[petsc-users] Galerkin projection using petsc4py

Thanasis Boutsikakis thanasis.boutsikakis at corintis.com
Thu Oct 5 07:02:16 CDT 2023


Thanks Pierre! So I tried this and got a segmentation fault. Is this supposed to work right off the bat or am I missing sth?

[0]PETSC ERROR: ------------------------------------------------------------------------
[0]PETSC ERROR: Caught signal number 11 SEGV: Segmentation Violation, probably memory access out of range
[0]PETSC ERROR: Try option -start_in_debugger or -on_error_attach_debugger
[0]PETSC ERROR: or see https://petsc.org/release/faq/#valgrind and https://petsc.org/release/faq/
[0]PETSC ERROR: configure using --with-debugging=yes, recompile, link, and run
[0]PETSC ERROR: to get more information on the crash.
[0]PETSC ERROR: Run with -malloc_debug to check if memory corruption is causing the crash.
Abort(59) on node 0 (rank 0 in comm 0): application called MPI_Abort(MPI_COMM_WORLD, 59) - process 0

"""Experimenting with PETSc mat-mat multiplication"""

import time

import numpy as np
from colorama import Fore
from firedrake import COMM_SELF, COMM_WORLD
from firedrake.petsc import PETSc
from mpi4py import MPI
from numpy.testing import assert_array_almost_equal

from utilities import (
    Print,
    create_petsc_matrix,
    print_matrix_partitioning,
)

nproc = COMM_WORLD.size
rank = COMM_WORLD.rank

# --------------------------------------------
# EXP: Galerkin projection of an mpi PETSc matrix A with an mpi PETSc matrix Phi
#  A' = Phi.T * A * Phi
# [k x k] <- [k x m] x [m x m] x [m x k]
# --------------------------------------------

m, k = 11, 7
# Generate the random numpy matrices
np.random.seed(0)  # sets the seed to 0
A_np = np.random.randint(low=0, high=6, size=(m, m))
Phi_np = np.random.randint(low=0, high=6, size=(m, k))

# --------------------------------------------
# TEST: Galerking projection of numpy matrices A_np and Phi_np
# --------------------------------------------
Aprime_np = Phi_np.T @ A_np @ Phi_np
Print(f"MATRIX Aprime_np [{Aprime_np.shape[0]}x{Aprime_np.shape[1]}]")
Print(f"{Aprime_np}")

# Create A as an mpi matrix distributed on each process
A = create_petsc_matrix(A_np, sparse=False)

# Create Phi as an mpi matrix distributed on each process
Phi = create_petsc_matrix(Phi_np, sparse=False)

# Create an empty PETSc matrix object to store the result of the PtAP operation.
# This will hold the result A' = Phi.T * A * Phi after the computation.
A_prime = create_petsc_matrix(np.zeros((k, k)), sparse=False)

# Perform the PtAP (Phi Transpose times A times Phi) operation.
# In mathematical terms, this operation is A' = Phi.T * A * Phi.
# A_prime will store the result of the operation.
Phi.PtAP(A, A_prime)

