[petsc-users] Slepc JD and GD converge to wrong eigenpair
Toon Weyens
toon.weyens at gmail.com
Fri Mar 31 17:01:48 CDT 2017
Dear jose,
I have saved the matrices in Matlab format and am sending them to you using
pCloud. If you want another format, please tell me. Please also note that
they are about 1.4GB each.
I also attach a typical output of eps_view and log_view in output.txt, for
8 processes.
Thanks so much for helping me out! I think Petsc and Slepc are amazing
inventions that really have saved me many months of work!
Regards
On Fri, Mar 31, 2017 at 5:12 PM Jose E. Roman <jroman at dsic.upv.es> wrote:
In order to answer about GD I would need to know all the settings you are
using. Also if you could send me the matrix I could do some tests.
GD and JD are preconditioned eigensolvers, which need a reasonably good
preconditioner. But MUMPS is a direct solver, not a preconditioner, and
that is often counterproductive in this kind of methods.
Jose
> El 31 mar 2017, a las 16:45, Toon Weyens <toon.weyens at gmail.com> escribió:
>
> Dear both,
>
> I have recompiled slepc and petsc without debugging, as well as with the
recommended --with-fortran-kernels=1. In the attachment I show the scaling
for a typical "large" simulation with about 120 000 unkowns, using
Krylov-Schur.
>
> There are two sets of datapoints there, as I do two EPS solves in one
simulations. The second solve is faster as it results from a grid
refinement of the first solve, and takes the solution of the first solve as
a first, good guess. Note that there are two pages in the PDF and in the
second page I show the time · n_procs.
>
> As you can see, the scaling is better than before, especially up to 8
processes (which means about 15,000 unknowns per process, which is, as I
recall, cited as a good minimum on the website.
>
> I am currently trying to run make streams NPMAX=8, but the cluster is
extraordinarily crowded today and it does not like my interactive jobs. I
will try to run them asap.
>
> The main issue now, however, is again the first issue: the Generalizeid
Davidson method does not converge to the physically correct negative
eigenvalue (it should be about -0.05 as Krylov-Schur gives me). In stead it
stays stuck at some small positive eigenvalue of about +0.0002. It looks as
if the solver really does not like passing the eigenvalue = 0 barrier, a
behavior I also see in smaller simulations, where the convergence is
greatly slowed down when crossing this.
>
> However, this time, for this big simulation, just increasing NCV does not
do the trick, at least not until NCV=2048.
>
> Also, I tried to use target magnitude without success either.
>
> I started implementing the capability to start with Krylov-Schur and then
switch to GD with EPSSetInitialSpace when a certain precision has been
reached, but then realized it might be a bit of overkill as the SLEPC
solution phase in my code is generally not more than 15% of the time. There
are probably other places where I can gain more than a few percents.
>
> However, if there is another trick that can make GD to work, it would
certainly be appreciated, as in my experience it is really about 5 times
faster than Krylov-Schur!
>
> Thanks!
