[petsc-users] PETSc (3.9.0) GAMG weak scaling test issue

"Alberto F. Martín" amartin at cimne.upc.edu
Mon Nov 19 04:52:12 CST 2018


Dear Mark, Dear Matthew,

in order to discard load imbalance as the cause of the reported weak 
scaling issue in the GAMG preconditioner
set-up stage (as you said, we were feeding GAMG with a suboptimal mesh 
distribution, having empty processors,
among others), we simplified the weak scaling test by considering the 
standard body-fitted trilinear (Q1) FE discretization
of the 3D Poisson problem on a unit cube discretized with a */uniform, 
structured hexahedral mesh,/* /*partitioned*//*
*//*optimally (by hand) among processors*/, with a fixed load/core of 
30**3 hexahedra/core. Thus, all processors have the same load
(up-to strong Dirichlet boundary conditions on the subdomains touching 
the global boundary), and the edge-cut is minimum.

We used the following GAMG preconditioner options:

-pc_type gamg
-pc_gamg_type agg
-pc_gamg_est_ksp_type cg
-mg_levels_esteig_ksp_type cg
-mg_coarse_sub_pc_type cholesky
-mg_coarse_sub_pc_factor_mat_ordering_type nd
-pc_gamg_process_eq_limit 50
-pc_gamg_square_graph 10
-pc_gamg_agg_nsmooths 1

The results that we obtained for 48 (4x4x3 subdomains),  10,368 
(24x24x18 subdomains),  and 16,464
(28x28x21 subdomains) CPU cores are as follows:

**preconditioner set up**
[0.9844961860, *7.017674042*, *12.10154881*]

**PCG stage**
[0.5849160422, 1.515251888, 1.859617710]

**number of PCG iterations**
[9,14,15]

As you can observe, *there is still a significant time increase when 
scaling the problem from 48 to 10K/16K MPI tasks**
**for the preconditioner setup stage. *This time increase is not as 
significant for the PCG stage.**Please find attached the combined
output of -ksp_view and -log_view for these three points of the weak 
scaling curve.

Given these results, I am starting to suspect that something within the 
underlying software + hardware stack might be
responsible for this. I am using OpenMPI 1.10.7 + Intel compilers 
version 18.0. The underlying supercomputer is MN-IV at
BSC (https://www.bsc.es/marenostrum/marenostrum/technical-information). 
Have you ever conducted a weak scaling test
of GAMG with OpenMPI on a similar computer architecture? Can you share 
your experience with us?
(versions tested, outcome, etc.)

We also tried an alternative MPI library, Intel(R) MPI Library for 
Linux* OS, Version 2018 Update 4 Build 20180823 (id: 18555),
*without success. *For this MPI library, the preconditioner set-up stage 
crashes (find attached stack frames, and internal MPI library
errors) for the largest two core counts (it did not crash for the 48 CPU 
cores case), while it did not crash with OpenMPI 1.10.7.
Have you ever experienced errors like the ones
attached? Is there anyway to set up PETSc such that the subroutine that 
crashes is replaced by an alternative implementation of
the same concept? (this would be just a workaround). It might be a BUG 
in the Intel MPI library, although I cannot confirm it. We also got
these errors with the unfitted FEM+space-filling curves version of our code.

Thanks a lot for your help and valuable feedback!
Best regards,
  Alberto.









On 08/11/18 17:29, Mark Adams wrote:
>
>
>     I did not configured PETSc with ParMetis support. Should I?
>
>     I figured it out when I tried to use "-pc_gamg_repartition". PETSc
>     complained that it was not compiled with ParMetis support.
>
>
> You need ParMetis, or some parallel mesh partitioner, configured to 
> use repartitioning. I would guess that "-pc_gamg_repartition" would 
> not help and might hurt, because it just does the coarse grids, not 
> the fine grid. But it is worth a try. Just configure with 
> --download-parmetis
>
> The problem is that you are using space filling curves on the 
> background grid and are getting empty processors. Right?  The mesh 
> setup phase is not super optimized, but your times
>
> And you said in your attachment that you added the near null space, 
> but just the constant vector. I trust you mean the three translational 
> rigid body modes. That is the default and so you should not see any 
> difference. If you added one vector of all 1s then that would be bad. 
> You also want the rotational rigid body modes. Now, you are converging 
> pretty well and if your solution does not have much rotation in it the 
> the rotational modes are not needed, but they are required for 
> optimality in general.
>

-- 
Alberto F. Martín-Huertas
Senior Researcher, PhD. Computational Science
Centre Internacional de Mètodes Numèrics a l'Enginyeria (CIMNE)
Parc Mediterrani de la Tecnologia, UPC
Esteve Terradas 5, Building C3, Office 215,
08860 Castelldefels (Barcelona, Spain)
Tel.: (+34) 9341 34223
e-mail:amartin at cimne.upc.edu

FEMPAR project co-founder
web: http://www.fempar.org

________________
IMPORTANT NOTICE
All personal data contained on this mail will be processed confidentially and registered in a file property of CIMNE in
order to manage corporate communications. You may exercise the rights of access, rectification, erasure and object by
letter sent to Ed. C1 Campus Norte UPC. Gran Capitán s/n Barcelona.

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20181119/f900cf40/attachment-0001.html>
-------------- next part --------------
KSP Object: 48 MPI processes
  type: cg
  maximum iterations=500, initial guess is zero
  tolerances:  relative=1e-08, absolute=1e-50, divergence=10000.
  left preconditioning
  using UNPRECONDITIONED norm type for convergence test
PC Object: 48 MPI processes
  type: gamg
    type is MULTIPLICATIVE, levels=4 cycles=v
      Cycles per PCApply=1
      Using externally compute Galerkin coarse grid matrices
      GAMG specific options
        Threshold for dropping small values in graph on each level =   0.   0.  
        Threshold scaling factor for each level not specified = 1.
        AGG specific options
          Symmetric graph false
          Number of levels to square graph 10
          Number smoothing steps 1
  Coarse grid solver -- level -------------------------------
        KSP Object: (mg_coarse_) 48 MPI processes
          type: preonly
          maximum iterations=10000, initial guess is zero
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
          left preconditioning
          using NONE norm type for convergence test
        PC Object: (mg_coarse_) 48 MPI processes
          type: bjacobi
            number of blocks = 48
            Local solve is same for all blocks, in the following KSP and PC objects:
          KSP Object: (mg_coarse_sub_) 1 MPI processes
            type: preonly
            maximum iterations=1, initial guess is zero
            tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
            left preconditioning
            using NONE norm type for convergence test
          PC Object: (mg_coarse_sub_) 1 MPI processes
            type: cholesky
              out-of-place factorization
              tolerance for zero pivot 2.22045e-14
              matrix ordering: nd
              factor fill ratio given 5., needed 1.
                Factored matrix follows:
                  Mat Object: 1 MPI processes
                    type: seqsbaij
                    rows=6, cols=6
                    package used to perform factorization: petsc
                    total: nonzeros=21, allocated nonzeros=21
                    total number of mallocs used during MatSetValues calls =0
                        block size is 1
            linear system matrix = precond matrix:
            Mat Object: 1 MPI processes
              type: seqaij
              rows=6, cols=6
              total: nonzeros=36, allocated nonzeros=36
              total number of mallocs used during MatSetValues calls =0
                using I-node routines: found 2 nodes, limit used is 5
          linear system matrix = precond matrix:
          Mat Object: 48 MPI processes
            type: mpiaij
            rows=6, cols=6
            total: nonzeros=36, allocated nonzeros=36
            total number of mallocs used during MatSetValues calls =0
              using I-node (on process 0) routines: found 2 nodes, limit used is 5
  Down solver (pre-smoother) on level 1 -------------------------------
      KSP Object: (mg_levels_1_) 48 MPI processes
        type: chebyshev
          eigenvalue estimates used:  min = 0.135917, max = 1.49508
          eigenvalues estimate via cg min 0.269407, max 1.35917
          eigenvalues estimated using cg with translations  [0. 0.1; 0. 1.1]
        KSP Object: (mg_levels_1_esteig_) 48 MPI processes
          type: cg
          maximum iterations=10, initial guess is zero
          tolerances:  relative=1e-12, absolute=1e-50, divergence=10000.
          left preconditioning
          using PRECONDITIONED norm type for convergence test
          estimating eigenvalues using noisy right hand side
        maximum iterations=2, nonzero initial guess
        tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
        left preconditioning
        using NONE norm type for convergence test
      PC Object: (mg_levels_1_) 48 MPI processes
        type: sor
          type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.
        linear system matrix = precond matrix:
        Mat Object: 48 MPI processes
          type: mpiaij
          rows=359, cols=359
          total: nonzeros=17751, allocated nonzeros=17751
          total number of mallocs used during MatSetValues calls =0
            not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 2 -------------------------------
    KSP Object: (mg_levels_2_) 48 MPI processes
      type: chebyshev
        eigenvalue estimates used:  min = 0.137555, max = 1.5131
        eigenvalues estimate via cg min 0.0576414, max 1.37555
        eigenvalues estimated using cg with translations  [0. 0.1; 0. 1.1]
      KSP Object: (mg_levels_2_esteig_) 48 MPI processes
        type: cg
        maximum iterations=10, initial guess is zero
        tolerances:  relative=1e-12, absolute=1e-50, divergence=10000.
        left preconditioning
        using PRECONDITIONED norm type for convergence test
        estimating eigenvalues using noisy right hand side
      maximum iterations=2, nonzero initial guess
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
      left preconditioning
      using NONE norm type for convergence test
    PC Object: (mg_levels_2_) 48 MPI processes
      type: sor
        type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.
      linear system matrix = precond matrix:
      Mat Object: 48 MPI processes
        type: mpiaij
        rows=27123, cols=27123
        total: nonzeros=1144833, allocated nonzeros=1144833
        total number of mallocs used during MatSetValues calls =0
          using nonscalable MatPtAP() implementation
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 3 -------------------------------
  KSP Object: (mg_levels_3_) 48 MPI processes
    type: chebyshev
      eigenvalue estimates used:  min = 0.136454, max = 1.50099
      eigenvalues estimate via cg min 0.0376067, max 1.36454
      eigenvalues estimated using cg with translations  [0. 0.1; 0. 1.1]
    KSP Object: (mg_levels_3_esteig_) 48 MPI processes
      type: cg
      maximum iterations=10, initial guess is zero
      tolerances:  relative=1e-12, absolute=1e-50, divergence=10000.
      left preconditioning
      using PRECONDITIONED norm type for convergence test
      estimating eigenvalues using noisy right hand side
    maximum iterations=2, nonzero initial guess
    tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
    left preconditioning
    using NONE norm type for convergence test
  PC Object: (mg_levels_3_) 48 MPI processes
    type: sor
      type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.
    linear system matrix = precond matrix:
    Mat Object: 48 MPI processes
      type: mpiaij
      rows=1260329, cols=1260329
      total: nonzeros=33396625, allocated nonzeros=252065800
      total number of mallocs used during MatSetValues calls =0
        not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  linear system matrix = precond matrix:
  Mat Object: 48 MPI processes
    type: mpiaij
    rows=1260329, cols=1260329
    total: nonzeros=33396625, allocated nonzeros=252065800
    total number of mallocs used during MatSetValues calls =0
      not using I-node (on process 0) routines
************************************************************************************************************************
***             WIDEN YOUR WINDOW TO 120 CHARACTERS.  Use 'enscript -r -fCourier9' to print this document            ***
************************************************************************************************************************

---------------------------------------------- PETSc Performance Summary: ----------------------------------------------

/gpfs/scratch/upc26/upc26229/build_rel_fempar_cell_agg_ompi/FEMPAR/bin/par_test_poisson_unfitted on a arch-linux2-c-opt named s05r2b62 with 48 processors, by upc26229 Fri Nov 16 09:37:39 2018
Using Petsc Release Version 3.9.0, Apr, 07, 2018 

                         Max       Max/Min        Avg      Total 
Time (sec):           2.318e+01      1.00000   2.318e+01
Objects:              1.250e+03      1.00241   1.247e+03
Flop:                 8.936e+08      1.13741   8.557e+08  4.107e+10
Flop/sec:            3.855e+07      1.13741   3.692e+07  1.772e+09
MPI Messages:         2.001e+04      3.63905   1.109e+04  5.322e+05
MPI Message Lengths:  7.575e+07      2.25574   4.717e+03  2.510e+09
MPI Reductions:       1.773e+03      1.00000

Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
                            e.g., VecAXPY() for real vectors of length N --> 2N flop
                            and VecAXPY() for complex vectors of length N --> 8N flop

Summary of Stages:   ----- Time ------  ----- Flop -----  --- Messages ---  -- Message Lengths --  -- Reductions --
                        Avg     %Total     Avg     %Total   counts   %Total     Avg         %Total   counts   %Total 
 0:      Main Stage: 2.3173e+01 100.0%  4.1074e+10 100.0%  5.322e+05 100.0%  4.717e+03      100.0%  1.759e+03  99.2% 

------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
   Count: number of times phase was executed
   Time and Flop: Max - maximum over all processors
                   Ratio - ratio of maximum to minimum over all processors
   Mess: number of messages sent
   Avg. len: average message length (bytes)
   Reduct: number of global reductions
   Global: entire computation
   Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
      %T - percent time in this phase         %F - percent flop in this phase
      %M - percent messages in this phase     %L - percent message lengths in this phase
      %R - percent reductions in this phase
   Total Mflop/s: 10e-6 * (sum of flop over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------
Event                Count      Time (sec)     Flop                             --- Global ---  --- Stage ---   Total
                   Max Ratio  Max     Ratio   Max  Ratio  Mess   Avg len Reduct  %T %F %M %L %R  %T %F %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------

