[petsc-users] DMPlex tetrahedra facets orientation

Nicolas Barral nicolas.barral at math.u-bordeaux.fr
Mon Mar 8 10:18:22 CST 2021


On 08/03/2021 15:55, Matthew Knepley wrote:
> On Mon, Mar 8, 2021 at 4:02 AM Nicolas Barral 
> <nicolas.barral at math.u-bordeaux.fr 
> <mailto:nicolas.barral at math.u-bordeaux.fr>> wrote:
> 
>     On 07/03/2021 22:56, Matthew Knepley wrote:
>      > On Sun, Mar 7, 2021 at 4:51 PM Nicolas Barral
>      > <nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>
>      > <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>>> wrote:
>      >
>      >
>      >     On 07/03/2021 22:30, Matthew Knepley wrote:
>      >      > On Sun, Mar 7, 2021 at 4:13 PM Nicolas Barral
>      >      > <nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>
>      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>>
>      >      > <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>
>      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>>>> wrote:
>      >      >
>      >      >     On 07/03/2021 16:54, Matthew Knepley wrote:
>      >      >      > On Sun, Mar 7, 2021 at 8:52 AM Nicolas Barral
>      >      >      > <nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>
>      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>>
>      >      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>
>      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>>>
>      >      >      > <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>
>      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>>
>      >      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>
>      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>>>>> wrote:
>      >      >      >
>      >      >      >     Matt,
>      >      >      >
>      >      >      >     Thanks for your answer.
>      >      >      >
>      >      >      >     However, DMPlexComputeCellGeometryFVM does not
>     compute
>      >     what I
>      >      >     need
>      >      >      >     (normals of height 1 entities). I can't find any
>      >     function doing
>      >      >      >     that, is
>      >      >      >     there one ?
>      >      >      >
>      >      >      >
>      >      >      > The normal[] in DMPlexComputeCellGeometryFVM() is
>     exactly what
>      >      >     you want.
>      >      >      > What does not look right to you?
>      >      >
>      >      >
>      >      >     So it turns out it's not what I want because I need
>      >     non-normalized
>      >      >     normals. It doesn't seem like I can easily retrieve
>     the norm,
>      >     can I?
>      >      >
>      >      >
>      >      > You just want area-weighted normals I think, which means
>     that you
>      >     just
>      >      > multiply by the area,
>      >      > which comes back in the same function.
>      >      >
>      >
>      >     Ah by the area times 2, of course, my bad.
>      >     Do you order height-1 elements in a certain way ? I need to
>     access the
>      >     facet (resp. edge) opposite to a vertex in a tet (resp.
>     triangle).
>      >
>      >
>      > Yes. Now that I have pretty much settled on it, I will put it in the
>      > manual. It is currently here:
>      >
>      >
>     https://gitlab.com/petsc/petsc/-/blob/main/src/dm/impls/plex/plexinterpolate.c#L56
>      >
>      > All normals are outward facing, but hopefully the ordering in the
>     sourse
>      > file makes sense.
> 
>     Thanks Matt, but I'm not sure I understand well. What I do so far is:
> 
>     ierr = DMPlexGetCone(dm, c, &cone);CHKERRQ(ierr);
>         for (i=0; i<dim+1; ++i) {
>           f = cone[i];
>           ierr = DMPlexComputeCellGeometryFVM(dm, f, &area, NULL,
>     &vn[i*dim]);CHKERRQ(ierr);
>           if (dim == 3) { area *= 2; }
>           for (j=0; j<dim; ++j) { vn[i*dim+j] *= area; }
> 
>     So in 3D, it seems that:
>     (vn[9],vn[10],vn[11]) is the inward normal to the facet opposing vertex0
>     (vn[6],vn[7],vn[8])             "                    "                 1
>     (vn[3],vn[4],vn[5])             "                    "                 2
>     (vn[0],vn[1],vn[2])             "                    "                 3
> 
>     in 2D:
>     (vn[2],vn[3]) is a normal to the edge opposing vertex 0
>     (vn[4],vn[5])          "                  "           1
>     (vn[0],vn[1])          "                  "           2
>     Yet in 2D, whether the normals are inward or outward does not seem
>     consistent across elements.
> 
>     What am I wrongly assuming ?
> 
> 
> Ah, I see the problem. I probably need another function. You can tell 
> that not many people use Plex this way yet.
> The logic for what you want is embedded my traversal, but it simple:
> 
> ierr = DMPlexGetConeSize(dm, c, &coneSize);CHKERRQ(ierr);
> ierr = DMPlexGetCone(dm, c, &cone);CHKERRQ(ierr);
> ierr = DMPlexGetConeOrientation(dm, c, &ornt);CHKERRQ(ierr);
>     for (i=0; i<coneSize; ++i) {
>       f = cone[i];
>       flip = ornt[i] >= 0 ? 1 : -1;
>       ierr = DMPlexComputeCellGeometryFVM(dm, f, &area, NULL, 
> &vn[i*dim]);CHKERRQ(ierr);
>       if (dim == 3) { area *= 2; }
>       for (j=0; j<dim; ++j) { vn[i*dim+j] *= area * flip; }
> I could make a function that returns all normals, properly oriented. It 
> would just do this.