>
> Toon
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20170331/d76c29e5/attachment-0001.html>
-------------- next part --------------
EPS Object: 8 MPI processes
type: krylovschur
Krylov-Schur: 50% of basis vectors kept after restart
Krylov-Schur: using the locking variant
problem type: generalized non-hermitian eigenvalue problem
selected portion of the spectrum: smallest real parts
number of eigenvalues (nev): 1
number of column vectors (ncv): 32
maximum dimension of projected problem (mpd): 32
maximum number of iterations: 5000
tolerance: 1e-05
convergence test: relative to the eigenvalue
BV Object: 8 MPI processes
type: svec
33 columns of global length 60000
vector orthogonalization method: classical Gram-Schmidt
orthogonalization refinement: if needed (eta: 0.7071)
block orthogonalization method: Gram-Schmidt
doing matmult as a single matrix-matrix product
DS Object: 8 MPI processes
type: nhep
ST Object: 8 MPI processes
type: shift
shift: 0
number of matrices: 2
all matrices have different nonzero pattern
KSP Object: (st_) 8 MPI processes
type: preonly
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-08, absolute=1e-50, divergence=10000
left preconditioning
using NONE norm type for convergence test
PC Object: (st_) 8 MPI processes
type: lu
LU: out-of-place factorization
tolerance for zero pivot 2.22045e-14
matrix ordering: natural
factor fill ratio given 0, needed 0
Factored matrix follows:
Mat Object: 8 MPI processes
type: mpibaij
rows=60000, cols=60000, bs=30
package used to perform factorization: mumps
total: nonzeros=0, allocated nonzeros=0
total number of mallocs used during MatSetValues calls =0
MUMPS run parameters:
SYM (matrix type): 0
PAR (host participation): 1
ICNTL(1) (output for error): 6
ICNTL(2) (output of diagnostic msg): 0
ICNTL(3) (output for global info): 0
ICNTL(4) (level of printing): 0
ICNTL(5) (input mat struct): 0
ICNTL(6) (matrix prescaling): 7
ICNTL(7) (sequentia matrix ordering):7
ICNTL(8) (scalling strategy): 77
ICNTL(10) (max num of refinements): 0
ICNTL(11) (error analysis): 0
ICNTL(12) (efficiency control): 1
ICNTL(13) (efficiency control): 0
ICNTL(14) (percentage of estimated workspace increase): 30
ICNTL(18) (input mat struct): 3
ICNTL(19) (Shur complement info): 0
ICNTL(20) (rhs sparse pattern): 0
ICNTL(21) (solution struct): 1
ICNTL(22) (in-core/out-of-core facility): 0
ICNTL(23) (max size of memory can be allocated locally):0
ICNTL(24) (detection of null pivot rows): 0
ICNTL(25) (computation of a null space basis): 0
ICNTL(26) (Schur options for rhs or solution): 0
ICNTL(27) (experimental parameter): -24
ICNTL(28) (use parallel or sequential ordering): 1
ICNTL(29) (parallel ordering): 0
ICNTL(30) (user-specified set of entries in inv(A)): 0
ICNTL(31) (factors is discarded in the solve phase): 0
ICNTL(33) (compute determinant): 0
CNTL(1) (relative pivoting threshold): 0.01
CNTL(2) (stopping criterion of refinement): 1.49012e-08
CNTL(3) (absolute pivoting threshold): 0
CNTL(4) (value of static pivoting): -1
CNTL(5) (fixation for null pivots): 0
RINFO(1) (local estimated flops for the elimination after analysis):
[0] 3.77789e+09
[1] 4.28195e+09
[2] 4.42748e+09
[3] 4.448e+09
[4] 4.37421e+09
[5] 4.37421e+09
[6] 4.37421e+09
[7] 3.80882e+09
RINFO(2) (local estimated flops for the assembly after factorization):
[0] 3.3372e+06
[1] 2.3328e+06
[2] 2.8512e+06
[3] 2.8512e+06
[4] 2.592e+06
[5] 2.592e+06
[6] 2.592e+06
[7] 3.564e+06
RINFO(3) (local estimated flops for the elimination after factorization):
[0] 3.77789e+09