--- Event Stage 0: Main Stage

BuildTwoSided          9 1.0 8.8800e-03 4.2 0.00e+00 0.0 2.0e+03 8.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
BuildTwoSidedF       126 1.0 4.4196e-01 5.4 0.00e+00 0.0 1.6e+04 8.5e+04 0.0e+00  1  0  3 55  0   1  0  3 55  0     0
VecMDot               90 1.0 2.2851e-02 3.4 9.11e+06 1.1 0.0e+00 0.0e+00 9.0e+01  0  1  0  0  5   0  1  0  0  5 18597
VecTDot              243 1.0 9.9924e-02 9.2 6.39e+06 1.1 0.0e+00 0.0e+00 2.4e+02  0  1  0  0 14   0  1  0  0 14  2986
VecNorm              228 1.0 3.5723e-02 1.8 5.26e+06 1.1 0.0e+00 0.0e+00 2.3e+02  0  1  0  0 13   0  1  0  0 13  6875
VecScale              99 1.0 7.8892e-0313.7 9.11e+05 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0  5387
VecCopy              114 1.0 2.5488e-03 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet               483 1.0 1.8528e-03 1.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY              243 1.0 6.3856e-03 1.2 6.39e+06 1.1 0.0e+00 0.0e+00 0.0e+00  0  1  0  0  0   0  1  0  0  0 46727
VecAYPX              753 1.0 2.2839e-02 1.3 1.02e+07 1.1 0.0e+00 0.0e+00 0.0e+00  0  1  0  0  0   0  1  0  0  0 20918
VecAXPBYCZ           324 1.0 1.2422e-02 1.1 1.49e+07 1.1 0.0e+00 0.0e+00 0.0e+00  0  2  0  0  0   0  2  0  0  0 55982
VecMAXPY              99 1.0 9.3288e-03 2.0 1.08e+07 1.1 0.0e+00 0.0e+00 0.0e+00  0  1  0  0  0   0  1  0  0  0 53838
VecAssemblyBegin      63 1.0 1.4764e-02 2.5 0.00e+00 0.0 1.5e+03 3.1e+03 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAssemblyEnd        63 1.0 3.3262e-04 3.7 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecPointwiseMult      99 1.0 3.4623e-03 1.5 9.11e+05 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0 12275
VecScatterBegin      933 1.0 3.9603e-02 2.8 0.00e+00 0.0 3.9e+05 1.3e+03 0.0e+00  0  0 74 21  0   0  0 74 21  0     0
VecScatterEnd        933 1.0 1.1539e-01 4.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSetRandom           9 1.0 2.5657e-03 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecNormalize          99 1.0 2.0392e-02 2.0 2.73e+06 1.1 0.0e+00 0.0e+00 9.9e+01  0  0  0  0  6   0  0  0  0  6  6252
MatMult              693 1.0 7.2101e-01 1.2 3.68e+08 1.1 3.2e+05 1.4e+03 0.0e+00  3 41 60 17  0   3 41 60 17  0 23339
MatMultAdd            81 1.0 3.0372e-02 1.6 6.32e+06 1.2 2.1e+04 1.5e+02 0.0e+00  0  1  4  0  0   0  1  4  0  0  9453
MatMultTranspose      81 1.0 6.0862e-02 3.8 6.32e+06 1.2 2.1e+04 1.5e+02 0.0e+00  0  1  4  0  0   0  1  4  0  0  4717
MatSolve              27 0.0 7.1588e-05 0.0 1.78e+03 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0    25
MatSOR               585 1.0 9.6473e-01 1.1 2.73e+08 1.1 0.0e+00 0.0e+00 0.0e+00  4 31  0  0  0   4 31  0  0  0 13218
MatCholFctrSym         3 1.0 8.9991e-03497.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatCholFctrNum         3 1.0 6.3463e-031399.7 1.80e+01 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatConvert             9 1.0 3.5641e-02 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatScale              27 1.0 2.1565e-02 1.2 5.23e+06 1.1 4.1e+03 1.3e+03 0.0e+00  0  1  1  0  0   0  1  1  0  0 11095
MatResidual           81 1.0 8.1534e-02 1.4 4.08e+07 1.1 3.7e+04 1.3e+03 0.0e+00  0  5  7  2  0   0  5  7  2  0 22889
MatAssemblyBegin     252 1.0 5.7321e-01 1.5 0.00e+00 0.0 1.5e+04 9.3e+04 0.0e+00  2  0  3 55  0   2  0  3 55  0     0
MatAssemblyEnd       252 1.0 5.3497e-01 1.1 0.00e+00 0.0 4.1e+04 5.6e+02 4.8e+02  2  0  8  1 27   2  0  8  1 27     0
MatGetRow         248445 1.1 2.9776e-02 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatGetRowIJ            3 0.0 1.2791e-02 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatCreateSubMat       12 1.0 2.6623e-02 1.0 0.00e+00 0.0 2.5e+03 3.8e+02 1.9e+02  0  0  0  0 11   0  0  0  0 11     0
MatGetOrdering         3 0.0 1.5566e-02 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatCoarsen             9 1.0 4.3990e-02 1.5 0.00e+00 0.0 2.9e+04 2.5e+03 3.6e+01  0  0  5  3  2   0  0  5  3  2     0
MatZeroEntries        18 1.0 5.3911e-02 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatView               21 1.4 6.7606e-02 2.5 0.00e+00 0.0 0.0e+00 0.0e+00 1.5e+01  0  0  0  0  1   0  0  0  0  1     0
MatAXPY                9 1.0 2.6150e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatMatMult             9 1.0 1.2417e-01 1.2 4.53e+06 1.1 2.3e+04 9.4e+02 1.1e+02  1  1  4  1  6   1  1  4  1  6  1670
MatMatMultSym          9 1.0 1.0047e-01 1.2 0.00e+00 0.0 1.9e+04 8.7e+02 1.1e+02  0  0  4  1  6   0  0  4  1  6     0
MatMatMultNum          9 1.0 2.3698e-02 1.0 4.53e+06 1.1 4.1e+03 1.3e+03 0.0e+00  0  1  1  0  0   0  1  1  0  0  8750
MatPtAP                9 1.0 2.8118e-01 1.0 2.87e+07 1.2 3.6e+04 2.7e+03 1.4e+02  1  3  7  4  8   1  3  7  4  8  4543
MatPtAPSymbolic        9 1.0 2.0049e-01 1.0 0.00e+00 0.0 2.2e+04 3.0e+03 6.3e+01  1  0  4  3  4   1  0  4  3  4     0
MatPtAPNumeric         9 1.0 8.0681e-02 1.0 2.87e+07 1.2 1.4e+04 2.2e+03 7.2e+01  0  3  3  1  4   0  3  3  1  4 15832
MatTrnMatMult          9 1.0 1.9582e+00 1.0 1.37e+08 1.2 2.6e+04 6.3e+04 1.4e+02  8 15  5 66  8   8 15  5 66  8  3150
MatTrnMatMultSym       9 1.0 9.0854e-01 1.0 0.00e+00 0.0 1.2e+04 3.5e+04 6.6e+01  4  0  2 17  4   4  0  2 17  4     0
MatTrnMatMultNum       9 1.0 1.0519e+00 1.0 1.37e+08 1.2 1.4e+04 8.7e+04 7.2e+01  5 15  3 49  4   5 15  3 49  4  5864
MatGetLocalMat        36 1.0 5.1365e-02 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatGetBrAoCol         27 1.0 4.9700e-02 2.0 0.00e+00 0.0 2.8e+04 2.7e+03 0.0e+00  0  0  5  3  0   0  0  5  3  0     0
KSPGMRESOrthog        90 1.0 3.1736e-02 2.3 1.82e+07 1.1 0.0e+00 0.0e+00 9.0e+01  0  2  0  0  5   0  2  0  0  5 26782
KSPSetUp              36 1.0 1.1924e-02 1.9 0.00e+00 0.0 0.0e+00 0.0e+00 2.4e+01  0  0  0  0  1   0  0  0  0  1     0
KSPSolve               3 1.0 1.7241e+00 1.0 6.50e+08 1.1 3.2e+05 1.2e+03 3.7e+02  7 73 60 15 21   7 73 60 15 21 17425
PCGAMGGraph_AGG        9 1.0 3.1316e-01 1.0 4.53e+06 1.1 1.2e+04 8.7e+02 1.1e+02  1  1  2  0  6   1  1  2  0  6   662
PCGAMGCoarse_AGG       9 1.0 2.0449e+00 1.0 1.37e+08 1.2 7.6e+04 2.4e+04 2.1e+02  9 15 14 71 12   9 15 14 71 12  3017
PCGAMGProl_AGG         9 1.0 1.2541e-01 1.1 0.00e+00 0.0 1.5e+04 1.9e+03 1.4e+02  1  0  3  1  8   1  0  3  1  8     0
PCGAMGPOpt_AGG         9 1.0 3.4309e-01 1.0 7.33e+07 1.1 6.4e+04 1.2e+03 3.7e+02  1  8 12  3 21   1  8 12  3 21  9849
GAMG: createProl       9 1.0 2.8587e+00 1.0 2.15e+08 1.2 1.7e+05 1.1e+04 8.3e+02 12 24 31 76 47  12 24 31 76 47  3412
  Graph               18 1.0 3.0684e-01 1.0 4.53e+06 1.1 1.2e+04 8.7e+02 1.1e+02  1  1  2  0  6   1  1  2  0  6   676
  MIS/Agg              9 1.0 4.4147e-02 1.4 0.00e+00 0.0 2.9e+04 2.5e+03 3.6e+01  0  0  5  3  2   0  0  5  3  2     0
  SA: col data         9 1.0 1.2357e-02 1.1 0.00e+00 0.0 8.2e+03 2.8e+03 3.6e+01  0  0  2  1  2   0  0  2  1  2     0
  SA: frmProl0         9 1.0 1.0247e-01 1.0 0.00e+00 0.0 6.7e+03 6.5e+02 7.2e+01  0  0  1  0  4   0  0  1  0  4     0
  SA: smooth           9 1.0 1.6341e-01 1.1 5.23e+06 1.1 2.3e+04 9.4e+02 1.3e+02  1  1  4  1  7   1  1  4  1  7  1464
GAMG: partLevel        9 1.0 3.2724e-01 1.0 2.87e+07 1.2 3.9e+04 2.5e+03 4.4e+02  1  3  7  4 25   1  3  7  4 25  3903
  repartition          6 1.0 2.7110e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 3.6e+01  0  0  0  0  2   0  0  0  0  2     0
  Invert-Sort          6 1.0 7.3382e-03 5.8 0.00e+00 0.0 0.0e+00 0.0e+00 2.4e+01  0  0  0  0  1   0  0  0  0  1     0
  Move A               6 1.0 2.5487e-02 1.3 0.00e+00 0.0 1.1e+03 8.5e+02 1.0e+02  0  0  0  0  6   0  0  0  0  6     0
  Move P               6 1.0 7.7925e-03 1.0 0.00e+00 0.0 1.4e+03 3.2e+01 1.0e+02  0  0  0  0  6   0  0  0  0  6     0
PCSetUp                6 1.0 3.2475e+00 1.0 2.44e+08 1.2 2.0e+05 9.7e+03 1.3e+03 14 27 38 79 75  14 27 38 79 75  3397
PCSetUpOnBlocks       27 1.0 1.6300e-02 1.6 1.80e+01 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
PCApply               27 1.0 1.6327e+00 1.0 6.03e+08 1.1 3.0e+05 1.1e+03 2.9e+02  7 68 57 14 16   7 68 57 14 16 17066
SFSetGraph             9 1.0 7.1678e-032989.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
SFSetUp                9 1.0 1.6463e-02 2.2 0.00e+00 0.0 6.1e+03 1.9e+03 0.0e+00  0  0  1  0  0   0  0  1  0  0     0
SFBcastBegin          54 1.0 3.5743e-03 3.4 0.00e+00 0.0 2.3e+04 2.6e+03 0.0e+00  0  0  4  2  0   0  0  4  2  0     0
SFBcastEnd            54 1.0 3.3646e-03 2.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
------------------------------------------------------------------------------------------------------------------------

Memory usage is given in bytes:

Object Type          Creations   Destructions     Memory  Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

              Vector   510            510     27602496     0.
              Matrix   348            348    622432056     0.
      Matrix Coarsen     9              9         6156     0.
           Index Set   213            213       558288     0.
         Vec Scatter    75             75       105384     0.
       Krylov Solver    36             36       314928     0.
      Preconditioner    27             27        29544     0.
              Viewer     5              4         3584     0.
         PetscRandom    18             18        12492     0.
   Star Forest Graph     9              9         8496     0.
========================================================================================================================
Average time to get PetscTime(): 4.56115e-08
Average time for MPI_Barrier(): 5.97197e-06
Average time for zero size MPI_Send(): 3.71554e-06
#PETSc Option Table entries:
--prefix popcorn3d_full_l3_s1
-beta 7.0
-betaest .true.
-check .false.
-datadt data_distribution_fully_assembled
-dm 3
-in_space .true.
-ksp_converged_reason
-ksp_max_it 500
-ksp_monitor
-ksp_norm_type unpreconditioned
-ksp_rtol 1.0e-8
-ksp_type cg
-ksp_view
-l 1
-levelset popcorn
-levelsettol 0.0
-log_view
-lsdom -0.1
-mg_coarse_sub_pc_factor_mat_ordering_type nd
-mg_coarse_sub_pc_type cholesky
-mg_levels_esteig_ksp_type cg
-n 120
-no_signal_handler
-nruns 3
-pc_gamg_agg_nsmooths 1
-pc_gamg_est_ksp_type cg
-pc_gamg_process_eq_limit 50
-pc_gamg_square_graph 10
-pc_gamg_type agg
-pc_type gamg
-petscrc /gpfs/scratch/upc26/upc26229/NEW_STUFF/time_par_cell_agg_ompi.paper/petscrc-0
-tt 1
-uagg .false.
-wsolution .false.
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 8
Configure options: --with-cc=mpicc --with-cxx=mpicxx --with-fc=mpif90 -with-blaslapack-dir=/apps/INTEL/2017.4/mkl --with-debugging=0 --with-x=0 --with-shared-libraries=1 --with-mpi=1 --with-64-bit-indices --download-hypre=../v2.14.0.tar.gz
-----------------------------------------
Libraries compiled on 2018-11-07 17:23:07 on login1 
Machine characteristics: Linux-4.4.120-92.70-default-x86_64-with-SuSE-12-x86_64
Using PETSc directory: /gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0
Using PETSc arch: arch-linux2-c-opt
-----------------------------------------

Using C compiler: mpicc  -fPIC  -wd1572 -g -O3  
Using Fortran compiler: mpif90  -fPIC -g -O3    
-----------------------------------------

Using include paths: -I/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/include -I/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/arch-linux2-c-opt/include
-----------------------------------------