> On 5 Oct 2023, at 13:22, Pierre Jolivet <pierre at joliv.et> wrote:
> 
> How about using ptap which will use MatPtAP?
> It will be more efficient (and it will help you bypass the issue).
> 
> Thanks,
> Pierre
> 
>> On 5 Oct 2023, at 1:18 PM, Thanasis Boutsikakis <thanasis.boutsikakis at corintis.com> wrote:
>> 
>> Sorry, forgot function create_petsc_matrix()
>> 
>> def create_petsc_matrix(input_array sparse=True):
>>     """Create a PETSc matrix from an input_array
>> 
>>     Args:
>>         input_array (np array): Input array
>>         partition_like (PETSc mat, optional): Petsc matrix. Defaults to None.
>>         sparse (bool, optional): Toggle for sparese or dense. Defaults to True.
>> 
>>     Returns:
>>         PETSc mat: PETSc matrix
>>     """
>>     # Check if input_array is 1D and reshape if necessary
>>     assert len(input_array.shape) == 2, "Input array should be 2-dimensional"
>>     global_rows, global_cols = input_array.shape
>> 
>>     size = ((None, global_rows), (global_cols, global_cols))
>> 
>>     # Create a sparse or dense matrix based on the 'sparse' argument
>>     if sparse:
>>         matrix = PETSc.Mat().createAIJ(size=size, comm=COMM_WORLD)
>>     else:
>>         matrix = PETSc.Mat().createDense(size=size, comm=COMM_WORLD)
>>     matrix.setUp()
>> 
>>     local_rows_start, local_rows_end = matrix.getOwnershipRange()
>> 
>>     for counter, i in enumerate(range(local_rows_start, local_rows_end)):
>>         # Calculate the correct row in the array for the current process
>>         row_in_array = counter + local_rows_start
>>         matrix.setValues(
>>             i, range(global_cols), input_array[row_in_array, :], addv=False
>>         )
>> 
>>     # Assembly the matrix to compute the final structure
>>     matrix.assemblyBegin()
>>     matrix.assemblyEnd()
>> 
>>     return matrix
>> 
>>> On 5 Oct 2023, at 13:09, Thanasis Boutsikakis <thanasis.boutsikakis at corintis.com> wrote:
>>> 
>>> Hi everyone,
>>> 
>>> I am trying a Galerkin projection (see MFE below) and I cannot get the Phi.transposeMatMult(A, A1) work. The error is
>>> 
>>>     Phi.transposeMatMult(A, A1)
>>>   File "petsc4py/PETSc/Mat.pyx", line 1514, in petsc4py.PETSc.Mat.transposeMatMult
>>> petsc4py.PETSc.Error: error code 56
>>> [0] MatTransposeMatMult() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matrix.c:10135
>>> [0] MatProduct_Private() at /Users/boutsitron/firedrake/src/petsc/src/mat/interface/matrix.c:9989
>>> [0] No support for this operation for this object type
>>> [0] Call MatProductCreate() first
>>> 
>>> Do you know if these exposed to petsc4py or maybe there is another way? I cannot get the MFE to work (neither in sequential nor in parallel)
>>> 
>>> """Experimenting with PETSc mat-mat multiplication"""
>>> 
>>> import time
>>> 
>>> import numpy as np
>>> from colorama import Fore
>>> from firedrake import COMM_SELF, COMM_WORLD
>>> from firedrake.petsc import PETSc
>>> from mpi4py import MPI
>>> from numpy.testing import assert_array_almost_equal
>>> 
>>> from utilities import (
>>>     Print,
>>>     create_petsc_matrix,
>>> )
>>> 
>>> nproc = COMM_WORLD.size
>>> rank = COMM_WORLD.rank
>>> 
>>> # --------------------------------------------
>>> # EXP: Galerkin projection of an mpi PETSc matrix A with an mpi PETSc matrix Phi
>>> #  A' = Phi.T * A * Phi
>>> # [k x k] <- [k x m] x [m x m] x [m x k]
>>> # --------------------------------------------
>>> 
>>> m, k = 11, 7
>>> # Generate the random numpy matrices
>>> np.random.seed(0)  # sets the seed to 0
>>> A_np = np.random.randint(low=0, high=6, size=(m, m))
>>> Phi_np = np.random.randint(low=0, high=6, size=(m, k))
>>> 
>>> # Create A as an mpi matrix distributed on each process
>>> A = create_petsc_matrix(A_np)
>>> 
>>> # Create Phi as an mpi matrix distributed on each process
>>> Phi = create_petsc_matrix(Phi_np)
>>> 
>>> A1 = create_petsc_matrix(np.zeros((k, m)))
>>> 
>>> # Now A1 contains the result of Phi^T * A
>>> Phi.transposeMatMult(A, A1)
>>> 
>> 
> 

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20231005/b2819fd3/attachment.html>


More information about the petsc-users mailing list