[petsc-users] CUDA error

Mark Adams mfadams at lbl.gov
Wed Apr 15 14:14:16 CDT 2020


Thanks, it looks correct. I am getting memory leaks (appended)

And something horrible is going on with performance:

MatLUFactorNum       130 1.0 9.2220e+00 1.0 6.51e+08 1.0 0.0e+00 0.0e+00
0.0e+00 30  0  0  0  0  30  0  0  0  0    71       0    390 3.33e+02    0
0.00e+00  0

MatLUFactorNum       130 1.0 6.5177e-01 1.0 1.28e+09 1.0 0.0e+00 0.0e+00
0.0e+00  4  1  0  0  0   4  1  0  0  0  1966       0      0 0.00e+00    0
0.00e+00  0

This is not urgent, but I'd like to get a serial LU GPU solver at
some point.

Thanks again,
Mark

Lots of these:
[ 0]32 bytes VecCUDAAllocateCheck() line 34 in
/autofs/nccs-svm1_home1/adams/petsc/src/vec/vec/impls/seq/seqcuda/
veccuda2.cu
[ 0]32 bytes VecCUDAAllocateCheck() line 34 in
/autofs/nccs-svm1_home1/adams/petsc/src/vec/vec/impls/seq/seqcuda/
veccuda2.cu
[ 0]32 bytes VecCUDAAllocateCheck() line 34 in
/autofs/nccs-svm1_home1/adams/petsc/src/vec/vec/impls/seq/seqcuda/
veccuda2.cu

On Wed, Apr 15, 2020 at 12:47 PM Stefano Zampini <stefano.zampini at gmail.com>
wrote:

