[petsc-users] Scalable Solver for Incompressible Flow

Sebastian Blauth sebastian.blauth at itwm.fraunhofer.de
Mon May 8 01:31:55 CDT 2023


Hello everyone,

I wanted to briefly follow up on my question (see my last reply).
Does anyone know / have an idea why the LSC preconditioner in PETSc does 
not seem to scale well with the problem size (the outer fgmres solver I 
am using nearly scale nearly linearly with the problem size in my example).
I have also already tried using -ksp_diagonal_scale but the results are 
identical.
Any help is really appreciated.

Thanks a lot,
Sebastian

On 03.05.2023 09:07, Sebastian Blauth wrote:
> First of all, yes you are correct that I am trying to solve the 
> stationary incompressible Navier Stokes equations.
> 
> On 02.05.2023 21:33, Matthew Knepley wrote:
>> On Tue, May 2, 2023 at 2:29 PM Jed Brown <jed at jedbrown.org 
>> <mailto:jed at jedbrown.org>> wrote:
>>
>>     Sebastian Blauth <sebastian.blauth at itwm.fraunhofer.de
>>     <mailto:sebastian.blauth at itwm.fraunhofer.de>> writes:
>>
>>      > I agree with your comment for the Stokes equations - for these, I
>>     have
>>      > already tried and used the pressure mass matrix as part of a
>>     (additive)
>>      > block preconditioner and it gave mesh independent results.
>>      >
>>      > However, for the Navier Stokes equations, is the Schur complement
>>     really
>>      > spectrally equivalent to the pressure mass matrix?
>>
>>     No, it's not. You'd want something like PCD (better, but not
>>     algebraic) or LSC.
>>
> 
> I would like to take a look at the LSC preconditioner. For this, I did 
> also not achieve mesh-independent results. I am using the following 
> options (I know that the tolerances are too high at the moment, but it 
> should just illustrate the behavior w.r.t. mesh refinement). Again, I am 
> using a simple 2D channel problem for testing purposes.
> 
> I am using the following options
> 
> -ksp_type fgmres
> -ksp_gmres_restart 100
> -ksp_gmres_cgs_refinement_type refine_ifneeded
> -ksp_max_it 1000
> -ksp_rtol 1e-10
> -ksp_atol 1e-30
> -pc_type fieldsplit
> -pc_fieldsplit_type schur
> -pc_fieldsplit_schur_fact_type full
> -pc_fieldsplit_schur_precondition self
> -fieldsplit_0_ksp_type preonly
> -fieldsplit_0_pc_type lu
> -fieldsplit_1_ksp_type gmres
> -fieldsplit_1_ksp_pc_side right
> -fieldsplit_1_ksp_gmres_restart 100
> -fieldsplit_1_ksp_gmres_cgs_refinement_type refine_ifneeded
> -fieldsplit_1_ksp_max_it 1000
> -fieldsplit_1_ksp_rtol 1e-10
> -fieldsplit_1_ksp_atol 1e-30
> -fieldsplit_1_pc_type lsc
> -fieldsplit_1_lsc_ksp_type preonly
> -fieldsplit_1_lsc_pc_type lu
> -fieldsplit_1_ksp_converged_reason
> 
> Again, the direct solvers are used so that only the influence of the LSC 
> preconditioner is seen. I have suitable preconditioners for all of these 
> available (using boomeramg).
> 
> At the bottom, I attach the output for different discretizations. As you 
> can see there, the number of iterations increases nearly linearly with 
> the problem size.
> 
> I think that the problem could occur due to a wrong scaling. In your 
> docs https://petsc.org/release/manualpages/PC/PCLSC/ , you write that 
> the LSC preconditioner is implemented as
> 
>     inv(S) \approx inv(A10 A01) A10 A00 A01 inv(A10 A01)
> 
> However, in the book of Elman, Sylvester and Wathen (Finite Elements and 
> Fast Iterative Solvers), the LSC preconditioner is defined as
> 
>      inv(S) \approx inv(A10 inv(T) A01) A10 inv(T) A00 inv(T) A01 
> inv(A10 inv(T) A01)
> 
> where T = diag(Q) and Q is the velocity mass matrix.
> 
> There is an options -pc_lsc_scale_diag, which states that it uses the 
> diagonal of A for scaling. I suppose, that this means, that the diagonal 
> of the A00 block is used for scaling - however, this is not the right 
> scaling, is it? Even in the source code for the LSC preconditioner, in 
> /src/ksp/pc/impls/lsc/lsc.c it is mentioned, that a mass matrix should 
> be used...
> Is there any way to implement this in PETSc? Maybe by supplying the mass 
> matrix as Pmat?
> 
> Thanks a lot in advance,
> Sebastian
> 
>>
>> I think you can do a better job than that using something like
>>
>> https://arxiv.org/abs/1810.03315 <https://arxiv.org/abs/1810.03315>
>>
>> Basically, you use an augmented Lagrangian thing to make the Schur 
>> complement well-conditioned,
>> and then use a special smoother to handle that perturbation.
>>
>>      > And even if it is, the convergence is only good for small
>>     Reynolds numbers, for moderately high ones the convergence really
>>     deteriorates. This is why I am trying to make
>>     fieldsplit_schur_precondition selfp work better (this is, if I