Using C linker: mpicc
Using Fortran linker: mpif90
Using libraries: -Wl,-rpath,/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/arch-linux2-c-opt/lib -L/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/arch-linux2-c-opt/lib -lpetsc -Wl,-rpath,/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/arch-linux2-c-opt/lib -L/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/arch-linux2-c-opt/lib -Wl,-rpath,/apps/INTEL/2017.4/mkl/lib/intel64 -L/apps/INTEL/2017.4/mkl/lib/intel64 -Wl,-rpath,/usr/mpi/intel/openmpi-1.10.4-hfi/lib64 -L/usr/mpi/intel/openmpi-1.10.4-hfi/lib64 -Wl,-rpath,/gpfs/apps/MN4/INTEL/2018.0.128/compilers_and_libraries_2018.0.128/linux/compiler/lib/intel64_lin -L/gpfs/apps/MN4/INTEL/2018.0.128/compilers_and_libraries_2018.0.128/linux/compiler/lib/intel64_lin -Wl,-rpath,/usr/lib64/gcc/x86_64-suse-linux/4.8 -L/usr/lib64/gcc/x86_64-suse-linux/4.8 -Wl,-rpath,/usr/x86_64-suse-linux/lib -L/usr/x86_64-suse-linux/lib -lHYPRE -lmkl_intel_lp64 -lmkl_sequential -lmkl_core -lpthread -lstdc++ -ldl -lmpi_usempif08 -lmpi_usempi_ignore_tkr -lmpi_mpifh -lmpi -lifport -lifcoremt_pic -limf -lsvml -lm -lipgo -lirc -lpthread -lgcc_s -lirc_s -lstdc++ -ldl
-----------------------------------------

Ending run at vie nov 16 09:37:40 CET 2018
-------------- next part --------------
Linear solve converged due to CONVERGED_RTOL iterations 14
KSP Object: 10368 MPI processes
  type: cg
  maximum iterations=500, initial guess is zero
  tolerances:  relative=1e-08, absolute=1e-50, divergence=10000.
  left preconditioning
  using UNPRECONDITIONED norm type for convergence test
PC Object: 10368 MPI processes
  type: gamg
    type is MULTIPLICATIVE, levels=5 cycles=v
      Cycles per PCApply=1
      Using externally compute Galerkin coarse grid matrices
      GAMG specific options
        Threshold for dropping small values in graph on each level =   0.   0.   0.  
        Threshold scaling factor for each level not specified = 1.
        AGG specific options
          Symmetric graph false
          Number of levels to square graph 10
          Number smoothing steps 1
  Coarse grid solver -- level -------------------------------
          KSP Object: (mg_coarse_) 10368 MPI processes
            type: preonly
            maximum iterations=10000, initial guess is zero
            tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
            left preconditioning
            using NONE norm type for convergence test
          PC Object: (mg_coarse_) 10368 MPI processes
            type: bjacobi
              number of blocks = 10368
              Local solve is same for all blocks, in the following KSP and PC objects:
            KSP Object: (mg_coarse_sub_) 1 MPI processes
              type: preonly
              maximum iterations=1, initial guess is zero
              tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
              left preconditioning
              using NONE norm type for convergence test
            PC Object: (mg_coarse_sub_) 1 MPI processes
              type: cholesky
                out-of-place factorization
                tolerance for zero pivot 2.22045e-14
                matrix ordering: nd
                factor fill ratio given 5., needed 1.
                  Factored matrix follows:
                    Mat Object: 1 MPI processes
                      type: seqsbaij
                      rows=7, cols=7
                      package used to perform factorization: petsc
                      total: nonzeros=28, allocated nonzeros=28
                      total number of mallocs used during MatSetValues calls =0
                          block size is 1
              linear system matrix = precond matrix:
              Mat Object: 1 MPI processes
                type: seqaij
                rows=7, cols=7
                total: nonzeros=49, allocated nonzeros=49
                total number of mallocs used during MatSetValues calls =0
                  using I-node routines: found 2 nodes, limit used is 5
            linear system matrix = precond matrix:
            Mat Object: 10368 MPI processes
              type: mpiaij
              rows=7, cols=7
              total: nonzeros=49, allocated nonzeros=49
              total number of mallocs used during MatSetValues calls =0
                using I-node (on process 0) routines: found 2 nodes, limit used is 5
  Down solver (pre-smoother) on level 1 -------------------------------
        KSP Object: (mg_levels_1_) 10368 MPI processes
          type: chebyshev
            eigenvalue estimates used:  min = 0.132992, max = 1.46291
            eigenvalues estimate via cg min 0.252003, max 1.32992
            eigenvalues estimated using cg with translations  [0. 0.1; 0. 1.1]
          KSP Object: (mg_levels_1_esteig_) 10368 MPI processes
            type: cg
            maximum iterations=10, initial guess is zero
            tolerances:  relative=1e-12, absolute=1e-50, divergence=10000.
            left preconditioning
            using PRECONDITIONED norm type for convergence test
            estimating eigenvalues using noisy right hand side
          maximum iterations=2, nonzero initial guess
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
          left preconditioning
          using NONE norm type for convergence test
        PC Object: (mg_levels_1_) 10368 MPI processes
          type: sor
            type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.
          linear system matrix = precond matrix:
          Mat Object: 10368 MPI processes
            type: mpiaij
            rows=598, cols=598
            total: nonzeros=35260, allocated nonzeros=35260
            total number of mallocs used during MatSetValues calls =0
              not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 2 -------------------------------
      KSP Object: (mg_levels_2_) 10368 MPI processes
        type: chebyshev
          eigenvalue estimates used:  min = 0.147257, max = 1.61982
          eigenvalues estimate via cg min 0.0457702, max 1.47257
          eigenvalues estimated using cg with translations  [0. 0.1; 0. 1.1]
        KSP Object: (mg_levels_2_esteig_) 10368 MPI processes
          type: cg
          maximum iterations=10, initial guess is zero
          tolerances:  relative=1e-12, absolute=1e-50, divergence=10000.
          left preconditioning
          using PRECONDITIONED norm type for convergence test
          estimating eigenvalues using noisy right hand side
        maximum iterations=2, nonzero initial guess
        tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
        left preconditioning
        using NONE norm type for convergence test
      PC Object: (mg_levels_2_) 10368 MPI processes
        type: sor
          type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.
        linear system matrix = precond matrix:
        Mat Object: 10368 MPI processes
          type: mpiaij
          rows=72415, cols=72415
          total: nonzeros=5807437, allocated nonzeros=5807437
          total number of mallocs used during MatSetValues calls =0
            not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 3 -------------------------------
    KSP Object: (mg_levels_3_) 10368 MPI processes
      type: chebyshev
        eigenvalue estimates used:  min = 0.138335, max = 1.52169
        eigenvalues estimate via cg min 0.0338709, max 1.38335
        eigenvalues estimated using cg with translations  [0. 0.1; 0. 1.1]
      KSP Object: (mg_levels_3_esteig_) 10368 MPI processes
        type: cg
        maximum iterations=10, initial guess is zero
        tolerances:  relative=1e-12, absolute=1e-50, divergence=10000.
        left preconditioning
        using PRECONDITIONED norm type for convergence test
        estimating eigenvalues using noisy right hand side
      maximum iterations=2, nonzero initial guess
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
      left preconditioning
      using NONE norm type for convergence test
    PC Object: (mg_levels_3_) 10368 MPI processes
      type: sor
        type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.
      linear system matrix = precond matrix:
      Mat Object: 10368 MPI processes
        type: mpiaij
        rows=5775893, cols=5775893
        total: nonzeros=263455933, allocated nonzeros=263455933
        total number of mallocs used during MatSetValues calls =0
          using nonscalable MatPtAP() implementation
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 4 -------------------------------
  KSP Object: (mg_levels_4_) 10368 MPI processes
    type: chebyshev
      eigenvalue estimates used:  min = 0.136582, max = 1.5024
      eigenvalues estimate via cg min 0.0328449, max 1.36582
      eigenvalues estimated using cg with translations  [0. 0.1; 0. 1.1]
    KSP Object: (mg_levels_4_esteig_) 10368 MPI processes
      type: cg
      maximum iterations=10, initial guess is zero
      tolerances:  relative=1e-12, absolute=1e-50, divergence=10000.
      left preconditioning
      using PRECONDITIONED norm type for convergence test
      estimating eigenvalues using noisy right hand side
    maximum iterations=2, nonzero initial guess
    tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
    left preconditioning
    using NONE norm type for convergence test
  PC Object: (mg_levels_4_) 10368 MPI processes
    type: sor
      type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.
    linear system matrix = precond matrix:
    Mat Object: 10368 MPI processes
      type: mpiaij
      rows=278641979, cols=278641979
      total: nonzeros=7500100375, allocated nonzeros=55728395800
      total number of mallocs used during MatSetValues calls =0
        not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  linear system matrix = precond matrix:
  Mat Object: 10368 MPI processes
    type: mpiaij
    rows=278641979, cols=278641979
    total: nonzeros=7500100375, allocated nonzeros=55728395800
    total number of mallocs used during MatSetValues calls =0
      not using I-node (on process 0) routines
************************************************************************************************************************
***             WIDEN YOUR WINDOW TO 120 CHARACTERS.  Use 'enscript -r -fCourier9' to print this document            ***
************************************************************************************************************************

---------------------------------------------- PETSc Performance Summary: ----------------------------------------------

/gpfs/scratch/upc26/upc26229/build_rel_fempar_cell_agg_ompi/FEMPAR/bin/par_test_poisson_unfitted on a arch-linux2-c-opt named s08r2b08 with 10368 processors, by upc26229 Fri Nov 16 15:26:59 2018
Using Petsc Release Version 3.9.0, Apr, 07, 2018 

                         Max       Max/Min        Avg      Total 
Time (sec):           4.915e+01      1.00001   4.915e+01
Objects:              1.658e+03      1.00181   1.655e+03
Flop:                 1.198e+09      1.14246   1.183e+09  1.226e+13
Flop/sec:            2.436e+07      1.14246   2.406e+07  2.494e+11
MPI Messages:         1.789e+05     25.18126   2.640e+04  2.738e+08
MPI Message Lengths:  7.153e+07      2.83776   2.085e+03  5.708e+11
MPI Reductions:       2.568e+03      1.00000

Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
                            e.g., VecAXPY() for real vectors of length N --> 2N flop
                            and VecAXPY() for complex vectors of length N --> 8N flop

Summary of Stages:   ----- Time ------  ----- Flop -----  --- Messages ---  -- Message Lengths --  -- Reductions --
                        Avg     %Total     Avg     %Total   counts   %Total     Avg         %Total   counts   %Total 
 0:      Main Stage: 4.9150e+01 100.0%  1.2260e+13 100.0%  2.738e+08 100.0%  2.085e+03      100.0%  2.554e+03  99.5% 

------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
   Count: number of times phase was executed
   Time and Flop: Max - maximum over all processors
                   Ratio - ratio of maximum to minimum over all processors
   Mess: number of messages sent
   Avg. len: average message length (bytes)
   Reduct: number of global reductions
   Global: entire computation
   Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
      %T - percent time in this phase         %F - percent flop in this phase
      %M - percent messages in this phase     %L - percent message lengths in this phase
      %R - percent reductions in this phase
   Total Mflop/s: 10e-6 * (sum of flop over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------
Event                Count      Time (sec)     Flop                             --- Global ---  --- Stage ---   Total
                   Max Ratio  Max     Ratio   Max  Ratio  Mess   Avg len Reduct  %T %F %M %L %R  %T %F %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------