Ah this works now, thanks Matt. Toby is correct, it is ultimately 
related to Jacobians, and what I need can be done differently, not sure 
it's clearer though.

Out of curiosity, what is the logic in the facet ordering ?

Thanks

-- 
Nicolas

> 
>    Thanks,
> 
>       Matt
> 
>     Thanks,
> 
>     -- 
>     Nicolas
> 
>      >
>      >    Thanks,
>      >
>      >      Matt
>      >
>      >     Thanks
>      >
>      >     --
>      >     Nicolas
>      >
>      >
>      >      >    Thanks,
>      >      >
>      >      >      Matt
>      >      >
>      >      >     If not, I'll fallback to computing them by hand for
>     now. Is the
>      >      >     following assumption safe or do I have to use
>      >     DMPlexGetOrientedFace?
>      >      >       >  if I call P0P1P2P3 a tet and note x the cross
>     product,
>      >      >       >  P3P2xP3P1 is the outward normal to face P1P2P3
>      >      >       >  P0P2xP0P3              "                P0P2P3
>      >      >       >  P3P1xP3P0              "                P0P1P3
>      >      >       >  P0P1xP0P2              "                P0P1P2
>      >      >
>      >      >     Thanks
>      >      >
>      >      >     --
>      >      >     Nicolas
>      >      >      >
>      >      >      >    Thanks,
>      >      >      >
>      >      >      >      Matt
>      >      >      >
>      >      >      >     So far I've been doing it by hand, and after a
>     lot of
>      >      >     experimenting the
>      >      >      >     past weeks, it seems that if I call P0P1P2P3 a
>     tetrahedron
>      >      >     and note x
>      >      >      >     the cross product,
>      >      >      >     P3P2xP3P1 is the outward normal to face P1P2P3
>      >      >      >     P0P2xP0P3              "                P0P2P3
>      >      >      >     P3P1xP3P0              "                P0P1P3
>      >      >      >     P0P1xP0P2              "                P0P1P2
>      >      >      >     Have I been lucky but can't expect it to be true ?
>      >      >      >
>      >      >      >     (Alternatively, there is a link between the normals
>      >     and the
>      >      >     element
>      >      >      >     Jacobian, but I don't know the formula and can 
>     find them)
>      >      >      >
>      >      >      >
>      >      >      >     Thanks,
>      >      >      >
>      >      >      >     --
>      >      >      >     Nicolas
>      >      >      >
>      >      >      >     On 08/02/2021 15:19, Matthew Knepley wrote:
>      >      >      >      > On Mon, Feb 8, 2021 at 6:01 AM Nicolas Barral
>      >      >      >      > <nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>
>      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>>
>      >      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>
>      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>>>
>      >      >      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>
>      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>>
>      >      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>
>      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>>>>
>      >      >      >      > <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>
>      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>>
>      >      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>
>      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>>>
>      >      >      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>
>      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>>
>      >      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>
>      >     <mailto:nicolas.barral at math.u-bordeaux.fr
>     <mailto:nicolas.barral at math.u-bordeaux.fr>>>>>> wrote:
>      >      >      >      >
>      >      >      >      >     Hi all,
>      >      >      >      >
>      >      >      >      >     Can I make any assumption on the
>     orientation of
>      >     triangular
>      >      >      >     facets in a
>      >      >      >      >     tetrahedral plex ? I need the inward facet
>      >     normals. Do