>>     understand it correctly, a SIMPLE type preconditioner).
>>
>>     SIMPLE is for short time steps (not too far from resolving CFL) and
>>     bad for steady. This taxonomy is useful, though the problems are
>>     super academic and they don't use high aspect ratio.
>>
> 
> Okay, I get that I cannot expect the SIMPLE preconditioning 
> (schur_precondition selfp) to work efficiently. I guess the reason it 
> works for small time steps (for the instationary equations) is that the 
> velocity block becomes diagonally dominant in this case, so that diag(A) 
> is a good approximation of A.
> 
> 
>>     https://doi.org/10.1016/j.jcp.2007.09.026
>>     <https://doi.org/10.1016/j.jcp.2007.09.026>
>>
>>
>>     Thanks,
>>
>>        Matt
>>
>> -- 
>> What most experimenters take for granted before they begin their 
>> experiments is infinitely more interesting than any results to which 
>> their experiments lead.
>> -- Norbert Wiener
>>
>> https://www.cse.buffalo.edu/~knepley/ 
>> <http://www.cse.buffalo.edu/~knepley/>
> 
> 
> And here is the output of my scaling tests
> 
> 8x8 discretization
> 
> Newton solver:  iter,  abs. residual (abs. tol),  rel. residual (rel. tol)
> 
> Newton solver:     0,      1.023e+03 (1.00e-30),      1.000e+00 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 38
> Newton solver:     1,      1.313e+03 (1.00e-30),      1.283e+00 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 76
> Newton solver:     2,      1.198e+02 (1.00e-30),      1.171e-01 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 74
> Newton solver:     3,      7.249e-01 (1.00e-30),      7.084e-04 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 74
> Newton solver:     4,      3.883e-05 (1.00e-30),      3.795e-08 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 74
> Newton solver:     5,      2.778e-12 (1.00e-30),      2.714e-15 (1.00e-10)
> 
> 
> 
> 16x16 discretization
> 
> Newton solver:  iter,  abs. residual (abs. tol),  rel. residual (rel. tol)
> 
> Newton solver:     0,      1.113e+03 (1.00e-30),      1.000e+00 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 62
> Newton solver:     1,      8.316e+02 (1.00e-30),      7.475e-01 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 
> 141
> Newton solver:     2,      5.806e+01 (1.00e-30),      5.218e-02 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 
> 119
> Newton solver:     3,      3.309e-01 (1.00e-30),      2.974e-04 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 
> 118
> Newton solver:     4,      9.085e-06 (1.00e-30),      8.166e-09 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 
> 120
> Newton solver:     5,      3.475e-12 (1.00e-30),      3.124e-15 (1.00e-10)
> 
> 
> 
> 32x32 discretization
> 
> Newton solver:  iter,  abs. residual (abs. tol),  rel. residual (rel. tol)
> 
> Newton solver:     0,      1.330e+03 (1.00e-30),      1.000e+00 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 98
> Newton solver:     1,      5.913e+02 (1.00e-30),      4.445e-01 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 
> 183
> Newton solver:     2,      3.214e+01 (1.00e-30),      2.416e-02 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 
> 152
> Newton solver:     3,      2.059e-01 (1.00e-30),      1.547e-04 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 
> 151
> Newton solver:     4,      6.949e-06 (1.00e-30),      5.223e-09 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 
> 149
> Newton solver:     5,      5.300e-12 (1.00e-30),      3.983e-15 (1.00e-10)
> 
> 
> 
> 64x64 discretization
> 
> Newton solver:  iter,  abs. residual (abs. tol),  rel. residual (rel. tol)
> 
> Newton solver:     0,      1.707e+03 (1.00e-30),      1.000e+00 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 
> 198
> Newton solver:     1,      4.259e+02 (1.00e-30),      2.494e-01 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 
> 357
> Newton solver:     2,      1.706e+01 (1.00e-30),      9.993e-03 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 
> 266
> Newton solver:     3,      1.134e-01 (1.00e-30),      6.639e-05 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 
> 261
> Newton solver:     4,      4.285e-06 (1.00e-30),      2.510e-09 (1.00e-10)
>    Linear fieldsplit_1_ solve converged due to CONVERGED_RTOL iterations 
> 263
> Newton solver:     5,      9.650e-12 (1.00e-30),      5.652e-15 (1.00e-10)
> 

-- 
Dr. Sebastian Blauth
Fraunhofer-Institut für
Techno- und Wirtschaftsmathematik ITWM
Abteilung Transportvorgänge
Fraunhofer-Platz 1, 67663 Kaiserslautern
Telefon: +49 631 31600-4968
sebastian.blauth at itwm.fraunhofer.de
www.itwm.fraunhofer.de


More information about the petsc-users mailing list