--- Event Stage 0: Main Stage

BuildTwoSided         12 1.0 8.2886e-02 3.2 0.00e+00 0.0 8.4e+05 8.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
BuildTwoSidedF       174 1.0 2.7580e+00 1.9 0.00e+00 0.0 3.7e+06 1.4e+04 0.0e+00  4  0  1  9  0   4  0  1  9  0     0
VecMDot              120 1.0 2.6712e-01 1.3 9.24e+06 1.1 0.0e+00 0.0e+00 1.2e+02  0  1  0  0  5   0  1  0  0  5 351442
VecTDot              336 1.0 9.2127e-01 1.3 8.06e+06 1.1 0.0e+00 0.0e+00 3.4e+02  2  1  0  0 13   2  1  0  0 13 89719
VecNorm              309 1.0 7.2406e-01 1.2 6.12e+06 1.1 0.0e+00 0.0e+00 3.1e+02  1  1  0  0 12   1  1  0  0 12 86499
VecScale             132 1.0 1.2661e-0242.6 9.24e+05 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0 741513
VecCopy              210 1.0 9.9707e-03 3.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet               843 1.0 6.0338e-03 4.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY              336 1.0 8.0444e-0211.5 8.06e+06 1.1 0.0e+00 0.0e+00 0.0e+00  0  1  0  0  0   0  1  0  0  0 1027513
VecAYPX             1491 1.0 3.7490e-02 2.3 1.54e+07 1.1 0.0e+00 0.0e+00 0.0e+00  0  1  0  0  0   0  1  0  0  0 4176676
VecAXPBYCZ           672 1.0 2.7469e-02 1.8 2.35e+07 1.1 0.0e+00 0.0e+00 0.0e+00  0  2  0  0  0   0  2  0  0  0 8699658
VecMAXPY             132 1.0 1.9974e-02 4.4 1.09e+07 1.1 0.0e+00 0.0e+00 0.0e+00  0  1  0  0  0   0  1  0  0  0 5554863
VecAssemblyBegin      84 1.0 4.3977e-01 2.0 0.00e+00 0.0 5.0e+05 2.6e+03 0.0e+00  1  0  0  0  0   1  0  0  0  0     0
VecAssemblyEnd        84 1.0 4.2681e-04 4.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecPointwiseMult     132 1.0 4.6056e-03 2.7 9.24e+05 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0 2038447
VecScatterBegin     1731 1.0 6.6298e-02 3.3 0.00e+00 0.0 2.1e+08 1.0e+03 0.0e+00  0  0 76 37  0   0  0 76 37  0     0
VecScatterEnd       1731 1.0 1.1476e+00 1.8 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  2  0  0  0  0   2  0  0  0  0     0
VecSetRandom          12 1.0 8.2220e-03 4.6 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecNormalize         132 1.0 3.1955e-01 1.4 2.77e+06 1.1 0.0e+00 0.0e+00 1.3e+02  1  0  0  0  5   1  0  0  0  5 88139
MatMult             1290 1.0 1.5137e+00 1.4 5.26e+08 1.2 1.7e+08 1.1e+03 0.0e+00  3 44 63 32  0   3 44 63 32  0 3552751
MatMultAdd           168 1.0 4.5490e-01 5.9 9.86e+06 1.2 1.2e+07 1.2e+02 0.0e+00  1  1  4  0  0   1  1  4  0  0 221941
MatMultTranspose     168 1.0 2.4255e-01 7.0 9.86e+06 1.2 1.2e+07 1.2e+02 0.0e+00  0  1  4  0  0   0  1  4  0  0 416246
MatSolve              42 0.0 9.4218e-05 0.0 3.82e+03 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0    41
MatSOR              1140 1.0 1.4214e+00 1.2 4.11e+08 1.1 0.0e+00 0.0e+00 0.0e+00  3 34  0  0  0   3 34  0  0  0 2897344
MatCholFctrSym         3 1.0 2.4699e-021549.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatCholFctrNum         3 1.0 2.2717e-026755.8 2.10e+01 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatConvert            12 1.0 4.4884e-02 1.7 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatScale              36 1.0 3.6266e-0119.9 5.26e+06 1.2 1.5e+06 1.0e+03 0.0e+00  0  0  1  0  0   0  0  1  0  0 148427
MatResidual          168 1.0 2.3626e-01 1.9 6.38e+07 1.2 2.2e+07 1.0e+03 0.0e+00  0  5  8  4  0   0  5  8  4  0 2762345
MatAssemblyBegin     321 1.0 2.4651e+00 2.1 0.00e+00 0.0 3.2e+06 1.6e+04 0.0e+00  4  0  1  9  0   4  0  1  9  0     0
MatAssemblyEnd       321 1.0 5.1716e+00 1.0 0.00e+00 0.0 1.6e+07 4.4e+02 6.5e+02 10  0  6  1 25  10  0  6  1 25     0
MatGetRow         251901 1.1 5.1874e-02 2.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatGetRowIJ            3 0.0 5.2588e-03 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatCreateSubMat       18 1.0 2.6091e+00 1.0 0.00e+00 0.0 8.9e+05 3.5e+02 2.9e+02  5  0  0  0 11   5  0  0  0 11     0
MatGetOrdering         3 0.0 1.3637e-02 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatCoarsen            12 1.0 3.1793e-01 1.2 0.00e+00 0.0 2.4e+07 1.0e+03 2.0e+02  1  0  9  4  8   1  0  9  4  8     0
MatZeroEntries        18 1.0 1.3054e-03 6.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatView               24 1.3 2.5545e-01 4.5 0.00e+00 0.0 0.0e+00 0.0e+00 1.8e+01  0  0  0  0  1   0  0  0  0  1     0
MatAXPY               12 1.0 1.8095e-01 1.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatMatMult            12 1.0 2.0949e+00 1.1 4.56e+06 1.2 8.7e+06 7.4e+02 1.5e+02  4  0  3  1  6   4  0  3  1  6 22252
MatMatMultSym         12 1.0 1.8619e+00 1.0 0.00e+00 0.0 7.1e+06 6.8e+02 1.4e+02  4  0  3  1  6   4  0  3  1  6     0
MatMatMultNum         12 1.0 9.4086e-02 1.4 4.56e+06 1.2 1.5e+06 1.0e+03 0.0e+00  0  0  1  0  0   0  0  1  0  0 495466
MatPtAP               12 1.0 2.7205e+00 1.0 2.90e+07 1.2 1.3e+07 2.2e+03 1.8e+02  6  2  5  5  7   6  2  5  5  7 108153
MatPtAPSymbolic       12 1.0 1.6082e+00 1.1 0.00e+00 0.0 8.4e+06 2.5e+03 8.4e+01  3  0  3  4  3   3  0  3  4  3     0
MatPtAPNumeric        12 1.0 1.1666e+00 1.1 2.90e+07 1.2 5.1e+06 1.8e+03 9.6e+01  2  2  2  2  4   2  2  2  2  4 252212
MatTrnMatMult         12 1.0 5.1786e+00 1.0 1.32e+08 1.2 9.6e+06 2.7e+04 1.9e+02 11 11  4 45  7  11 11  4 45  7 255034
MatTrnMatMultSym      12 1.0 3.7081e+00 1.0 0.00e+00 0.0 7.6e+06 1.7e+04 1.4e+02  8  0  3 23  5   8  0  3 23  5     0
MatTrnMatMultNum      12 1.0 1.4973e+00 1.0 1.32e+08 1.2 2.0e+06 6.3e+04 4.8e+01  3 11  1 23  2   3 11  1 23  2 882036
MatGetLocalMat        54 1.0 7.5682e-02 1.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatGetBrAoCol         36 1.0 7.0139e-02 4.1 0.00e+00 0.0 1.1e+07 2.2e+03 0.0e+00  0  0  4  4  0   0  0  4  4  0     0
KSPGMRESOrthog       120 1.0 2.7368e-01 1.3 1.85e+07 1.1 0.0e+00 0.0e+00 1.2e+02  0  2  0  0  5   0  2  0  0  5 686067
KSPSetUp              45 1.0 4.9518e-01 1.4 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+01  1  0  0  0  1   1  0  0  0  1     0
KSPSolve               3 1.0 4.3820e+00 1.0 9.63e+08 1.1 1.8e+08 9.4e+02 5.1e+02  9 80 66 30 20   9 80 66 30 20 2246294
PCGAMGGraph_AGG       12 1.0 2.1963e+00 1.0 4.56e+06 1.2 4.6e+06 6.8e+02 1.4e+02  4  0  2  1  6   4  0  2  1  6 21225
PCGAMGCoarse_AGG      12 1.0 6.2537e+00 1.0 1.32e+08 1.2 4.2e+07 7.1e+03 4.4e+02 13 11 15 53 17  13 11 15 53 17 211189
PCGAMGProl_AGG        12 1.0 2.3437e+00 1.0 0.00e+00 0.0 5.6e+06 1.5e+03 1.9e+02  5  0  2  1  7   5  0  2  1  8     0
PCGAMGPOpt_AGG        12 1.0 3.9482e+00 1.0 7.37e+07 1.1 2.4e+07 9.2e+02 5.0e+02  8  6  9  4 19   8  6  9  4 19 191367
GAMG: createProl      12 1.0 1.4742e+01 1.0 2.10e+08 1.2 7.7e+07 4.4e+03 1.3e+03 30 17 28 58 49  30 17 28 58 50 144003
  Graph               24 1.0 2.1900e+00 1.0 4.56e+06 1.2 4.6e+06 6.8e+02 1.4e+02  4  0  2  1  6   4  0  2  1  6 21286
  MIS/Agg             12 1.0 3.1835e-01 1.2 0.00e+00 0.0 2.4e+07 1.0e+03 2.0e+02  1  0  9  4  8   1  0  9  4  8     0
  SA: col data        12 1.0 6.9797e-01 1.1 0.00e+00 0.0 3.4e+06 2.1e+03 4.8e+01  1  0  1  1  2   1  0  1  1  2     0
  SA: frmProl0        12 1.0 1.1243e+00 1.0 0.00e+00 0.0 2.2e+06 5.5e+02 9.6e+01  2  0  1  0  4   2  0  1  0  4     0
  SA: smooth          12 1.0 2.4933e+00 1.1 5.26e+06 1.2 8.7e+06 7.4e+02 1.7e+02  5  0  3  1  7   5  0  3  1  7 21589
GAMG: partLevel       12 1.0 7.1589e+00 1.0 2.90e+07 1.2 1.4e+07 2.1e+03 6.4e+02 15  2  5  5 25  15  2  5  5 25 41101
  repartition          9 1.0 6.6796e-01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 5.4e+01  1  0  0  0  2   1  0  0  0  2     0
  Invert-Sort          9 1.0 5.8634e-01 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 3.6e+01  1  0  0  0  1   1  0  0  0  1     0
  Move A               9 1.0 1.3901e+00 1.0 0.00e+00 0.0 3.3e+05 9.2e+02 1.5e+02  3  0  0  0  6   3  0  0  0  6     0
  Move P               9 1.0 1.3170e+00 1.0 0.00e+00 0.0 5.6e+05 2.6e+01 1.5e+02  3  0  0  0  6   3  0  0  0  6     0
PCSetUp                6 1.0 2.2624e+01 1.0 2.39e+08 1.2 9.1e+07 4.0e+03 2.0e+03 46 20 33 64 77  46 20 33 64 77 106836
PCSetUpOnBlocks       42 1.0 2.9893e-0232.3 2.10e+01 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
PCApply               42 1.0 3.4927e+00 1.1 8.91e+08 1.1 1.7e+08 8.9e+02 3.8e+02  7 74 62 26 15   7 74 62 26 15 2600998
SFSetGraph            12 1.0 1.0152e-023939.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
SFSetUp               12 1.0 1.0030e-01 2.5 0.00e+00 0.0 2.5e+06 1.4e+03 0.0e+00  0  0  1  1  0   0  0  1  1  0     0
SFBcastBegin         225 1.0 2.3892e-0224.3 0.00e+00 0.0 2.2e+07 9.9e+02 0.0e+00  0  0  8  4  0   0  0  8  4  0     0
SFBcastEnd           225 1.0 4.7889e-0213.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
------------------------------------------------------------------------------------------------------------------------

Memory usage is given in bytes:

Object Type          Creations   Destructions     Memory  Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

              Vector   675            675     28296816     0.
              Matrix   456            456    597169344     0.
      Matrix Coarsen    12             12         8208     0.
           Index Set   294            294      7637280     0.
         Vec Scatter   102            102       143424     0.
       Krylov Solver    45             45       415944     0.
      Preconditioner    33             33        35448     0.
              Viewer     5              4         3584     0.
         PetscRandom    24             24        16656     0.
   Star Forest Graph    12             12        11328     0.
========================================================================================================================
Average time to get PetscTime(): 4.17233e-08
Average time for MPI_Barrier(): 0.00131778
Average time for zero size MPI_Send(): 2.1515e-06
#PETSc Option Table entries:
--prefix popcorn3d_full_l3_s6
-beta 7.0
-betaest .true.
-check .false.
-datadt data_distribution_fully_assembled
-dm 3
-in_space .true.
-ksp_converged_reason
-ksp_max_it 500
-ksp_monitor
-ksp_norm_type unpreconditioned
-ksp_rtol 1.0e-8
-ksp_type cg
-ksp_view
-l 1
-levelset popcorn
-levelsettol 0.0
-log_view
-lsdom -0.1
-mg_coarse_sub_pc_factor_mat_ordering_type nd
-mg_coarse_sub_pc_type cholesky
-mg_levels_esteig_ksp_type cg
-n 720
-no_signal_handler
-nruns 3
-pc_gamg_agg_nsmooths 1
-pc_gamg_est_ksp_type cg
-pc_gamg_process_eq_limit 50
-pc_gamg_square_graph 10
-pc_gamg_type agg
-pc_type gamg
-petscrc /gpfs/scratch/upc26/upc26229/NEW_STUFF/time_par_cell_agg_ompi.paper/petscrc-0
-tt 1
-uagg .false.
-wsolution .false.
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 8
Configure options: --with-cc=mpicc --with-cxx=mpicxx --with-fc=mpif90 -with-blaslapack-dir=/apps/INTEL/2017.4/mkl --with-debugging=0 --with-x=0 --with-shared-libraries=1 --with-mpi=1 --with-64-bit-indices --download-hypre=../v2.14.0.tar.gz
-----------------------------------------
Libraries compiled on 2018-11-07 17:23:07 on login1 
Machine characteristics: Linux-4.4.120-92.70-default-x86_64-with-SuSE-12-x86_64
Using PETSc directory: /gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0
Using PETSc arch: arch-linux2-c-opt
-----------------------------------------

Using C compiler: mpicc  -fPIC  -wd1572 -g -O3  
Using Fortran compiler: mpif90  -fPIC -g -O3    
-----------------------------------------

Using include paths: -I/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/include -I/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/arch-linux2-c-opt/include
-----------------------------------------

Using C linker: mpicc
Using Fortran linker: mpif90
Using libraries: -Wl,-rpath,/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/arch-linux2-c-opt/lib -L/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/arch-linux2-c-opt/lib -lpetsc -Wl,-rpath,/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/arch-linux2-c-opt/lib -L/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/arch-linux2-c-opt/lib -Wl,-rpath,/apps/INTEL/2017.4/mkl/lib/intel64 -L/apps/INTEL/2017.4/mkl/lib/intel64 -Wl,-rpath,/usr/mpi/intel/openmpi-1.10.4-hfi/lib64 -L/usr/mpi/intel/openmpi-1.10.4-hfi/lib64 -Wl,-rpath,/gpfs/apps/MN4/INTEL/2018.0.128/compilers_and_libraries_2018.0.128/linux/compiler/lib/intel64_lin -L/gpfs/apps/MN4/INTEL/2018.0.128/compilers_and_libraries_2018.0.128/linux/compiler/lib/intel64_lin -Wl,-rpath,/usr/lib64/gcc/x86_64-suse-linux/4.8 -L/usr/lib64/gcc/x86_64-suse-linux/4.8 -Wl,-rpath,/usr/x86_64-suse-linux/lib -L/usr/x86_64-suse-linux/lib -lHYPRE -lmkl_intel_lp64 -lmkl_sequential -lmkl_core -lpthread -lstdc++ -ldl -lmpi_usempif08 -lmpi_usempi_ignore_tkr -lmpi_mpifh -lmpi -lifport -lifcoremt_pic -limf -lsvml -lm -lipgo -lirc -lpthread -lgcc_s -lirc_s -lstdc++ -ldl
-----------------------------------------

