[petsc-users] Singlar values of the GMRES Hessenberg matrix
Matthew Knepley
knepley at gmail.com
Thu May 23 05:20:19 CDT 2019
On Thu, May 23, 2019 at 5:09 AM Dave Lee via petsc-users <
petsc-users at mcs.anl.gov> wrote:
> Hi PETSc,
>
> I'm trying to add a "hook step" to the SNES trust region solver (at the
> end of the function: KSPGMRESBuildSoln())
>
> I'm testing this using the (linear) example:
> src/ksp/ksp/examples/tutorials/ex1.c
> as
> gdb --args ./test -snes_mf -snes_type newtontr -ksp_rtol 1.0e-12
> -snes_stol 1.0e-12 -ksp_converged_reason -snes_converged_reason
> -ksp_monitor -snes_monitor
> (Ignore the SNES stuff, this is for when I test nonlinear examples).
>
> When I call the LAPACK SVD routine via PETSc as
> PetscStackCallBLAS("LAPACKgesvd",LAPACKgesvd_(...))
> I get the following singular values:
>
> 0 KSP Residual norm 7.071067811865e-01
> 1 KSP Residual norm 3.162277660168e-01
> 2 KSP Residual norm 1.889822365046e-01
> 3 KSP Residual norm 1.290994448736e-01
> 4 KSP Residual norm 9.534625892456e-02
> 5 KSP Residual norm 8.082545620881e-16
>
> 1 0.5 -7.85046e-16 1.17757e-15
> 0.5 1 0.5 1.7271e-15
> 0 0.5 1 0.5
> 0 0 0.5 1
> 0 0 0 0.5
>
> singular values: 2.36264 0.409816 1.97794e-15 6.67632e-16
>
> Linear solve converged due to CONVERGED_RTOL iterations 5
>
> Where the lines above the singular values are the Hessenberg matrix that
> I'm doing the SVD on.
>
First, write out all the SVD matrices you get and make sure that they
reconstruct the input matrix (that
you do not have something transposed somewhere).
Matt
> When I build the solution in terms of the leading two right singular
> vectors (and subsequently the first two orthonormal basis vectors in
> VECS_VV I get an error norm as:
> Norm of error 3.16228, Iterations 5
>
> My suspicion is that I'm creating the Hessenberg incorrectly, as I would
> have thought that this problem should have more than two non-zero leading
> singular values.
>
> Within my modified version of the GMRES build solution function (attached)
> I'm creating this (and passing it to LAPACK as):
>
> nRows = gmres->it+1;
> nCols = nRows-1;
>
> ierr = PetscBLASIntCast(nRows,&nRows_blas);CHKERRQ(ierr);
> ierr = PetscBLASIntCast(nCols,&nCols_blas);CHKERRQ(ierr);
> ierr = PetscBLASIntCast(5*nRows,&lwork);CHKERRQ(ierr);
> ierr = PetscMalloc1(5*nRows,&work);CHKERRQ(ierr);
> ierr = PetscMalloc1(nRows*nCols,&R);CHKERRQ(ierr);
> ierr = PetscMalloc1(nRows*nCols,&H);CHKERRQ(ierr);
> for (jj = 0; jj < nRows; jj++) {
> for (ii = 0; ii < nCols; ii++) {
> R[jj*nCols+ii] = *HES(jj,ii);
> }
> }
> // Duplicate the Hessenberg matrix as the one passed to the SVD solver
> is destroyed
> for (ii=0; ii<nRows*nCols; ii++) H[ii] = R[ii];
>
> ierr = PetscMalloc1(nRows*nRows,&U);CHKERRQ(ierr);
> ierr = PetscMalloc1(nCols*nCols,&VT);CHKERRQ(ierr);
> ierr = PetscMalloc1(nRows*nRows,&UT);CHKERRQ(ierr);
> ierr = PetscMalloc1(nCols*nCols,&V);CHKERRQ(ierr);
> ierr = PetscMalloc1(nRows,&p);CHKERRQ(ierr);
> ierr = PetscMalloc1(nCols,&q);CHKERRQ(ierr);
> ierr = PetscMalloc1(nCols,&y);CHKERRQ(ierr);
>
> // Perform an SVD on the Hessenberg matrix - Note: this call destroys
> the input Hessenberg
> ierr = PetscFPTrapPush(PETSC_FP_TRAP_OFF);CHKERRQ(ierr);
>
> PetscStackCallBLAS("LAPACKgesvd",LAPACKgesvd_("A","A",&nRows_blas,&nCols_blas,R,&nRows_blas,S,UT,&nRows_blas,V,&nCols_blas,work,&lwork,&lierr));
> if (lierr) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error in SVD Lapack
> routine %d",(int)lierr);
> ierr = PetscFPTrapPop();CHKERRQ(ierr);
>
> // Find the number of non-zero singular values
> for(nnz=0; nnz<nCols; nnz++) {
> if(fabs(S[nnz]) < 1.0e-8) break;
> }
> printf("number of nonzero singular values: %d\n",nnz);
>
> trans(nRows,nRows,UT,U);
> trans(nCols,nCols,V,VT);
>
> // Compute p = ||r_0|| U^T e_1
> beta = gmres->res_beta;
> for (ii=0; ii<nCols; ii++) {
> p[ii] = beta*UT[ii*nRows];
> }
> p[nCols] = 0.0;
>
> // Original GMRES solution (\mu = 0)
> for (ii=0; ii<nnz; ii++) {
> q[ii] = p[ii]/S[ii];
> }
>
> // Expand y in terms of the right singular vectors as y = V q
> for (jj=0; jj<nnz; jj++) {
> y[jj] = 0.0;
> for (ii=0; ii<nCols; ii++) {
> y[jj] += V[jj*nCols+ii]*q[ii]; // transpose of the transpose
> }
> }
>
> // Pass the orthnomalized Krylov vector weights back out
> for (ii=0; ii<nnz; ii++) {
> nrs[ii] = y[ii];
> }
>
> I just wanted to check that this is the correct way to extract the
> Hessenberg from the KSP_GMRES structure, and to pass it to LAPACK, and if
> so, should I really be expecting only two non-zero singular values in
> return for this problem?
>
> Cheers, Dave.
>
--
What most experimenters take for granted before they begin their
experiments is infinitely more interesting than any results to which their
experiments lead.
-- Norbert Wiener
https://www.cse.buffalo.edu/~knepley/ <http://www.cse.buffalo.edu/~knepley/>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20190523/97804f56/attachment.html>
More information about the petsc-users
mailing list