2023
This works Pierre. Amazing input, thanks a lot!
> On 5 Oct 2023, at 14:17, Pierre Jolivet <pierre at joliv.et> wrote:
>
> Not a petsc4py expert here, but you may to try instead:
> A_prime = A.ptap(Phi)
>
> Thanks,
> Pierre
>
>> On 5 Oct 2023, at 2:02 PM, Thanasis Boutsikakis <thanasis.boutsikakis at corintis.com> wrote:
>>
>> Thanks Pierre! So I tried this and got a segmentation fault. Is this supposed to work right off the bat or am I missing sth?
>>
>> [0]PETSC ERROR: ------------------------------------------------------------------------
>> [0]PETSC ERROR: Caught signal number 11 SEGV: Segmentation Violation, probably memory access out of range
>> [0]PETSC ERROR: Try option -start_in_debugger or -on_error_attach_debugger
>> [0]PETSC ERROR: or see https://petsc.org/release/faq/#valgrind and https://petsc.org/release/faq/
>> [0]PETSC ERROR: configure using --with-debugging=yes, recompile, link, and run
>> [0]PETSC ERROR: to get more information on the crash.
>> [0]PETSC ERROR: Run with -malloc_debug to check if memory corruption is causing the crash.
>> Abort(59) on node 0 (rank 0 in comm 0): application called MPI_Abort(MPI_COMM_WORLD, 59) - process 0
>>
>> """Experimenting with PETSc mat-mat multiplication"""
>>
>> import time
>>
>> import numpy as np
>> from colorama import Fore
>> from firedrake import COMM_SELF, COMM_WORLD
>> from firedrake.petsc import PETSc
>> from mpi4py import MPI
>> from numpy.testing import assert_array_almost_equal
>>
>> from utilities import (
>> Print,
>> create_petsc_matrix,
>> print_matrix_partitioning,
>> )
>>
>> nproc = COMM_WORLD.size
>> rank = COMM_WORLD.rank
>>
>> # --------------------------------------------
>> # EXP: Galerkin projection of an mpi PETSc matrix A with an mpi PETSc matrix Phi
>> # A' = Phi.T * A * Phi
>> # [k x k] <- [k x m] x [m x m] x [m x k]
>> # --------------------------------------------
>>
>> m, k = 11, 7
>> # Generate the random numpy matrices
>> np.random.seed(0) # sets the seed to 0
>> A_np = np.random.randint(low=0, high=6, size=(m, m))
>> Phi_np = np.random.randint(low=0, high=6, size=(m, k))
>>
>> # --------------------------------------------
>> # TEST: Galerking projection of numpy matrices A_np and Phi_np
>> # --------------------------------------------
>> Aprime_np = Phi_np.T @ A_np @ Phi_np
>> Print(f"MATRIX Aprime_np [{Aprime_np.shape[0]}x{Aprime_np.shape[1]}]")
>> Print(f"{Aprime_np}")
>>
>> # Create A as an mpi matrix distributed on each process
>> A = create_petsc_matrix(A_np, sparse=False)
>>
>> # Create Phi as an mpi matrix distributed on each process
>> Phi = create_petsc_matrix(Phi_np, sparse=False)
>>
>> # Create an empty PETSc matrix object to store the result of the PtAP operation.
>> # This will hold the result A' = Phi.T * A * Phi after the computation.
>> A_prime = create_petsc_matrix(np.zeros((k, k)), sparse=False)
>>
>> # Perform the PtAP (Phi Transpose times A times Phi) operation.
>> # In mathematical terms, this operation is A' = Phi.T * A * Phi.
>> # A_prime will store the result of the operation.
>> Phi.PtAP(A, A_prime)
>>
>>> On 5 Oct 2023, at 13:22, Pierre Jolivet <pierre at joliv.et> wrote:
>>>
>>> How about using ptap which will use MatPtAP?
>>> It will be more efficient (and it will help you bypass the issue).
>>>
>>> Thanks,
>>> Pierre
>>>
>>>> On 5 Oct 2023, at 1:18 PM, Thanasis Boutsikakis <thanasis.boutsikakis at corintis.com> wrote:
>>>>
>>>> Sorry, forgot function create_petsc_matrix()
>>>>
>>>> def create_petsc_matrix(input_array sparse=True):
>>>> """Create a PETSc matrix from an input_array
>>>>
>>>> Args:
>>>> input_array (np array): Input array
>>>> partition_like (PETSc mat, optional): Petsc matrix. Defaults to None.