> Mark
>
> attached is the patch. I will open an MR in the next days if you confirm
> it is working for you
> The issue is that CUSPARSE does not have a way to compute the triangular
> factors, so we demand the computation of the factors to PETSc (CPU). These
> factors are then copied to the GPU.
> What was happening in the second step of SNES, was that the factors were
> never updated since the offloadmask was never updated.
>
> The real issue is that the CUSPARSE support in PETSc is really in bad
> shape and mostly untested, with coding solutions that are probably outdated
> now.
> I'll see what I can do to fix the class if I have time in the next weeks.
>
> Stefano
>
> Il giorno mer 15 apr 2020 alle ore 17:21 Mark Adams <mfadams at lbl.gov> ha
> scritto:
>
>>
>>
>> On Wed, Apr 15, 2020 at 8:24 AM Stefano Zampini <
>> stefano.zampini at gmail.com> wrote:
>>
>>> Mark
>>>
>>> I have fixed few things in the solver and it is tested with the current
>>> master.
>>>
>>
>> I rebased with master over the weekend ....
>>
>>
>>> Can you write a MWE to reproduce the issue? Which version of CUDA and
>>> CUSPARSE are you using?
>>>
>>
>> You can use mark/feature-xgc-interface-rebase branch and add '-mat_type
>> seqaijcusparse -fp_pc_factor_mat_solver_type cusparse
>> -mat_cusparse_storage_format ell -vec_type cuda'
>> to dm/impls/plex/tutorials/ex10.c
>>
>> The first stage, SNES solve, actually looks OK here. Maybe.
>>
>> Thanks,
>>
>> 10:01 mark/feature-xgc-interface-rebase *= ~/petsc$ make -f gmakefile
>> test search='dm_impls_plex_tutorials-ex10_0'
>> /usr/bin/python /ccs/home/adams/petsc/config/gmakegentest.py
>> --petsc-dir=/ccs/home/adams/petsc --petsc-arch=arch-summit-opt64-gnu-cuda
>> --testdir=./arch-summit-opt64-gnu-cuda/tests
>> Using MAKEFLAGS: search=dm_impls_plex_tutorials-ex10_0
>>           CC
>> arch-summit-opt64-gnu-cuda/tests/dm/impls/plex/tutorials/ex10.o
>>      CLINKER arch-summit-opt64-gnu-cuda/tests/dm/impls/plex/tutorials/ex10
>>         TEST
>> arch-summit-opt64-gnu-cuda/tests/counts/dm_impls_plex_tutorials-ex10_0.counts
>>  ok dm_impls_plex_tutorials-ex10_0
>> not ok diff-dm_impls_plex_tutorials-ex10_0 # Error code: 1
>> #       14,16c14,16
>> #       <     0 SNES Function norm 6.184233768573e-04
>> #       <     1 SNES Function norm 1.467479466750e-08
>> #       <     2 SNES Function norm 7.863111141350e-12
>> #       ---
>> #       >     0 SNES Function norm 6.184233768572e-04
>> #       >     1 SNES Function norm 1.467479466739e-08
>> #       >     2 SNES Function norm 7.863102870090e-12
>> #       18,31c18,256
>> #       <     0 SNES Function norm 6.182952107532e-04
>> #       <     1 SNES Function norm 7.336382211149e-09
>> #       <     2 SNES Function norm 1.566979901443e-11
>> #       <   Nonlinear fp_ solve converged due to CONVERGED_FNORM_RELATIVE
>> iterations 2
>> #       <     0 SNES Function norm 6.183592738545e-04
>> #       <     1 SNES Function norm 7.337681407420e-09
>> #       <     2 SNES Function norm 1.408823933908e-11
>> #       <   Nonlinear fp_ solve converged due to CONVERGED_FNORM_RELATIVE
>> iterations 2
>> #       < [0] TSAdaptChoose_Basic(): Estimated scaled local truncation
>> error 0.0396569, accepting step of size 1e-06
>> #       < 1 TS dt 1.25e-06 time 1e-06
>> #       <   1) species-0: charge density= -1.6024814608984e+01
>> z-momentum=  2.0080682964364e-19 energy=  1.2018000284846e+05
>> #       <   1) species-1: charge density=  1.6021676653316e+01
>> z-momentum=  1.4964483981137e-17 energy=  1.2017223215083e+05
>> #       <   1) species-2: charge density=  2.8838441139703e-03
>> z-momentum= -1.1062018110807e-23 energy=  1.2019641370376e-03
>> #       <         1) Total: charge density= -2.5411155383649e-04,
>> momentum=  1.5165279748763e-17, energy=  2.4035223620125e+05 (m_i[0]/m_e =
>> 3670.94, 140 cells), 1 sub threads
>> #       ---