Ending run at vie nov 16 15:26:59 CET 2018
-------------- next part --------------
Linear solve converged due to CONVERGED_RTOL iterations 15
KSP Object: 16464 MPI processes
  type: cg
  maximum iterations=500, initial guess is zero
  tolerances:  relative=1e-08, absolute=1e-50, divergence=10000.
  left preconditioning
  using UNPRECONDITIONED norm type for convergence test
PC Object: 16464 MPI processes
  type: gamg
    type is MULTIPLICATIVE, levels=5 cycles=v
      Cycles per PCApply=1
      Using externally compute Galerkin coarse grid matrices
      GAMG specific options
        Threshold for dropping small values in graph on each level =   0.   0.   0.  
        Threshold scaling factor for each level not specified = 1.
        AGG specific options
          Symmetric graph false
          Number of levels to square graph 10
          Number smoothing steps 1
  Coarse grid solver -- level -------------------------------
          KSP Object: (mg_coarse_) 16464 MPI processes
            type: preonly
            maximum iterations=10000, initial guess is zero
            tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
            left preconditioning
            using NONE norm type for convergence test
          PC Object: (mg_coarse_) 16464 MPI processes
            type: bjacobi
              number of blocks = 16464
              Local solve is same for all blocks, in the following KSP and PC objects:
            KSP Object: (mg_coarse_sub_) 1 MPI processes
              type: preonly
              maximum iterations=1, initial guess is zero
              tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
              left preconditioning
              using NONE norm type for convergence test
            PC Object: (mg_coarse_sub_) 1 MPI processes
              type: cholesky
                out-of-place factorization
                tolerance for zero pivot 2.22045e-14
                matrix ordering: nd
                factor fill ratio given 5., needed 1.
                  Factored matrix follows:
                    Mat Object: 1 MPI processes
                      type: seqsbaij
                      rows=11, cols=11
                      package used to perform factorization: petsc
                      total: nonzeros=66, allocated nonzeros=66
                      total number of mallocs used during MatSetValues calls =0
                          block size is 1
              linear system matrix = precond matrix:
              Mat Object: 1 MPI processes
                type: seqaij
                rows=11, cols=11
                total: nonzeros=121, allocated nonzeros=121
                total number of mallocs used during MatSetValues calls =0
                  using I-node routines: found 3 nodes, limit used is 5
            linear system matrix = precond matrix:
            Mat Object: 16464 MPI processes
              type: mpiaij
              rows=11, cols=11
              total: nonzeros=121, allocated nonzeros=121
              total number of mallocs used during MatSetValues calls =0
                using I-node (on process 0) routines: found 3 nodes, limit used is 5
  Down solver (pre-smoother) on level 1 -------------------------------
        KSP Object: (mg_levels_1_) 16464 MPI processes
          type: chebyshev
            eigenvalue estimates used:  min = 0.135989, max = 1.49588
            eigenvalues estimate via cg min 0.195543, max 1.35989
            eigenvalues estimated using cg with translations  [0. 0.1; 0. 1.1]
          KSP Object: (mg_levels_1_esteig_) 16464 MPI processes
            type: cg
            maximum iterations=10, initial guess is zero
            tolerances:  relative=1e-12, absolute=1e-50, divergence=10000.
            left preconditioning
            using PRECONDITIONED norm type for convergence test
            estimating eigenvalues using noisy right hand side
          maximum iterations=2, nonzero initial guess
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
          left preconditioning
          using NONE norm type for convergence test
        PC Object: (mg_levels_1_) 16464 MPI processes
          type: sor
            type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.
          linear system matrix = precond matrix:
          Mat Object: 16464 MPI processes
            type: mpiaij
            rows=893, cols=893
            total: nonzeros=54833, allocated nonzeros=54833
            total number of mallocs used during MatSetValues calls =0
              not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 2 -------------------------------
      KSP Object: (mg_levels_2_) 16464 MPI processes
        type: chebyshev
          eigenvalue estimates used:  min = 0.146943, max = 1.61637
          eigenvalues estimate via cg min 0.037861, max 1.46943
          eigenvalues estimated using cg with translations  [0. 0.1; 0. 1.1]
        KSP Object: (mg_levels_2_esteig_) 16464 MPI processes
          type: cg
          maximum iterations=10, initial guess is zero
          tolerances:  relative=1e-12, absolute=1e-50, divergence=10000.
          left preconditioning
          using PRECONDITIONED norm type for convergence test
          estimating eigenvalues using noisy right hand side
        maximum iterations=2, nonzero initial guess
        tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
        left preconditioning
        using NONE norm type for convergence test
      PC Object: (mg_levels_2_) 16464 MPI processes
        type: sor
          type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.
        linear system matrix = precond matrix:
        Mat Object: 16464 MPI processes
          type: mpiaij
          rows=114979, cols=114979
          total: nonzeros=9348035, allocated nonzeros=9348035
          total number of mallocs used during MatSetValues calls =0
            not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 3 -------------------------------
    KSP Object: (mg_levels_3_) 16464 MPI processes
      type: chebyshev
        eigenvalue estimates used:  min = 0.138364, max = 1.52201
        eigenvalues estimate via cg min 0.0350501, max 1.38364
        eigenvalues estimated using cg with translations  [0. 0.1; 0. 1.1]
      KSP Object: (mg_levels_3_esteig_) 16464 MPI processes
        type: cg
        maximum iterations=10, initial guess is zero
        tolerances:  relative=1e-12, absolute=1e-50, divergence=10000.
        left preconditioning
        using PRECONDITIONED norm type for convergence test
        estimating eigenvalues using noisy right hand side
      maximum iterations=2, nonzero initial guess
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
      left preconditioning
      using NONE norm type for convergence test
    PC Object: (mg_levels_3_) 16464 MPI processes
      type: sor
        type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.
      linear system matrix = precond matrix:
      Mat Object: 16464 MPI processes
        type: mpiaij
        rows=9167199, cols=9167199
        total: nonzeros=419078313, allocated nonzeros=419078313
        total number of mallocs used during MatSetValues calls =0
          using nonscalable MatPtAP() implementation
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 4 -------------------------------
  KSP Object: (mg_levels_4_) 16464 MPI processes
    type: chebyshev
      eigenvalue estimates used:  min = 0.136589, max = 1.50248
      eigenvalues estimate via cg min 0.0332852, max 1.36589
      eigenvalues estimated using cg with translations  [0. 0.1; 0. 1.1]
    KSP Object: (mg_levels_4_esteig_) 16464 MPI processes
      type: cg
      maximum iterations=10, initial guess is zero
      tolerances:  relative=1e-12, absolute=1e-50, divergence=10000.
      left preconditioning
      using PRECONDITIONED norm type for convergence test
      estimating eigenvalues using noisy right hand side
    maximum iterations=2, nonzero initial guess
    tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
    left preconditioning
    using NONE norm type for convergence test
  PC Object: (mg_levels_4_) 16464 MPI processes
    type: sor
      type = local_symmetric, iterations = 1, local iterations = 1, omega = 1.
    linear system matrix = precond matrix:
    Mat Object: 16464 MPI processes
      type: mpiaij
      rows=442766309, cols=442766309
      total: nonzeros=11923049125, allocated nonzeros=88553261800
      total number of mallocs used during MatSetValues calls =0
        not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  linear system matrix = precond matrix:
  Mat Object: 16464 MPI processes
    type: mpiaij
    rows=442766309, cols=442766309
    total: nonzeros=11923049125, allocated nonzeros=88553261800
    total number of mallocs used during MatSetValues calls =0
      not using I-node (on process 0) routines
************************************************************************************************************************
***             WIDEN YOUR WINDOW TO 120 CHARACTERS.  Use 'enscript -r -fCourier9' to print this document            ***
************************************************************************************************************************

---------------------------------------------- PETSc Performance Summary: ----------------------------------------------

/gpfs/scratch/upc26/upc26229/build_rel_fempar_cell_agg_ompi/FEMPAR/bin/par_test_poisson_unfitted on a arch-linux2-c-opt named s01r2b26 with 16464 processors, by upc26229 Fri Nov 16 18:41:14 2018
Using Petsc Release Version 3.9.0, Apr, 07, 2018 

                         Max       Max/Min        Avg      Total 
Time (sec):           6.644e+01      1.00006   6.644e+01
Objects:              1.652e+03      1.00182   1.649e+03
Flop:                 1.273e+09      1.15475   1.244e+09  2.049e+13
Flop/sec:            1.916e+07      1.15475   1.873e+07  3.084e+11
MPI Messages:         2.616e+05     35.23821   2.868e+04  4.721e+08
MPI Message Lengths:  6.746e+07      2.62396   1.960e+03  9.251e+11
MPI Reductions:       2.616e+03      1.00000

Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
                            e.g., VecAXPY() for real vectors of length N --> 2N flop
                            and VecAXPY() for complex vectors of length N --> 8N flop

Summary of Stages:   ----- Time ------  ----- Flop -----  --- Messages ---  -- Message Lengths --  -- Reductions --
                        Avg     %Total     Avg     %Total   counts   %Total     Avg         %Total   counts   %Total 
 0:      Main Stage: 6.6434e+01 100.0%  2.0489e+13 100.0%  4.721e+08 100.0%  1.960e+03      100.0%  2.602e+03  99.5% 

------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
   Count: number of times phase was executed
   Time and Flop: Max - maximum over all processors
                   Ratio - ratio of maximum to minimum over all processors
   Mess: number of messages sent
   Avg. len: average message length (bytes)
   Reduct: number of global reductions
   Global: entire computation
   Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
      %T - percent time in this phase         %F - percent flop in this phase
      %M - percent messages in this phase     %L - percent message lengths in this phase
      %R - percent reductions in this phase
   Total Mflop/s: 10e-6 * (sum of flop over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------
Event                Count      Time (sec)     Flop                             --- Global ---  --- Stage ---   Total
                   Max Ratio  Max     Ratio   Max  Ratio  Mess   Avg len Reduct  %T %F %M %L %R  %T %F %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------

--- Event Stage 0: Main Stage

BuildTwoSided         12 1.0 1.4701e-01 2.7 0.00e+00 0.0 1.4e+06 8.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
BuildTwoSidedF       177 1.0 3.0236e+00 1.6 0.00e+00 0.0 5.8e+06 1.3e+04 0.0e+00  4  0  1  8  0   4  0  1  8  0     0
VecMDot              120 1.0 3.9575e-01 1.6 9.23e+06 1.1 0.0e+00 0.0e+00 1.2e+02  0  1  0  0  5   0  1  0  0  5 376930
VecTDot              342 1.0 1.5654e+00 1.4 8.39e+06 1.1 0.0e+00 0.0e+00 3.4e+02  2  1  0  0 13   2  1  0  0 13 87294
VecNorm              312 1.0 9.9940e-01 1.3 6.29e+06 1.1 0.0e+00 0.0e+00 3.1e+02  1  0  0  0 12   1  0  0  0 12 102238
VecScale             132 1.0 1.4698e-0249.3 9.24e+05 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0 1014961
VecCopy              222 1.0 5.5664e-03 1.8 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet               888 1.0 3.7285e-03 2.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY              342 1.0 4.5476e-02 6.2 8.39e+06 1.1 0.0e+00 0.0e+00 0.0e+00  0  1  0  0  0   0  1  0  0  0 3005001
VecAYPX             1590 1.0 4.0597e-02 2.2 1.64e+07 1.1 0.0e+00 0.0e+00 0.0e+00  0  1  0  0  0   0  1  0  0  0 6528161
VecAXPBYCZ           720 1.0 2.9899e-02 1.8 2.52e+07 1.1 0.0e+00 0.0e+00 0.0e+00  0  2  0  0  0   0  2  0  0  0 13607494
VecMAXPY             132 1.0 1.0936e-02 2.4 1.09e+07 1.1 0.0e+00 0.0e+00 0.0e+00  0  1  0  0  0   0  1  0  0  0 16120658
VecAssemblyBegin      84 1.0 5.9557e-01 1.4 0.00e+00 0.0 8.1e+05 2.6e+03 0.0e+00  1  0  0  0  0   1  0  0  0  0     0
VecAssemblyEnd        84 1.0 4.3126e-04 4.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecPointwiseMult     132 1.0 8.7574e-03 5.9 9.24e+05 1.1 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0 1703431
VecScatterBegin     1830 1.0 8.9270e-02 4.4 0.00e+00 0.0 3.6e+08 9.9e+02 0.0e+00  0  0 76 38  0   0  0 76 38  0     0
VecScatterEnd       1830 1.0 1.3435e+00 1.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  2  0  0  0  0   2  0  0  0  0     0
VecSetRandom          12 1.0 4.2692e-03 1.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecNormalize         132 1.0 3.9408e-01 1.4 2.77e+06 1.1 0.0e+00 0.0e+00 1.3e+02  1  0  0  0  5   1  0  0  0  5 113564
MatMult             1365 1.0 1.8317e+00 1.5 5.58e+08 1.2 2.9e+08 1.1e+03 0.0e+00  2 44 62 33  0   2 44 62 33  0 4944033
MatMultAdd           180 1.0 7.1299e-0111.3 1.06e+07 1.2 2.1e+07 1.2e+02 0.0e+00  1  1  5  0  0   1  1  5  0  0 241236
MatMultTranspose     180 1.0 4.6874e-0112.9 1.06e+07 1.2 2.1e+07 1.2e+02 0.0e+00  0  1  5  0  0   0  1  5  0  0 366940
MatSolve              45 0.0 1.2516e-04 0.0 1.04e+04 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0    83
MatSOR              1212 1.0 1.5348e+00 1.3 4.36e+08 1.1 0.0e+00 0.0e+00 0.0e+00  2 34  0  0  0   2 34  0  0  0 4532804
MatCholFctrSym         3 1.0 1.2814e-02711.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatCholFctrNum         3 1.0 9.1130e-032313.2 3.30e+01 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatConvert            12 1.0 4.6102e-02 1.7 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatScale              36 1.0 6.0832e-02 3.4 5.28e+06 1.2 2.5e+06 1.0e+03 0.0e+00  0  0  1  0  0   0  0  1  0  0 1406766
MatResidual          180 1.0 2.6789e-01 1.9 6.87e+07 1.2 3.8e+07 1.0e+03 0.0e+00  0  5  8  4  0   0  5  8  4  0 4149588
MatAssemblyBegin     312 1.0 2.5479e+00 1.8 0.00e+00 0.0 5.0e+06 1.4e+04 0.0e+00  3  0  1  8  0   3  0  1  8  0     0
MatAssemblyEnd       312 1.0 9.6727e+00 1.0 0.00e+00 0.0 2.5e+07 4.4e+02 6.5e+02 14  0  5  1 25  14  0  5  1 25     0
MatGetRow         251874 1.1 3.8604e-02 1.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatGetRowIJ            3 0.0 2.7359e-03 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatCreateSubMat       18 1.0 5.7689e+00 1.0 0.00e+00 0.0 1.5e+06 3.4e+02 2.9e+02  9  0  0  0 11   9  0  0  0 11     0
MatGetOrdering         3 0.0 7.3662e-03 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatCoarsen            12 1.0 5.6386e-01 1.2 0.00e+00 0.0 4.7e+07 8.7e+02 2.3e+02  1  0 10  4  9   1  0 10  4  9     0
MatZeroEntries        15 1.0 1.4088e-03 6.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatView               24 1.3 4.0379e-0110.0 0.00e+00 0.0 0.0e+00 0.0e+00 1.8e+01  0  0  0  0  1   0  0  0  0  1     0
MatAXPY               12 1.0 1.9423e-01 1.6 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatMatMult            12 1.0 3.5538e+00 1.0 4.58e+06 1.2 1.4e+07 7.3e+02 1.5e+02  5  0  3  1  6   5  0  3  1  6 20853
MatMatMultSym         12 1.0 3.3264e+00 1.0 0.00e+00 0.0 1.2e+07 6.7e+02 1.4e+02  5  0  2  1  6   5  0  2  1  6     0
MatMatMultNum         12 1.0 9.7088e-02 1.1 4.58e+06 1.2 2.5e+06 1.0e+03 0.0e+00  0  0  1  0  0   0  0  1  0  0 763319
MatPtAP               12 1.0 4.0859e+00 1.0 2.90e+07 1.2 2.2e+07 2.2e+03 1.9e+02  6  2  5  5  7   6  2  5  5  7 114537
MatPtAPSymbolic       12 1.0 2.4298e+00 1.1 0.00e+00 0.0 1.4e+07 2.4e+03 8.4e+01  4  0  3  4  3   4  0  3  4  3     0
MatPtAPNumeric        12 1.0 1.7467e+00 1.1 2.90e+07 1.2 8.2e+06 1.8e+03 9.6e+01  3  2  2  2  4   3  2  2  2  4 267927
MatTrnMatMult         12 1.0 7.1406e+00 1.0 1.35e+08 1.2 1.6e+07 2.6e+04 1.9e+02 11 10  3 44  7  11 10  3 44  7 294270
MatTrnMatMultSym      12 1.0 5.6756e+00 1.0 0.00e+00 0.0 1.3e+07 1.6e+04 1.6e+02  9  0  3 23  6   9  0  3 23  6     0
MatTrnMatMultNum      12 1.0 1.5121e+00 1.0 1.35e+08 1.2 2.5e+06 7.9e+04 2.4e+01  2 10  1 21  1   2 10  1 21  1 1389611
MatGetLocalMat        57 1.0 7.5516e-02 1.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatGetBrAoCol         36 1.0 6.7780e-02 4.0 0.00e+00 0.0 1.8e+07 2.1e+03 0.0e+00  0  0  4  4  0   0  0  4  4  0     0
KSPGMRESOrthog       120 1.0 4.0225e-01 1.6 1.85e+07 1.1 0.0e+00 0.0e+00 1.2e+02  0  1  0  0  5   0  1  0  0  5 741700
KSPSetUp              45 1.0 8.8595e-01 1.5 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+01  1  0  0  0  1   1  0  0  0  1     0
KSPSolve               3 1.0 5.6979e+00 1.1 1.03e+09 1.1 3.1e+08 9.3e+02 5.2e+02  8 81 66 31 20   8 81 66 31 20 2921121
PCGAMGGraph_AGG       12 1.0 3.3467e+00 1.0 4.58e+06 1.2 7.6e+06 6.7e+02 1.4e+02  5  0  2  1  6   5  0  2  1  6 22144
PCGAMGCoarse_AGG      12 1.0 8.9895e+00 1.0 1.35e+08 1.2 7.7e+07 6.2e+03 4.7e+02 14 10 16 51 18  14 10 16 51 18 233748
PCGAMGProl_AGG        12 1.0 3.9328e+00 1.0 0.00e+00 0.0 9.1e+06 1.5e+03 1.9e+02  6  0  2  1  7   6  0  2  1  7     0
PCGAMGPOpt_AGG        12 1.0 6.3192e+00 1.0 7.43e+07 1.1 3.9e+07 9.0e+02 5.0e+02  9  6  8  4 19   9  6  8  4 19 190048
GAMG: createProl      12 1.0 2.2585e+01 1.0 2.13e+08 1.2 1.3e+08 4.0e+03 1.3e+03 34 16 28 57 50  34 16 28 57 50 149493
  Graph               24 1.0 3.3388e+00 1.0 4.58e+06 1.2 7.6e+06 6.7e+02 1.4e+02  5  0  2  1  6   5  0  2  1  6 22196
  MIS/Agg             12 1.0 5.6411e-01 1.2 0.00e+00 0.0 4.7e+07 8.7e+02 2.3e+02  1  0 10  4  9   1  0 10  4  9     0
  SA: col data        12 1.0 1.2982e+00 1.1 0.00e+00 0.0 5.6e+06 2.0e+03 4.8e+01  2  0  1  1  2   2  0  1  1  2     0
  SA: frmProl0        12 1.0 1.6284e+00 1.0 0.00e+00 0.0 3.6e+06 5.5e+02 9.6e+01  2  0  1  0  4   2  0  1  0  4     0
  SA: smooth          12 1.0 4.1778e+00 1.0 5.28e+06 1.2 1.4e+07 7.3e+02 1.7e+02  6  0  3  1  7   6  0  3  1  7 20483
GAMG: partLevel       12 1.0 1.3577e+01 1.0 2.90e+07 1.2 2.3e+07 2.1e+03 6.4e+02 20  2  5  5 25  20  2  5  5 25 34470
  repartition          9 1.0 1.5048e+00 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 5.4e+01  2  0  0  0  2   2  0  0  0  2     0
  Invert-Sort          9 1.0 1.2282e+00 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 3.6e+01  2  0  0  0  1   2  0  0  0  1     0
  Move A               9 1.0 2.8930e+00 1.0 0.00e+00 0.0 5.7e+05 8.4e+02 1.5e+02  4  0  0  0  6   4  0  0  0  6     0
  Move P               9 1.0 3.0317e+00 1.0 0.00e+00 0.0 9.4e+05 2.5e+01 1.5e+02  5  0  0  0  6   5  0  0  0  6     0
PCSetUp                6 1.0 3.7378e+01 1.0 2.41e+08 1.2 1.6e+08 3.7e+03 2.0e+03 56 19 33 62 77  56 19 33 62 77 102849
PCSetUpOnBlocks       45 1.0 3.1359e-02137.6 3.30e+01 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
PCApply               45 1.0 4.5105e+00 1.1 9.54e+08 1.1 2.9e+08 8.7e+02 3.8e+02  7 75 62 28 15   7 75 62 28 15 3403589
SFSetGraph            12 1.0 8.7668e-033502.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
SFSetUp               12 1.0 1.6941e-01 2.3 0.00e+00 0.0 4.2e+06 1.4e+03 0.0e+00  0  0  1  1  0   0  0  1  1  0     0
SFBcastBegin         255 1.0 2.5270e-0229.0 0.00e+00 0.0 4.3e+07 8.3e+02 0.0e+00  0  0  9  4  0   0  0  9  4  0     0
SFBcastEnd           255 1.0 1.0079e-0128.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
------------------------------------------------------------------------------------------------------------------------