>>>> sparse (bool, optional): Toggle for sparese or dense. Defaults to True.
>>>>
>>>> Returns:
>>>> PETSc mat: PETSc matrix
>>>> """
>>>> # Check if input_array is 1D and reshape if necessary
>>>> assert len(input_array.shape) == 2, "Input array should be 2-dimensional"
>>>> global_rows, global_cols = input_array.shape
>>>>
>>>> size = ((None, global_rows), (global_cols, global_cols))
>>>>
>>>> # Create a sparse or dense matrix based on the 'sparse' argument
>>>> if sparse:
>>>> matrix = PETSc.Mat().createAIJ(size=size, comm=COMM_WORLD)
>>>> else:
>>>> matrix = PETSc.Mat().createDense(size=size, comm=COMM_WORLD)
>>>> matrix.setUp()
>>>>
>>>> local_rows_start, local_rows_end = matrix.getOwnershipRange()
>>>>
>>>> for counter, i in enumerate(range(local_rows_start, local_rows_end)):
>>>> # Calculate the correct row in the array for the current process
>>>> row_in_array = counter + local_rows_start
>>>> matrix.setValues(
>>>> i, range(global_cols), input_array[row_in_array, :], addv=False
>>>> )
>>>>
>>>> # Assembly the matrix to compute the final structure
>>>> matrix.assemblyBegin()
>>>> matrix.assemblyEnd()
>>>>
>>>> return matrix
>>>>
>>>>> On 5 Oct 2023, at 13:09, Thanasis Boutsikakis <thanasis.boutsikakis at corintis.com> wrote:
>>>>>
>>>>> Hi everyone,
>>>>>
>>>>> I am trying a Galerkin projection (see MFE below) and I cannot get the Phi.transposeMatMult(A, A1) work. The error is
>>>>>
>>>>> Phi.transposeMatMult(A, A1)
>>>>> File "petsc4py/PETSc/Mat.pyx", line 1514, in petsc4py.PETSc.Mat.transposeMatMult
>>>>> petsc4py.PETSc.Error: error code 56
>>>>> [0] MatTransposeMatMult() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matrix.c:10135
>>>>> [0] MatProduct_Private() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matrix.c:9989
>>>>> [0] No support for this operation for this object type
>>>>> [0] Call MatProductCreate() first
>>>>>
>>>>> Do you know if these exposed to petsc4py or maybe there is another way? I cannot get the MFE to work (neither in sequential nor in parallel)
>>>>>
>>>>> """Experimenting with PETSc mat-mat multiplication"""
>>>>>
>>>>> import time
>>>>>
>>>>> import numpy as np
>>>>> from colorama import Fore
>>>>> from firedrake import COMM_SELF, COMM_WORLD
>>>>> from firedrake.petsc import PETSc
>>>>> from mpi4py import MPI
>>>>> from numpy.testing import assert_array_almost_equal
>>>>>
>>>>> from utilities import (
>>>>> Print,
>>>>> create_petsc_matrix,
>>>>> )
>>>>>
>>>>> nproc = COMM_WORLD.size
>>>>> rank = COMM_WORLD.rank
>>>>>
>>>>> # --------------------------------------------
>>>>> # EXP: Galerkin projection of an mpi PETSc matrix A with an mpi PETSc matrix Phi
>>>>> # A' = Phi.T * A * Phi
>>>>> # [k x k] <- [k x m] x [m x m] x [m x k]
>>>>> # --------------------------------------------
>>>>>
>>>>> m, k = 11, 7
>>>>> # Generate the random numpy matrices
>>>>> np.random.seed(0) # sets the seed to 0
>>>>> A_np = np.random.randint(low=0, high=6, size=(m, m))
>>>>> Phi_np = np.random.randint(low=0, high=6, size=(m, k))
>>>>>
>>>>> # Create A as an mpi matrix distributed on each process
>>>>> A = create_petsc_matrix(A_np)
>>>>>
>>>>> # Create Phi as an mpi matrix distributed on each process
>>>>> Phi = create_petsc_matrix(Phi_np)
>>>>>
>>>>> A1 = create_petsc_matrix(np.zeros((k, m)))
>>>>>
>>>>> # Now A1 contains the result of Phi^T * A
>>>>> Phi.transposeMatMult(A, A1)
>>>>>
>>>>
>>>
>>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20231005/cc03dd8c/attachment-0001.html>
More information about the petsc-users
mailing list