[1] 4.28195e+09
[2] 4.42748e+09
[3] 4.448e+09
[4] 4.37421e+09
[5] 4.37421e+09
[6] 4.37421e+09
[7] 3.80882e+09
INFO(15) (estimated size of (in MB) MUMPS internal data for running numerical factorization):
[0] 296
[1] 292
[2] 303
[3] 304
[4] 297
[5] 297
[6] 297
[7] 297
INFO(16) (size of (in MB) MUMPS internal data used during numerical factorization):
[0] 296
[1] 292
[2] 303
[3] 304
[4] 297
[5] 297
[6] 297
[7] 297
INFO(23) (num of pivots eliminated on this processor after factorization):
[0] 8460
[1] 6960
[2] 7320
[3] 7350
[4] 7170
[5] 7170
[6] 7170
[7] 8400
RINFOG(1) (global estimated flops for the elimination after analysis): 3.38668e+10
RINFOG(2) (global estimated flops for the assembly after factorization): 2.27124e+07
RINFOG(3) (global estimated flops for the elimination after factorization): 3.38668e+10
(RINFOG(12) RINFOG(13))*2^INFOG(34) (determinant): (0,0)*(2^0)
INFOG(3) (estimated real workspace for factors on all processors after analysis): 61590600
INFOG(4) (estimated integer workspace for factors on all processors after analysis): 257430
INFOG(5) (estimated maximum front size in the complete tree): 750
INFOG(6) (number of nodes in the complete tree): 210
INFOG(7) (ordering option effectively use after analysis): 5
INFOG(8) (structural symmetry in percent of the permuted matrix after analysis): 100
INFOG(9) (total real/complex workspace to store the matrix factors after factorization): 61590600
INFOG(10) (total integer space store the matrix factors after factorization): 257430
INFOG(11) (order of largest frontal matrix after factorization): 750
INFOG(12) (number of off-diagonal pivots): 0
INFOG(13) (number of delayed pivots after factorization): 0
INFOG(14) (number of memory compress after factorization): 0
INFOG(15) (number of steps of iterative refinement after solution): 0
INFOG(16) (estimated size (in MB) of all MUMPS internal data for factorization after analysis: value on the most memory consuming processor): 304
INFOG(17) (estimated size of all MUMPS internal data for factorization after analysis: sum over all processors): 2383
INFOG(18) (size of all MUMPS internal data allocated during factorization: value on the most memory consuming processor): 304
INFOG(19) (size of all MUMPS internal data allocated during factorization: sum over all processors): 2383
INFOG(20) (estimated number of entries in the factors): 61590600
INFOG(21) (size in MB of memory effectively used during factorization - value on the most memory consuming processor): 255
INFOG(22) (size in MB of memory effectively used during factorization - sum over all processors): 2018
INFOG(23) (after analysis: value of ICNTL(6) effectively used): 0
INFOG(24) (after analysis: value of ICNTL(12) effectively used): 1
INFOG(25) (after factorization: number of pivots modified by static pivoting): 0
INFOG(28) (after factorization: number of null pivots encountered): 0
INFOG(29) (after factorization: effective number of entries in the factors (sum over all processors)): 61590600
INFOG(30, 31) (after solution: size in Mbytes of memory used during solution phase): 194, 1499
INFOG(32) (after analysis: type of analysis done): 1
INFOG(33) (value used for ICNTL(8)): 7
INFOG(34) (exponent of the determinant if determinant is requested): 0
linear system matrix = precond matrix:
Mat Object: 8 MPI processes
type: mpibaij
rows=60000, cols=60000, bs=30
total: nonzeros=2.33622e+07, allocated nonzeros=2.33622e+07
total number of mallocs used during MatSetValues calls =0
block size is 30
11:34:22: Summarize solution