Memory usage is given in bytes:

Object Type          Creations   Destructions     Memory  Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

              Vector   675            675     28316856     0.
              Matrix   450            450    596794296     0.
      Matrix Coarsen    12             12         8208     0.
           Index Set   294            294     11758608     0.
         Vec Scatter   102            102       143424     0.
       Krylov Solver    45             45       415944     0.
      Preconditioner    33             33        35448     0.
              Viewer     5              4         3584     0.
         PetscRandom    24             24        16656     0.
   Star Forest Graph    12             12        11328     0.
========================================================================================================================
Average time to get PetscTime(): 4.15836e-08
Average time for MPI_Barrier(): 3.40383e-05
Average time for zero size MPI_Send(): 1.88055e-06
#PETSc Option Table entries:
--prefix popcorn3d_full_l3_s7
-beta 7.0
-betaest .true.
-check .false.
-datadt data_distribution_fully_assembled
-dm 3
-in_space .true.
-ksp_converged_reason
-ksp_max_it 500
-ksp_monitor
-ksp_norm_type unpreconditioned
-ksp_rtol 1.0e-8
-ksp_type cg
-ksp_view
-l 1
-levelset popcorn
-levelsettol 0.0
-log_view
-lsdom -0.1
-mg_coarse_sub_pc_factor_mat_ordering_type nd
-mg_coarse_sub_pc_type cholesky
-mg_levels_esteig_ksp_type cg
-n 840
-no_signal_handler
-nruns 3
-pc_gamg_agg_nsmooths 1
-pc_gamg_est_ksp_type cg
-pc_gamg_process_eq_limit 50
-pc_gamg_square_graph 10
-pc_gamg_type agg
-pc_type gamg
-petscrc /gpfs/scratch/upc26/upc26229/NEW_STUFF/time_par_cell_agg_ompi.paper/petscrc-0
-tt 1
-uagg .false.
-wsolution .false.
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 8
Configure options: --with-cc=mpicc --with-cxx=mpicxx --with-fc=mpif90 -with-blaslapack-dir=/apps/INTEL/2017.4/mkl --with-debugging=0 --with-x=0 --with-shared-libraries=1 --with-mpi=1 --with-64-bit-indices --download-hypre=../v2.14.0.tar.gz
-----------------------------------------
Libraries compiled on 2018-11-07 17:23:07 on login1 
Machine characteristics: Linux-4.4.120-92.70-default-x86_64-with-SuSE-12-x86_64
Using PETSc directory: /gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0
Using PETSc arch: arch-linux2-c-opt
-----------------------------------------

Using C compiler: mpicc  -fPIC  -wd1572 -g -O3  
Using Fortran compiler: mpif90  -fPIC -g -O3    
-----------------------------------------

Using include paths: -I/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/include -I/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/arch-linux2-c-opt/include
-----------------------------------------

Using C linker: mpicc
Using Fortran linker: mpif90
Using libraries: -Wl,-rpath,/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/arch-linux2-c-opt/lib -L/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/arch-linux2-c-opt/lib -lpetsc -Wl,-rpath,/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/arch-linux2-c-opt/lib -L/gpfs/scratch/upc26/upc26229/petsc_cell_agg_openmpi/release/petsc-3.9.0/arch-linux2-c-opt/lib -Wl,-rpath,/apps/INTEL/2017.4/mkl/lib/intel64 -L/apps/INTEL/2017.4/mkl/lib/intel64 -Wl,-rpath,/usr/mpi/intel/openmpi-1.10.4-hfi/lib64 -L/usr/mpi/intel/openmpi-1.10.4-hfi/lib64 -Wl,-rpath,/gpfs/apps/MN4/INTEL/2018.0.128/compilers_and_libraries_2018.0.128/linux/compiler/lib/intel64_lin -L/gpfs/apps/MN4/INTEL/2018.0.128/compilers_and_libraries_2018.0.128/linux/compiler/lib/intel64_lin -Wl,-rpath,/usr/lib64/gcc/x86_64-suse-linux/4.8 -L/usr/lib64/gcc/x86_64-suse-linux/4.8 -Wl,-rpath,/usr/x86_64-suse-linux/lib -L/usr/x86_64-suse-linux/lib -lHYPRE -lmkl_intel_lp64 -lmkl_sequential -lmkl_core -lpthread -lstdc++ -ldl -lmpi_usempif08 -lmpi_usempi_ignore_tkr -lmpi_mpifh -lmpi -lifport -lifcoremt_pic -limf -lsvml -lm -lipgo -lirc -lpthread -lgcc_s -lirc_s -lstdc++ -ldl
-----------------------------------------

Ending run at vie nov 16 18:41:15 CET 2018
-------------- next part --------------
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=127, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=580, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=211, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=97, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=508, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=220, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=211, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=1012, tag=0
 (context=e8, rank=127, tag=7ffffd8d, sreq=0x2d580b0)[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=211, tag=7ffffd8d, sreq=0x2fda8e0) (context=e8, rank=97, tag=7ffffd8d, sreq=0x44b02f0) (context=e8, rank=508, tag=7ffffd8d, sreq=0x3f55830)[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=133, tag=7ffffd8d, sreq=0x2d40fb0) (context=e8, rank=580, tag=7ffffd8d, sreq=0x5b1d140) (context=e8, rank=355, tag=7ffffd8d, sreq=0x2fc7b60)[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=100, tag=7ffffd8d, sreq=0x44b1df0) (context=e8, rank=652, tag=7ffffd8d, sreq=0x3f47bb0) (context=e8, rank=211, tag=7ffffd8d, sreq=0x4689c60) (context=e8, rank=1012, tag=7ffffd8d, sreq=0x5adf1f0)
 (context=e8, rank=724, tag=7ffffd8d, sreq=0x5b1ccc0)[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=211, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=211, tag=7ffffd8d, sreq=0x321db60) (context=e8, rank=355, tag=7ffffd8d, sreq=0x32122e0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f9560ff2640, &ssend_ack_recv_buffer=0x7f9560ff2648, &pad2=0x7f9560ff2658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=220, tag=7ffffd8d, sreq=0x3c6b1b0)


 (context=e8, rank=1156, tag=7ffffd8d, sreq=0x5ae42f0)MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f62a6443640, &ssend_ack_recv_buffer=0x7f62a6443648, &pad2=0x7f62a6443658

[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=796, tag=0

 (context=e8, rank=364, tag=7ffffd8d, sreq=0x3c76eb0)MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f460eef5640, &ssend_ack_recv_buffer=0x7f460eef5648, &pad2=0x7f460eef5658
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f089b5ae640, &ssend_ack_recv_buffer=0x7f089b5ae648, &pad2=0x7f089b5ae658
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f7017aab640, &ssend_ack_recv_buffer=0x7f7017aab648, &pad2=0x7f7017aab658

MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=283, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=958, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=817, tag=7ffffd8d, sreq=0x5b7d7b0) (context=e8, rank=820, tag=7ffffd8d, sreq=0x5b7c130) (context=e8, rank=958, tag=7ffffd8d, sreq=0x5b8ab30) (context=e8, rank=961, tag=7ffffd8d, sreq=0x5b75e30) (context=e8, rank=964, tag=7ffffd8d, sreq=0x5b8afb0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f3e00a0d640, &ssend_ack_recv_buffer=0x7f3e00a0d648, &pad2=0x7f3e00a0d658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f2f61f9e640, &ssend_ack_recv_buffer=0x7f2f61f9e648, &pad2=0x7f2f61f9e658
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=868, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=955, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f9c131ed640, &ssend_ack_recv_buffer=0x7f9c131ed648, &pad2=0x7f9c131ed658

MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=1051, tag=0
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=715, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=709, tag=7ffffd8d, sreq=0x539bf30) (context=e8, rank=715, tag=7ffffd8d, sreq=0x539bab0) (context=e8, rank=853, tag=7ffffd8d, sreq=0x53acd30) (context=e8, rank=931, tag=7ffffd8d, sreq=0x5386930)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f37276cf640, &ssend_ack_recv_buffer=0x7f37276cf648, &pad2=0x7f37276cf658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=283, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=364, tag=0
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fa5e6fa0640, &ssend_ack_recv_buffer=0x7fa5e6fa0648, &pad2=0x7fa5e6fa0658
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=787, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=643, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=499, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=355, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=349, tag=7ffffd8d, sreq=0x41fa2e0) (context=e8, rank=355, tag=7ffffd8d, sreq=0x41f99e0) (context=e8, rank=493, tag=7ffffd8d, sreq=0x4212ee0) (context=e8, rank=571, tag=7ffffd8d, sreq=0x42113e0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fbb1cbb1640, &ssend_ack_recv_buffer=0x7fbb1cbb1648, &pad2=0x7fbb1cbb1658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=571, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=148, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=1066, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=283, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=277, tag=7ffffd8d, sreq=0x3d48d30) (context=e8, rank=283, tag=7ffffd8d, sreq=0x3d491b0) (context=e8, rank=421, tag=7ffffd8d, sreq=0x3d557b0) (context=e8, rank=427, tag=7ffffd8d, sreq=0x3d52630) (context=e8, rank=499, tag=7ffffd8d, sreq=0x3d46030)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f9dd7f8a640, &ssend_ack_recv_buffer=0x7f9dd7f8a648, &pad2=0x7f9dd7f8a658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=859, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=859, tag=7ffffd8d, sreq=0x6c1f9f0) (context=e8, rank=1003, tag=7ffffd8d, sreq=0x6c0de70)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fb5fd466640, &ssend_ack_recv_buffer=0x7fb5fd466648, &pad2=0x7fb5fd466658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=958, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=958, tag=7ffffd8d, sreq=0x51f0f80) (context=e8, rank=961, tag=7ffffd8d, sreq=0x51d9100) (context=e8, rank=964, tag=7ffffd8d, sreq=0x51ef480) (context=e8, rank=1102, tag=7ffffd8d, sreq=0x51d6d00) (context=e8, rank=1105, tag=7ffffd8d, sreq=0x51db980) (context=e8, rank=1108, tag=7ffffd8d, sreq=0x51e6480)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f78d4ec9640, &ssend_ack_recv_buffer=0x7f78d4ec9648, &pad2=0x7f78d4ec9658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=796, tag=7ffffd8d, sreq=0x5ee11b0)MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fa8cb4c5640, &ssend_ack_recv_buffer=0x7fa8cb4c5648, &pad2=0x7fa8cb4c5658
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=517, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=511, tag=7ffffd8d, sreq=0x44405b0) (context=e8, rank=514, tag=7ffffd8d, sreq=0x442fc30) (context=e8, rank=517, tag=7ffffd8d, sreq=0x44324b0) (context=e8, rank=655, tag=7ffffd8d, sreq=0x443b030) (context=e8, rank=658, tag=7ffffd8d, sreq=0x44495b0) (context=e8, rank=661, tag=7ffffd8d, sreq=0x4432930)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7feceff86640, &ssend_ack_recv_buffer=0x7feceff86648, &pad2=0x7feceff86658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=715, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=205, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=205, tag=7ffffd8d, sreq=0x40290e0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7ff6c54a7640, &ssend_ack_recv_buffer=0x7ff6c54a7648, &pad2=0x7ff6c54a7658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=931, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=787, tag=7ffffd8d, sreq=0x5ebb0e0) (context=e8, rank=931, tag=7ffffd8d, sreq=0x5ea12e0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f0e5d848640, &ssend_ack_recv_buffer=0x7f0e5d848648, &pad2=0x7f0e5d848658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=499, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=499, tag=7ffffd8d, sreq=0x4de0470) (context=e8, rank=643, tag=7ffffd8d, sreq=0x4dd03f0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fa65c639640, &ssend_ack_recv_buffer=0x7fa65c639648, &pad2=0x7fa65c639658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=355, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=1039, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=1039, tag=7ffffd8d, sreq=0x5228150) (context=e8, rank=1042, tag=7ffffd8d, sreq=0x5228a50) (context=e8, rank=1045, tag=7ffffd8d, sreq=0x52165d0) (context=e8, rank=1183, tag=7ffffd8d, sreq=0x521f5d0) (context=e8, rank=1186, tag=7ffffd8d, sreq=0x5231150) (context=e8, rank=1189, tag=7ffffd8d, sreq=0x521fed0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f48b9ca1640, &ssend_ack_recv_buffer=0x7f48b9ca1648, &pad2=0x7f48b9ca1658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=571, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=355, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=205, tag=7ffffd8d, sreq=0x42512e0) (context=e8, rank=349, tag=7ffffd8d, sreq=0x4273360) (context=e8, rank=355, tag=7ffffd8d, sreq=0x4270ae0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fdb1fecb640, &ssend_ack_recv_buffer=0x7fdb1fecb648, &pad2=0x7fdb1fecb658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=907, tag=7ffffd8d, sreq=0x3bdf250)[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=526, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=523, tag=7ffffd8d, sreq=0x3746ab0) (context=e8, rank=526, tag=7ffffd8d, sreq=0x3748130)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7ff6486d1640, &ssend_ack_recv_buffer=0x7ff6486d1648, &pad2=0x7ff6486d1658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=715, tag=7ffffd8d, sreq=0x6db92f0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fd3a4a9e640, &ssend_ack_recv_buffer=0x7fd3a4a9e648, &pad2=0x7fd3a4a9e658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=277, tag=7ffffd8d, sreq=0x2b56db0) (context=e8, rank=364, tag=7ffffd8d, sreq=0x38f54b0)[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=1054, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=787, tag=7ffffd8d, sreq=0x5a93f20)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f47122dc640, &ssend_ack_recv_buffer=0x7f47122dc648, &pad2=0x7f47122dc658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=643, tag=7ffffd8d, sreq=0x5314c60)[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=355, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=355, tag=7ffffd8d, sreq=0x44e1560)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7ff774d71640, &ssend_ack_recv_buffer=0x7ff774d71648, &pad2=0x7ff774d71658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=421, tag=7ffffd8d, sreq=0x3409030) (context=e8, rank=148, tag=7ffffd8d, sreq=0x38553e0)[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=283, tag=7ffffd8d, sreq=0x4513d30)[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=571, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=571, tag=7ffffd8d, sreq=0x62bee40)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f635ece7640, &ssend_ack_recv_buffer=0x7f635ece7648, &pad2=0x7f635ece7658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=868, tag=7ffffd8d, sreq=0x584cf70)[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=985, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=979, tag=7ffffd8d, sreq=0x38b7e00) (context=e8, rank=982, tag=7ffffd8d, sreq=0x38c5f00) (context=e8, rank=985, tag=7ffffd8d, sreq=0x38d2080) (context=e8, rank=1123, tag=7ffffd8d, sreq=0x38d1c00) (context=e8, rank=1126, tag=7ffffd8d, sreq=0x38d3700) (context=e8, rank=1129, tag=7ffffd8d, sreq=0x38c7580)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f83e9947640, &ssend_ack_recv_buffer=0x7f83e9947648, &pad2=0x7f83e9947658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fd7d2b2b640, &ssend_ack_recv_buffer=0x7fd7d2b2b648, &pad2=0x7fd7d2b2b658
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=343, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=196, tag=7ffffd8d, sreq=0x318d460) (context=e8, rank=199, tag=7ffffd8d, sreq=0x3177560) (context=e8, rank=202, tag=7ffffd8d, sreq=0x317afe0) (context=e8, rank=340, tag=7ffffd8d, sreq=0x318c6e0) (context=e8, rank=343, tag=7ffffd8d, sreq=0x318f860) (context=e8, rank=346, tag=7ffffd8d, sreq=0x3197660)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f48361f8640, &ssend_ack_recv_buffer=0x7f48361f8648, &pad2=0x7f48361f8658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=223, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=223, tag=7ffffd8d, sreq=0x3aaf730) (context=e8, rank=367, tag=7ffffd8d, sreq=0x3ac3b30)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7ff7ff3e6640, &ssend_ack_recv_buffer=0x7ff7ff3e6648, &pad2=0x7ff7ff3e6658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=910, tag=7ffffd8d, sreq=0x3bdedd0)[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=685, tag=0
 (context=e8, rank=283, tag=7ffffd8d, sreq=0x2b6bf30)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=1003, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=1003, tag=7ffffd8d, sreq=0x6c5a3b0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f3ce6ad5640, &ssend_ack_recv_buffer=0x7f3ce6ad5648, &pad2=0x7f3ce6ad5658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=781, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=781, tag=7ffffd8d, sreq=0x7083320) (context=e8, rank=925, tag=7ffffd8d, sreq=0x706f820)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fc6fad20640, &ssend_ack_recv_buffer=0x7fc6fad20648, &pad2=0x7fc6fad20658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=787, tag=7ffffd8d, sreq=0x5321fe0)[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=643, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=493, tag=7ffffd8d, sreq=0x33118f0) (context=e8, rank=637, tag=7ffffd8d, sreq=0x3329bf0) (context=e8, rank=643, tag=7ffffd8d, sreq=0x53c3500)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f4fccb25640, &ssend_ack_recv_buffer=0x7f4fccb25648, &pad2=0x7f4fccb25658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=355, tag=7ffffd8d, sreq=0x35250e0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fa20945f640, &ssend_ack_recv_buffer=0x7fa20945f648, &pad2=0x7fa20945f658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=565, tag=7ffffd8d, sreq=0x3427ab0) (context=e8, rank=1066, tag=7ffffd8d, sreq=0x3c18980) (context=e8, rank=427, tag=7ffffd8d, sreq=0x451f5b0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7faa3aebb640, &ssend_ack_recv_buffer=0x7faa3aebb648, &pad2=0x7faa3aebb658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=571, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=571, tag=7ffffd8d, sreq=0x48ef0d0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f4476827640, &ssend_ack_recv_buffer=0x7f4476827648, &pad2=0x7f4476827658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)

 (context=e8, rank=955, tag=7ffffd8d, sreq=0x3b650d0)MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=379, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=235, tag=7ffffd8d, sreq=0x482c1c0) (context=e8, rank=238, tag=7ffffd8d, sreq=0x482e5c0) (context=e8, rank=241, tag=7ffffd8d, sreq=0x4823f40) (context=e8, rank=379, tag=7ffffd8d, sreq=0x4834d40) (context=e8, rank=382, tag=7ffffd8d, sreq=0x482ea40) (context=e8, rank=385, tag=7ffffd8d, sreq=0x6ad7440)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f2d5bb45640, &ssend_ack_recv_buffer=0x7f2d5bb45648, &pad2=0x7f2d5bb45658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=913, tag=7ffffd8d, sreq=0x3bd30d0)[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=355, tag=7ffffd8d, sreq=0x2b66530)MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f2eefed4640, &ssend_ack_recv_buffer=0x7f2eefed4648, &pad2=0x7f2eefed4658
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=1003, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=1003, tag=7ffffd8d, sreq=0x643b5b0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f31d5a6a640, &ssend_ack_recv_buffer=0x7f31d5a6a648, &pad2=0x7f31d5a6a658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)

 (context=e8, rank=499, tag=7ffffd8d, sreq=0x3f24d70) (context=e8, rank=643, tag=7ffffd8d, sreq=0x3f35ff0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f98486d5640, &ssend_ack_recv_buffer=0x7f98486d5648, &pad2=0x7f98486d5658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=571, tag=7ffffd8d, sreq=0x3428cb0)
 (context=e8, rank=1204, tag=7ffffd8d, sreq=0x3c0b180)[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=418, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=277, tag=7ffffd8d, sreq=0x488a1b0) (context=e8, rank=418, tag=7ffffd8d, sreq=0x486b730) (context=e8, rank=421, tag=7ffffd8d, sreq=0x488c130)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fa49b2c0640, &ssend_ack_recv_buffer=0x7fa49b2c0648, &pad2=0x7fa49b2c0658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=571, tag=7ffffd8d, sreq=0x6313130)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f7e703f8640, &ssend_ack_recv_buffer=0x7f7e703f8648, &pad2=0x7f7e703f8658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f62d2832640, &ssend_ack_recv_buffer=0x7f62d2832648, &pad2=0x7f62d2832658
 (context=e8, rank=958, tag=7ffffd8d, sreq=0x3b71b50)[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=676, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=673, tag=7ffffd8d, sreq=0x5c07e30) (context=e8, rank=676, tag=7ffffd8d, sreq=0x5c03f30) (context=e8, rank=817, tag=7ffffd8d, sreq=0x5c16cb0) (context=e8, rank=820, tag=7ffffd8d, sreq=0x5bfceb0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fbafd7b9640, &ssend_ack_recv_buffer=0x7fbafd7b9648, &pad2=0x7fbafd7b9658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=382, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=238, tag=7ffffd8d, sreq=0x41b98b0) (context=e8, rank=241, tag=7ffffd8d, sreq=0x41d5ab0) (context=e8, rank=244, tag=7ffffd8d, sreq=0x41cafb0) (context=e8, rank=382, tag=7ffffd8d, sreq=0x41def30) (context=e8, rank=385, tag=7ffffd8d, sreq=0x41db4b0) (context=e8, rank=388, tag=7ffffd8d, sreq=0x41e0a30)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f1e6287c640, &ssend_ack_recv_buffer=0x7f1e6287c648, &pad2=0x7f1e6287c658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=1051, tag=7ffffd8d, sreq=0x3be9450)MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f4630746640, &ssend_ack_recv_buffer=0x7f4630746648, &pad2=0x7f4630746658

MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f61e4836640, &ssend_ack_recv_buffer=0x7f61e4836648, &pad2=0x7f61e4836658
 (context=e8, rank=1207, tag=7ffffd8d, sreq=0x3c25d00)MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=961, tag=7ffffd8d, sreq=0x3b66750)[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=370, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=232, tag=7ffffd8d, sreq=0x35ac730) (context=e8, rank=370, tag=7ffffd8d, sreq=0x35c1430) (context=e8, rank=373, tag=7ffffd8d, sreq=0x35c2630)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f1ee1fe7640, &ssend_ack_recv_buffer=0x7f1ee1fe7648, &pad2=0x7f1ee1fe7658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=1054, tag=7ffffd8d, sreq=0x3be7dd0) (context=e8, rank=982, tag=7ffffd8d, sreq=0x64c6b70) (context=e8, rank=985, tag=7ffffd8d, sreq=0x64afef0) (context=e8, rank=988, tag=7ffffd8d, sreq=0x64c3e70) (context=e8, rank=1054, tag=7ffffd8d, sreq=0x64adaf0) (context=e8, rank=1126, tag=7ffffd8d, sreq=0x64c1170) (context=e8, rank=1129, tag=7ffffd8d, sreq=0x64d47f0) (context=e8, rank=1132, tag=7ffffd8d, sreq=0x64d7070)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f9951f45640, &ssend_ack_recv_buffer=0x7f9951f45648, &pad2=0x7f9951f45658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=415, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=409, tag=7ffffd8d, sreq=0x4028230) (context=e8, rank=415, tag=7ffffd8d, sreq=0x4026730)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fb0a66d1640, &ssend_ack_recv_buffer=0x7fb0a66d1648, &pad2=0x7fb0a66d1658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=1210, tag=7ffffd8d, sreq=0x3c1c880)[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=556, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=550, tag=7ffffd8d, sreq=0x6c95040) (context=e8, rank=553, tag=7ffffd8d, sreq=0x6c8f1c0) (context=e8, rank=556, tag=7ffffd8d, sreq=0x6c7c440) (context=e8, rank=622, tag=7ffffd8d, sreq=0x6c95dc0) (context=e8, rank=694, tag=7ffffd8d, sreq=0x6c7fa40) (context=e8, rank=697, tag=7ffffd8d, sreq=0x6c7dac0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7ff4ec6dc640, &ssend_ack_recv_buffer=0x7ff4ec6dc648, &pad2=0x7ff4ec6dc658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=1030, tag=0
 (context=e8, rank=1099, tag=7ffffd8d, sreq=0x3b7cf50)[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=394, tag=0