>      >      >     I need
>      >      >      >     to use
>      >      >      >      >     DMPlexGetOrientedFace or can I rely on
>     either
>      >     the tet
>      >      >     vertices
>      >      >      >      >     ordering,
>      >      >      >      >     or the faces ordering ? Could
>      >      >     DMPlexGetRawFaces_Internal be
>      >      >      >     enough ?
>      >      >      >      >
>      >      >      >      >
>      >      >      >      > You can do it by hand, but you have to
>     account for
>      >     the face
>      >      >      >     orientation
>      >      >      >      > relative to the cell. That is what
>      >      >      >      > DMPlexGetOrientedFace() does. I think it
>     would be
>      >     easier
>      >      >     to use the
>      >      >      >      > function below.
>      >      >      >      >
>      >      >      >      >     Alternatively, is there a function that
>      >     computes the
>      >      >     normals
>      >      >      >     - without
>      >      >      >      >     bringing out the big guns ?
>      >      >      >      >
>      >      >      >      >
>      >      >      >      > This will compute the normals
>      >      >      >      >
>      >      >      >      >
>      >      >      >
>      >      >
>      >
>     https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DMPLEX/DMPlexComputeCellGeometryFVM.html
>      >      >      >      > Should not be too heavy weight.
>      >      >      >      >
>      >      >      >      >    THanks,
>      >      >      >      >
>      >      >      >      >      Matt
>      >      >      >      >
>      >      >      >      >     Thanks
>      >      >      >      >
>      >      >      >      >     --
>      >      >      >      >     Nicolas
>      >      >      >      >
>      >      >      >      >
>      >      >      >      >
>      >      >      >      > --
>      >      >      >      > What most experimenters take for granted before
>      >     they begin
>      >      >     their
>      >      >      >      > experiments is infinitely more interesting
>     than any
>      >      >     results to which
>      >      >      >      > their experiments lead.
>      >      >      >      > -- Norbert Wiener
>      >      >      >      >
>      >      >      >      > https://www.cse.buffalo.edu/~knepley/
>      >      >      >     <http://www.cse.buffalo.edu/~knepley/>
>      >      >      >
>      >      >      >
>      >      >      >
>      >      >      > --
>      >      >      > What most experimenters take for granted before
>     they begin
>      >     their
>      >      >      > experiments is infinitely more interesting than any
>      >     results to which
>      >      >      > their experiments lead.
>      >      >      > -- Norbert Wiener
>      >      >      >
>      >      >      > https://www.cse.buffalo.edu/~knepley/
>      >      >     <http://www.cse.buffalo.edu/~knepley/>
>      >      >
>      >      >
>      >      >
>      >      > --
>      >      > What most experimenters take for granted before they begin
>     their
>      >      > experiments is infinitely more interesting than any
>     results to which
>      >      > their experiments lead.
>      >      > -- Norbert Wiener
>      >      >
>      >      > https://www.cse.buffalo.edu/~knepley/
>      >     <http://www.cse.buffalo.edu/~knepley/>
>      >
>      >
>      >
>      > --
>      > What most experimenters take for granted before they begin their
>      > experiments is infinitely more interesting than any results to which
>      > their experiments lead.
>      > -- Norbert Wiener
>      >
>      > https://www.cse.buffalo.edu/~knepley/
>     <http://www.cse.buffalo.edu/~knepley/>
> 
> 
> 
> -- 
> What most experimenters take for granted before they begin their 
> experiments is infinitely more interesting than any results to which 
> their experiments lead.
> -- Norbert Wiener
> 
> https://www.cse.buffalo.edu/~knepley/ <http://www.cse.buffalo.edu/~knepley/>


More information about the petsc-users mailing list