11:34:22: krylovschur solver with tolerance 1.00E-05 and maximum 5000 iterations
11:34:22: number of iterations: 147
11:34:22: number of converged solutions: 1
11:34:22: number of requested solutions: 1
11:34:22: maximum dimension of the subspace to be used by solver: 32
11:34:22: maximum dimension allowed for projected problem : 32
11:34:22: Store results for 1 least stable Eigenvalues
11:34:22: Checking whether A x - omega^2 B x = 0 for EV 1: -4.81E-03 - 5.29E-10 i
11:34:22: X*(A-omega^2B)X = 2.48E-02 + 1.19E-02 i
11:34:22: error: 1.0127729749385715E+03, given: 1.3104261036323470E+02, estimate: 9.1902202228962019E-06
11:34:23: step_size = 1.6903712754623413E-05
11:34:23: E_pot = X*AX*step_size = -1.8249444573959570E+00 - 6.9666241470887725E-21
11:34:23: E_kin = X*BX*step_size = 3.7949522108799880E+02 - 1.3572640832222037E-19
11:34:23: X*AX/X*BX = -4.8088733559382077E-03 - 2.0077499879767631E-23
11:34:23: omega^2 = -4.8088744602323725E-03 - 5.2905885580072376E-10
11:34:23: 1 Eigenvalues were written in the file "PB3D_out_EV_R_1.txt"
11:34:23: basic statistics:
11:34:23: min: -4.81E-03 - 5.29E-10 i
11:34:23: max: -4.81E-03 - 5.29E-10 i
11:34:23: Finalize SLEPC
************************************************************************************************************************
*** WIDEN YOUR WINDOW TO 120 CHARACTERS. Use 'enscript -r -fCourier9' to print this document ***
************************************************************************************************************************
---------------------------------------------- PETSc Performance Summary: ----------------------------------------------
./PB3D on a arch-linux2-c-opt named c04b03 with 8 processors, by weyenst Thu Mar 30 11:34:23 2017
Using Petsc Release Version 3.6.4, Apr, 12, 2016
Max Max/Min Avg Total
Time (sec): 1.650e+02 1.00006 1.650e+02
Objects: 6.300e+01 1.00000 6.300e+01
Flops: 7.411e+10 1.00487 7.402e+10 5.921e+11
Flops/sec: 4.491e+08 1.00493 4.485e+08 3.588e+09
MPI Messages: 9.577e+03 1.14929 8.931e+03 7.145e+04
MPI Message Lengths: 4.495e+08 1.05554 4.870e+04 3.479e+09
MPI Reductions: 7.146e+03 1.00000
Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
e.g., VecAXPY() for real vectors of length N --> 2N flops
and VecAXPY() for complex vectors of length N --> 8N flops
Summary of Stages: ----- Time ------ ----- Flops ----- --- Messages --- -- Message Lengths -- -- Reductions --
Avg %Total Avg %Total counts %Total Avg %Total counts %Total
0: Main Stage: 1.6502e+02 100.0% 5.9214e+11 100.0% 7.145e+04 100.0% 4.870e+04 100.0% 7.145e+03 100.0%
------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
Count: number of times phase was executed
Time and Flops: Max - maximum over all processors
Ratio - ratio of maximum to minimum over all processors
Mess: number of messages sent
Avg. len: average message length (bytes)
Reduct: number of global reductions
Global: entire computation
Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
%T - percent time in this phase %F - percent flops in this phase
%M - percent messages in this phase %L - percent message lengths in this phase
%R - percent reductions in this phase
Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------
Event Count Time (sec) Flops --- Global --- --- Stage --- Total
Max Ratio Max Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------
--- Event Stage 0: Main Stage
MatMult 2373 1.0 3.4775e+01 2.1 5.55e+10 1.0 3.3e+04 1.5e+03 0.0e+00 18 75 46 1 0 18 75 46 1 0 12737
