[petsc-users] Orthogonalization of a (sparse) PETSc matrix
Thanasis Boutsikakis
thanasis.boutsikakis at corintis.com
Tue Aug 29 11:50:36 CDT 2023
Hi all, I have the following code that orthogonalizes a PETSc matrix. The problem is that this implementation requires that the PETSc matrix is dense, otherwise, it fails at bv.SetFromOptions(). Hence the assert in orthogonality().
What could I do in order to be able to orthogonalize sparse matrices as well? Could I convert it efficiently? (I tried to no avail)
Thanks!
"""Experimenting with matrix orthogonalization"""
import contextlib
import sys
import time
import numpy as np
from firedrake import COMM_WORLD
from firedrake.petsc import PETSc
import slepc4py
slepc4py.init(sys.argv)
from slepc4py import SLEPc
from numpy.testing import assert_array_almost_equal
EPSILON_USER = 1e-4
EPS = sys.float_info.epsilon
def Print(message: str):
"""Print function that prints only on rank 0 with color
Args:
message (str): message to be printed
"""
PETSc.Sys.Print(message)
def create_petsc_matrix(input_array, sparse=True):
"""Create a PETSc matrix from an input_array
Args:
input_array (np array): Input array
partition_like (PETSc mat, optional): Petsc matrix. Defaults to None.
sparse (bool, optional): Toggle for sparese or dense. Defaults to True.
Returns:
PETSc mat: PETSc matrix
"""
# Check if input_array is 1D and reshape if necessary
assert len(input_array.shape) == 2, "Input array should be 2-dimensional"
global_rows, global_cols = input_array.shape
size = ((None, global_rows), (global_cols, global_cols))
# Create a sparse or dense matrix based on the 'sparse' argument
if sparse:
matrix = PETSc.Mat().createAIJ(size=size, comm=COMM_WORLD)
else:
matrix = PETSc.Mat().createDense(size=size, comm=COMM_WORLD)
matrix.setUp()
local_rows_start, local_rows_end = matrix.getOwnershipRange()
for counter, i in enumerate(range(local_rows_start, local_rows_end)):
# Calculate the correct row in the array for the current process
row_in_array = counter + local_rows_start
matrix.setValues(
i, range(global_cols), input_array[row_in_array, :], addv=False
)
# Assembly the matrix to compute the final structure
matrix.assemblyBegin()
matrix.assemblyEnd()
return matrix
def orthogonality(A): # sourcery skip: avoid-builtin-shadow
"""Checking and correcting orthogonality
Args:
A (PETSc.Mat): Matrix of size [m x k].
Returns:
PETSc.Mat: Matrix of size [m x k].
"""
# Check if the matrix is dense
mat_type = A.getType()
assert mat_type in (
"seqdense",
"mpidense",
), "A must be a dense matrix. SLEPc.BV().createFromMat() requires a dense matrix."
m, k = A.getSize()
Phi1 = A.getColumnVector(0)
Phi2 = A.getColumnVector(k - 1)
# Compute dot product using PETSc function
dot_product = Phi1.dot(Phi2)
if abs(dot_product) > min(EPSILON_USER, EPS * m):
Print(" Matrix is not orthogonal")
# Type can be CHOL, GS, mro(), SVQB, TSQR, TSQRCHOL
_type = SLEPc.BV().OrthogBlockType.GS
bv = SLEPc.BV().createFromMat(A)
bv.setFromOptions()
bv.setOrthogonalization(_type)
bv.orthogonalize()
A = bv.createMat()
Print(" Matrix successfully orthogonalized")
# # Assembly the matrix to compute the final structure
if not A.assembled:
A.assemblyBegin()
A.assemblyEnd()
else:
Print(" Matrix is orthogonal")
return A
# --------------------------------------------
# EXP: Orthogonalization of an mpi PETSc matrix
# --------------------------------------------
m, k = 11, 7
# Generate the random numpy matrices
np.random.seed(0) # sets the seed to 0
A_np = np.random.randint(low=0, high=6, size=(m, k))
A = create_petsc_matrix(A_np, sparse=False)
A_orthogonal = orthogonality(A)
# --------------------------------------------
# TEST: Orthogonalization of a numpy matrix
# --------------------------------------------
# Generate A_np_orthogonal
A_np_orthogonal, _ = np.linalg.qr(A_np)
# Get the local values from A_orthogonal
local_rows_start, local_rows_end = A_orthogonal.getOwnershipRange()
A_orthogonal_local = A_orthogonal.getValues(
range(local_rows_start, local_rows_end), range(k)
)
# Assert the correctness of the multiplication for the local subset
assert_array_almost_equal(
np.abs(A_orthogonal_local),
np.abs(A_np_orthogonal[local_rows_start:local_rows_end, :]),
decimal=5,
)
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20230829/98d3c874/attachment-0001.html>
More information about the petsc-users
mailing list