>> #       >     0 SNES Function norm 6.182952107531e-04
>> #       >     1 SNES Function norm 6.181600164904e-04
>> #       >     2 SNES Function norm 6.180249471739e-04
>> #       >     3 SNES Function norm 6.178899987549e-04
>>
>>
>>> I was planning to reorganize the factor code in AIJCUSPARSE in the next
>>> days.
>>>
>>> kl-18967:petsc zampins$ git grep "solver_type cusparse"
>>> src/ksp/ksp/examples/tests/ex43.c:      args: -f
>>> ${DATAFILESPATH}/matrices/cfd.2.10 -mat_type seqaijcusparse -pc_factor_mat_*solver_type
>>> cusparse* -mat_cusparse_storage_format ell -vec_type cuda -pc_type ilu
>>> src/ksp/ksp/examples/tests/ex43.c:      args: -f
>>> ${DATAFILESPATH}/matrices/shallow_water1 -mat_type seqaijcusparse
>>> -pc_factor_mat_*solver_type cusparse* -mat_cusparse_storage_format hyb
>>> -vec_type cuda -ksp_type cg -pc_type icc
>>> src/ksp/ksp/examples/tests/ex43.c:      args: -f
>>> ${DATAFILESPATH}/matrices/cfd.2.10 -mat_type seqaijcusparse -pc_factor_mat_*solver_type
>>> cusparse* -mat_cusparse_storage_format csr -vec_type cuda -ksp_type
>>> bicg -pc_type ilu
>>> src/ksp/ksp/examples/tests/ex43.c:      args: -f
>>> ${DATAFILESPATH}/matrices/cfd.2.10 -mat_type seqaijcusparse -pc_factor_mat_*solver_type
>>> cusparse* -mat_cusparse_storage_format csr -vec_type cuda -ksp_type
>>> bicg -pc_type ilu -pc_factor_mat_ordering_type nd
>>> src/ksp/ksp/examples/tutorials/ex46.c:      args: -dm_mat_type
>>> aijcusparse -dm_vec_type cuda -random_exact_sol -pc_type ilu -pc_factor_mat_*solver_type
>>> cusparse*
>>> src/ksp/ksp/examples/tutorials/ex59.c:     args: -subdomain_mat_type
>>> aijcusparse -physical_pc_bddc_dirichlet_pc_factor_mat_*solver_type
>>> cusparse*
>>> src/ksp/ksp/examples/tutorials/ex7.c:      args: -ksp_monitor_short
>>> -mat_type aijcusparse -sub_pc_factor_mat_*solver_type cusparse*
>>> -vec_type cuda -sub_ksp_type preonly -sub_pc_type ilu
>>> src/ksp/ksp/examples/tutorials/ex7.c:      args: -ksp_monitor_short
>>> -mat_type aijcusparse -sub_pc_factor_mat_*solver_type cusparse*
>>> -vec_type cuda -sub_ksp_type preonly -sub_pc_type ilu
>>> src/ksp/ksp/examples/tutorials/ex7.c:      args: -ksp_monitor_short
>>> -mat_type aijcusparse -sub_pc_factor_mat_*solver_type cusparse*
>>> -vec_type cuda
>>> src/ksp/ksp/examples/tutorials/ex7.c:      args: -ksp_monitor_short
>>> -mat_type aijcusparse -sub_pc_factor_mat_*solver_type cusparse*
>>> -vec_type cuda
>>> src/ksp/ksp/examples/tutorials/ex71.c:   args: -pde_type Poisson -cells
>>> 7,9,8 -dim 3 -ksp_view -pc_bddc_coarse_redundant_pc_type svd
>>> -ksp_error_if_not_converged -pc_bddc_dirichlet_pc_type cholesky
>>> -pc_bddc_dirichlet_pc_factor_mat_*solver_type cusparse*
>>> -pc_bddc_dirichlet_pc_factor_mat_ordering_type nd -pc_bddc_neumann_pc_type
>>> cholesky -pc_bddc_neumann_pc_factor_mat_*solver_type cusparse*
>>> -pc_bddc_neumann_pc_factor_mat_ordering_type nd -matis_localmat_type
>>> aijcusparse
>>> src/ksp/ksp/examples/tutorials/ex72.c:      args: -f0
>>> ${DATAFILESPATH}/matrices/medium -ksp_monitor_short -ksp_view -mat_view
>>> ascii::ascii_info -mat_type aijcusparse -pc_factor_mat_*solver_type
>>> cusparse* -pc_type ilu -vec_type cuda
>>> src/snes/examples/tutorials/ex12.c:      args: -matis_localmat_type
>>> aijcusparse -pc_bddc_dirichlet_pc_factor_mat_*solver_type cusparse*
>>> -pc_bddc_neumann_pc_factor_mat_*solver_type cusparse*
>>>
>>> On Apr 15, 2020, at 2:20 PM, Mark Adams <mfadams at lbl.gov> wrote:
>>>
>>> I tried using a serial direct solver in cusparse and got bad numerics:
>>>
>>> -vector_type cuda -mat_type aijcusparse -pc_factor_mat_solver_type
>>> cusparse
>>>
>>> Before I start debugging this I wanted to see if there are any known
>>> issues that I should be aware of.
>>>
>>> Thanks,
>>>
>>>
>>>
>
> --
> Stefano
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20200415/f4be2efe/attachment.html>


More information about the petsc-users mailing list