MatSolve 2368 1.0 1.3440e+02 1.2 0.00e+00 0.0 3.8e+04 9.0e+04 2.4e+03 73 0 53 98 33 73 0 53 98 33 0
MatLUFactorSym 1 1.0 9.1249e-01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 5.0e+00 1 0 0 0 0 1 0 0 0 0 0
MatLUFactorNum 1 1.0 3.6064e+00 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 2 0 0 0 0 2 0 0 0 0 0
MatCopy 1 1.0 4.0790e-02 2.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatConvert 2 1.0 6.2410e-02 2.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatAssemblyBegin 7 1.0 1.0136e-0112.2 0.00e+00 0.0 8.4e+01 2.3e+05 2.1e+01 0 0 0 1 0 0 0 0 1 0 0
MatAssemblyEnd 7 1.0 6.0353e-03 1.4 0.00e+00 0.0 5.6e+01 1.4e+01 1.2e+01 0 0 0 0 0 0 0 0 0 0 0
MatGetRow 15000 1.0 5.6869e-02 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatView 2 1.0 3.4671e-03 2.5 0.00e+00 0.0 1.7e+02 2.1e+03 2.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatAXPY 1 1.0 3.2246e-01 1.1 0.00e+00 0.0 2.8e+01 1.4e+01 1.1e+01 0 0 0 0 0 0 0 0 0 0 0
VecDot 3 1.0 2.9414e-02103.9 1.80e+05 1.0 0.0e+00 0.0e+00 3.0e+00 0 0 0 0 0 0 0 0 0 0 49
VecNorm 2 1.0 1.6545e-02180.2 1.20e+05 1.0 0.0e+00 0.0e+00 2.0e+00 0 0 0 0 0 0 0 0 0 0 58
VecCopy 150 1.0 1.2825e-02 7.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecSet 2373 1.0 8.1837e-02 2.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecAXPY 1 1.0 1.5283e-04 2.5 6.00e+04 1.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 3141
VecScatterBegin 7109 1.0 2.0114e+0141.2 0.00e+00 0.0 7.1e+04 4.9e+04 2.4e+03 3 0100 99 33 3 0100 99 33 0
VecScatterEnd 4741 1.0 6.6763e-01 2.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
EPSSetUp 1 1.0 4.5218e+00 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 1.7e+01 3 0 0 0 0 3 0 0 0 0 0
EPSSolve 1 1.0 1.6407e+02 1.0 7.40e+10 1.0 7.1e+04 4.9e+04 7.1e+03 99100 99 99 99 99100 99 99 99 3603
STSetUp 1 1.0 4.5194e+00 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 9.0e+00 3 0 0 0 0 3 0 0 0 0 0
STApply 2368 1.0 1.5129e+02 1.0 5.53e+10 1.0 7.1e+04 4.9e+04 2.4e+03 91 75 99 99 33 91 75 99 99 33 2922
STMatSolve 2368 1.0 1.3450e+02 1.2 0.00e+00 0.0 3.8e+04 9.0e+04 2.4e+03 73 0 53 98 33 73 0 53 98 33 0
BVCopy 149 1.0 1.3258e-02 6.8 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
BVMult 4859 1.0 4.9419e+00 3.8 1.14e+10 1.0 0.0e+00 0.0e+00 0.0e+00 2 15 0 0 0 2 15 0 0 0 18441
BVDot 4711 1.0 6.8612e+00 1.5 7.19e+09 1.0 0.0e+00 0.0e+00 4.7e+03 3 10 0 0 66 3 10 0 0 66 8380
BVOrthogonalize 2369 1.0 9.3547e+00 1.2 1.41e+10 1.0 0.0e+00 0.0e+00 4.7e+03 5 19 0 0 66 5 19 0 0 66 12051
BVScale 2369 1.0 2.4911e-02 1.3 7.11e+07 1.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 22824
BVSetRandom 1 1.0 1.6389e-03 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
DSSolve 147 1.0 9.8380e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
DSVectors 149 1.0 2.5978e-03 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
DSOther 147 1.0 2.1844e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
KSPSetUp 1 1.0 2.8610e-06 3.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
KSPSolve 2368 1.0 1.3447e+02 1.2 0.00e+00 0.0 3.8e+04 9.0e+04 2.4e+03 73 0 53 98 33 73 0 53 98 33 0
PCSetUp 1 1.0 4.5193e+00 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 7.0e+00 3 0 0 0 0 3 0 0 0 0 0
PCApply 2368 1.0 1.3440e+02 1.2 0.00e+00 0.0 3.8e+04 9.0e+04 2.4e+03 73 0 53 98 33 73 0 53 98 33 0
------------------------------------------------------------------------------------------------------------------------
Memory usage is given in bytes:
Object Type Creations Destructions Memory Descendants' Mem.
Reports information only for process 0.