 (context=e8, rank=541, tag=7ffffd8d, sreq=0x540b9c0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=991, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=991, tag=7ffffd8d, sreq=0x5eaec30) (context=e8, rank=994, tag=7ffffd8d, sreq=0x5eaf530) (context=e8, rank=997, tag=7ffffd8d, sreq=0x5ead5b0) (context=e8, rank=1135, tag=7ffffd8d, sreq=0x5e9b5b0) (context=e8, rank=1138, tag=7ffffd8d, sreq=0x5ebbfb0) (context=e8, rank=1141, tag=7ffffd8d, sreq=0x5eac830)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f5cd28bd640, &ssend_ack_recv_buffer=0x7f5cd28bd648, &pad2=0x7f5cd28bd658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=637, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=637, tag=7ffffd8d, sreq=0x6d4d260) (context=e8, rank=781, tag=7ffffd8d, sreq=0x6d60460)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f76d63dd640, &ssend_ack_recv_buffer=0x7f76d63dd648, &pad2=0x7f76d63dd658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fa94e9c0640, &ssend_ack_recv_buffer=0x7fa94e9c0648, &pad2=0x7fa94e9c0658

[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=697, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=556, tag=7ffffd8d, sreq=0x5b665a0) (context=e8, rank=697, tag=7ffffd8d, sreq=0x5b734a0) (context=e8, rank=703, tag=7ffffd8d, sreq=0x5b8e020)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f53f49e6640, &ssend_ack_recv_buffer=0x7f53f49e6648, &pad2=0x7f53f49e6658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=1033, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=883, tag=7ffffd8d, sreq=0x3a55a80) (context=e8, rank=886, tag=7ffffd8d, sreq=0x3a4e580) (context=e8, rank=889, tag=7ffffd8d, sreq=0x3a61c00) (context=e8, rank=961, tag=7ffffd8d, sreq=0x3a54d00) (context=e8, rank=1027, tag=7ffffd8d, sreq=0x3a6be00) (context=e8, rank=1030, tag=7ffffd8d, sreq=0x3a6e200) (context=e8, rank=1033, tag=7ffffd8d, sreq=0x3a6c700)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fdac7cca640, &ssend_ack_recv_buffer=0x7fdac7cca648, &pad2=0x7fdac7cca658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=1102, tag=7ffffd8d, sreq=0x3b6d7d0)[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=250, tag=7ffffd8d, sreq=0x35651e0) (context=e8, rank=253, tag=7ffffd8d, sreq=0x354e9e0) (context=e8, rank=256, tag=7ffffd8d, sreq=0x3558760) (context=e8, rank=394, tag=7ffffd8d, sreq=0x356e660) (context=e8, rank=397, tag=7ffffd8d, sreq=0x35705e0) (context=e8, rank=400, tag=7ffffd8d, sreq=0x3557e60)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7ff3039cd640, &ssend_ack_recv_buffer=0x7ff3039cd648, &pad2=0x7ff3039cd658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fcd9734e640, &ssend_ack_recv_buffer=0x7fcd9734e648, &pad2=0x7fcd9734e658
 (context=e8, rank=544, tag=7ffffd8d, sreq=0x53f5640)MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f30e3e7f640, &ssend_ack_recv_buffer=0x7f30e3e7f648, &pad2=0x7f30e3e7f658
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=988, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=988, tag=7ffffd8d, sreq=0x5287b70)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f18da01f640, &ssend_ack_recv_buffer=0x7f18da01f648, &pad2=0x7f18da01f658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f6e0e0d2640, &ssend_ack_recv_buffer=0x7f6e0e0d2648, &pad2=0x7f6e0e0d2658
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=880, tag=7ffffd8d, sreq=0x5e270a0) (context=e8, rank=883, tag=7ffffd8d, sreq=0x5e3aba0) (context=e8, rank=886, tag=7ffffd8d, sreq=0x5e21b20) (context=e8, rank=1024, tag=7ffffd8d, sreq=0x5e231a0) (context=e8, rank=1027, tag=7ffffd8d, sreq=0x5e483a0) (context=e8, rank=1030, tag=7ffffd8d, sreq=0x5e324a0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f7956b65640, &ssend_ack_recv_buffer=0x7f7956b65648, &pad2=0x7f7956b65658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=1105, tag=7ffffd8d, sreq=0x3b73ad0)MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=547, tag=7ffffd8d, sreq=0x53f63c0)MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=418, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=412, tag=7ffffd8d, sreq=0x3f666b0) (context=e8, rank=418, tag=7ffffd8d, sreq=0x3f6e4b0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fe520611640, &ssend_ack_recv_buffer=0x7fe520611648, &pad2=0x7fe520611658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=1003, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=853, tag=7ffffd8d, sreq=0x5a32570) (context=e8, rank=997, tag=7ffffd8d, sreq=0x5a1cf70) (context=e8, rank=1003, tag=7ffffd8d, sreq=0x5a2e1f0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f8db2022640, &ssend_ack_recv_buffer=0x7f8db2022648, &pad2=0x7f8db2022658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=970, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=970, tag=7ffffd8d, sreq=0x5e5eda0) (context=e8, rank=973, tag=7ffffd8d, sreq=0x5e59ca0) (context=e8, rank=976, tag=7ffffd8d, sreq=0x5e44fa0) (context=e8, rank=1114, tag=7ffffd8d, sreq=0x5e52c20) (context=e8, rank=1117, tag=7ffffd8d, sreq=0x5e5c0a0) (context=e8, rank=1120, tag=7ffffd8d, sreq=0x5e69420)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fb7b57c3640, &ssend_ack_recv_buffer=0x7fb7b57c3648, &pad2=0x7fb7b57c3658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=919, tag=0
 (context=e8, rank=685, tag=7ffffd8d, sreq=0x54032c0)[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=268, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=418, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=418, tag=7ffffd8d, sreq=0x4540ab0) (context=e8, rank=421, tag=7ffffd8d, sreq=0x453fd30) (context=e8, rank=565, tag=7ffffd8d, sreq=0x45491b0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f1c32ffc640, &ssend_ack_recv_buffer=0x7f1c32ffc648, &pad2=0x7f1c32ffc658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)

[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=688, tag=7ffffd8d, sreq=0x53f1740)[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list:MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f494cd94640, &ssend_ack_recv_buffer=0x7f494cd94648, &pad2=0x7f494cd94658
 (context=e8, rank=916, tag=7ffffd8d, sreq=0x5d697a0) (context=e8, rank=691, tag=7ffffd8d, sreq=0x53f2940)[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=271, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=271, tag=7ffffd8d, sreq=0x30225b0) (context=e8, rank=277, tag=7ffffd8d, sreq=0x302b130)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f6a3257c640, &ssend_ack_recv_buffer=0x7f6a3257c648, &pad2=0x7f6a3257c658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=919, tag=7ffffd8d, sreq=0x5d68120)[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=532, tag=0
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=532, tag=7ffffd8d, sreq=0x6a31720)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f887ff24640, &ssend_ack_recv_buffer=0x7f887ff24648, &pad2=0x7f887ff24658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
 (context=e8, rank=268, tag=7ffffd8d, sreq=0x2e88ab0) (context=e8, rank=271, tag=7ffffd8d, sreq=0x2e8aeb0) (context=e8, rank=274, tag=7ffffd8d, sreq=0x2e80cb0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7fc286885640, &ssend_ack_recv_buffer=0x7fc286885648, &pad2=0x7fc286885658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: ERROR: can not find matching ssend. context=e8, rank=1117, tag=0


MPID_nem_tmi_handle_ssend_ack: &pad1=0x7efeef587640, &ssend_ack_recv_buffer=0x7efeef587648, &pad2=0x7efeef587658
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f722c9cf640, &ssend_ack_recv_buffer=0x7f722c9cf648, &pad2=0x7f722c9cf658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)
[MPID_nem_tmi_pending_ssend_dequeue]: pending ssend list: (context=e8, rank=976, tag=7ffffd8d, sreq=0x67744a0) (context=e8, rank=1117, tag=7ffffd8d, sreq=0x6775b20) (context=e8, rank=1123, tag=7ffffd8d, sreq=0x676eaa0)
MPID_nem_tmi_handle_ssend_ack: &pad1=0x7f8181246640, &ssend_ack_recv_buffer=0x7f8181246648, &pad2=0x7f8181246658
MPID_nem_tmi_handle_ssend_ack: pad1=0, pad2=0 (both should be 0)

===================================================================================
=   BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
=   PID 455075 RUNNING AT s08r1b31
=   EXIT CODE: 9
=   CLEANING UP REMAINING PROCESSES
=   YOU CAN IGNORE THE BELOW CLEANUP MESSAGES
===================================================================================
   Intel(R) MPI Library troubleshooting guide:
      https://software.intel.com/node/561764
===================================================================================
-------------- next part --------------
[424]PETSC ERROR: ------------------------------------------------------------------------
[424]PETSC ERROR: Caught signal number 11 SEGV: Segmentation Violation, probably memory access out of range
[424]PETSC ERROR: Try option -start_in_debugger or -on_error_attach_debugger
[424]PETSC ERROR: or see http://www.mcs.anl.gov/petsc/documentation/faq.html#valgrind
[424]PETSC ERROR: or try http://valgrind.org on GNU/linux and Apple Mac OS X to find memory corruption errors
[726]PETSC ERROR: [424]PETSC ERROR: likely location of problem given in stack below
[424]PETSC ERROR: ---------------------  Stack Frames ------------------------------------
[424]PETSC ERROR: Note: The EXACT line numbers in the stack are not available,
[424]PETSC ERROR:       INSTEAD the line number of the start of the function
[424]PETSC ERROR:       is given.
[424]PETSC ERROR: [424] PetscCommBuildTwoSidedFReq_Ibarrier line 367 /gpfs/scratch/upc26/upc26229/petsc_cell_agg/debug/petsc-3.9.0/src/sys/utils/mpits.c
[424]PETSC ERROR: [424] PetscCommBuildTwoSidedFReq line 548 /gpfs/scratch/upc26/upc26229/petsc_cell_agg/debug/petsc-3.9.0/src/sys/utils/mpits.c
[726]PETSC ERROR: [424]PETSC ERROR: --------------------- Error Message --------------------------------------------------------------
[424]PETSC ERROR: Signal received
[424]PETSC ERROR: See http://www.mcs.anl.gov/petsc/documentation/faq.html for trouble shooting.
[424]PETSC ERROR: Petsc Release Version 3.9.0, Apr, 07, 2018 
[424]PETSC ERROR: [1693]PETSC ERROR: ------------------------------------------------------------------------
[424]PETSC ERROR: Configure options --with-cc=mpicc --with-cxx=mpicxx --with-fc=mpiifort -with-blaslapack-dir=/apps/INTEL/2017.4/mkl --with-debugging --with-x=0 --with-shared-libraries=1 --with-mpi=1 --with-64-bit-indices --CFLAGS=-traceback --FFLAGS=-traceback
[424]PETSC ERROR: #1 User provided function() line 0 in  unknown file
[726]PETSC ERROR: application called MPI_Abort(MPI_COMM_WORLD, 59) - process 424

orrtl: severe (174): SIGSEGV, segmentation fault occurred
Image              PC                Routine            Line        Source
libpetsc.so.3.9.0  00007F4608388A9C  for__signal_handl     Unknown  Unknown
libpthread-2.22.s  00007F460DC5DB10  Unknown               Unknown  Unknown
libmpi.so.12.0     00007F460E3D1CFF  Unknown               Unknown  Unknown
libmpi.so.12.0     00007F460E736050  Unknown               Unknown  Unknown
libmpi.so.12.0     00007F460E5EABD0  Unknown               Unknown  Unknown
libmpi.so.12       00007F460E3AEBC8  PMPIDI_CH3I_Progr     Unknown  Unknown
libmpi.so.12       00007F460E72B90C  MPI_Testall           Unknown  Unknown
libpetsc.so.3.9.0  00007F4607391FFE  PetscCommBuildTwo     Unknown  Unknown
libpetsc.so.3.9.0  00007F460793A613  Unknown               Unknown  Unknown
libpetsc.so.3.9.0  00007F4607936EC4  Unknown               Unknown  Unknown
libpetsc.so.3.9.0  00007F46078AEC47  MatAssemblyBegin_     Unknown  Unknown
libpetsc.so.3.9.0  00007F4607587E98  MatAssemblyBegin      Unknown  Unknown
libpetsc.so.3.9.0  00007F4607921A9D  Unknown               Unknown  Unknown
libpetsc.so.3.9.0  00007F460791A557  Unknown               Unknown  Unknown
libpetsc.so.3.9.0  00007F4607598DA8  MatTransposeMatMu     Unknown  Unknown
libpetsc.so.3.9.0  00007F4607DC7AE0  Unknown               Unknown  Unknown
libpetsc.so.3.9.0  00007F4607DBFFC8  PCSetUp_GAMG          Unknown  Unknown
libpetsc.so.3.9.0  00007F4607E36A74  PCSetUp               Unknown  Unknown
libpetsc.so.3.9.0  00007F4607EEAA7E  KSPSetUp              Unknown  Unknown
libpetsc.so.3.9.0  00007F4607EFF40D  kspsetup_             Unknown  Unknown
par_test_poisson_  0000000000440FC6  Unknown               Unknown  Unknown
par_test_poisson_  000000000045EDCE  Unknown               Unknown  Unknown
par_test_poisson_  000000000040E4F5  Unknown               Unknown  Unknown
par_test_poisson_  00000000004055AE  Unknown               Unknown  Unknown
libc-2.22.so       00007F46034FB6E5  __libc_start_main     Unknown  Unknown
par_test_poisson_  00000000004054B9  Unknown               Unknown  Unknown


More information about the petsc-users mailing list