--- Event Stage 0: Main Stage
Matrix 17 17 186274616 0
Vector 22 21 6044400 0
Vector Scatter 6 6 5968 0
Index Set 9 9 40848 0
EPS Solver 1 1 3620 0
PetscRandom 1 1 632 0
Spectral Transform 1 1 816 0
Viewer 1 0 0 0
Basis Vectors 1 1 18456 0
Region 1 1 640 0
Direct Solver 1 1 72104 0
Krylov Solver 1 1 1136 0
Preconditioner 1 1 984 0
========================================================================================================================
Average time to get PetscTime(): 9.53674e-08
Average time for MPI_Barrier(): 5.00679e-06
Average time for zero size MPI_Send(): 1.2219e-06
#PETSc Option Table entries:
-eps_monitor
-eps_ncv 32
-eps_type krylovschur
-eps_view
-log_view
-st_pc_factor_mat_solver_package mumps
-st_pc_type lu
#End of PETSc Option Table entries
Compiled with FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 16 sizeof(PetscInt) 4
Configure options: --prefix=/home/ITER/weyenst/Compiled_MVAPICH2 --with-scalar-type=complex --with-shared-libraries=0 --download-mumps --download-metis --download-parmetis --download-scalapack --with-blas-lapack-dir=/home/ITER/weyenst/Compiled_MVAPICH2/lib --with-cc=mpicc --with-fc=mpif90 --with-cxx=mpicxx --with-fortran-kernels=1 --with-debugging=no
-----------------------------------------
Libraries compiled on Thu Mar 30 09:25:32 2017 on hpc-app1.iter.org
Machine characteristics: Linux-2.6.18-406.el5-x86_64-with-redhat-5.11-Final
Using PETSc directory: /home/ITER/weyenst/Programs_MVAPICH2/petsc-3.6.4
Using PETSc arch: arch-linux2-c-opt
-----------------------------------------
Using C compiler: mpicc -wd1572 -O3 ${COPTFLAGS} ${CFLAGS}
Using Fortran compiler: mpif90 -O3 ${FOPTFLAGS} ${FFLAGS}
-----------------------------------------
Using include paths: -I/home/ITER/weyenst/Programs_MVAPICH2/petsc-3.6.4/arch-linux2-c-opt/include -I/home/ITER/weyenst/Programs_MVAPICH2/petsc-3.6.4/include -I/home/ITER/weyenst/Programs_MVAPICH2/petsc-3.6.4/include -I/home/ITER/weyenst/Programs_MVAPICH2/petsc-3.6.4/arch-linux2-c-opt/include -I/home/ITER/weyenst/Compiled_MVAPICH2/include -I/shared/hpc/mpi/mvapich2-intel/include
-----------------------------------------
Using C linker: mpicc
Using Fortran linker: mpif90
Using libraries: -Wl,-rpath,/home/ITER/weyenst/Programs_MVAPICH2/petsc-3.6.4/arch-linux2-c-opt/lib -L/home/ITER/weyenst/Programs_MVAPICH2/petsc-3.6.4/arch-linux2-c-opt/lib -lpetsc -Wl,-rpath,/home/ITER/weyenst/Compiled_MVAPICH2/lib -L/home/ITER/weyenst/Compiled_MVAPICH2/lib -lcmumps -ldmumps -lsmumps -lzmumps -lmumps_common -lpord -lscalapack -lmkl_intel_lp64 -lmkl_sequential -lmkl_core -lpthread -lm -lparmetis -lmetis -lssl -lcrypto -lX11 -L/shared/hpc/mpi/mvapich2-intel/lib -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/ipp/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/mkl/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/tbb/lib/intel64/cc4.1.0_libc2.4_kernel2.6.16.21 -L/usr/lib/gcc/x86_64-redhat-linux/4.1.2 -lmpichf90 -lifport -lifcore -lm -lmpichcxx -ldl -L/shared/hpc/mpi/mvapich2-intel/lib -L/shared/hpc/mpi/mvapich2-intel/lib -lmpich -lopa -lpthread -libverbs -libumad -lrt -L/shared/hpc/mpi/mvapich2-intel/lib -L/shared/hpc/mpi/mvapich2-intel/lib -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/ipp/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/mkl/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/tbb/lib/intel64/cc4.1.0_libc2.4_kernel2.6.16.21 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/ipp/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/mkl/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/tbb/lib/intel64/cc4.1.0_libc2.4_kernel2.6.16.21 -L/usr/lib/gcc/x86_64-redhat-linux/4.1.2 -limf -lsvml -lipgo -ldecimal -lcilkrts -lstdc++ -lgcc_s -lirc -lirc_s -L/shared/hpc/mpi/mvapich2-intel/lib -L/shared/hpc/mpi/mvapich2-intel/lib -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/ipp/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/mkl/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/tbb/lib/intel64/cc4.1.0_libc2.4_kernel2.6.16.21 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/ipp/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/mkl/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/tbb/lib/intel64/cc4.1.0_libc2.4_kernel2.6.16.21 -L/usr/lib/gcc/x86_64-redhat-linux/4.1.2 -ldl
-----------------------------------------
More information about the petsc-users
mailing list