[petsc-users] Slepc JD and GD converge to wrong eigenpair

Toon Weyens toon.weyens at gmail.com
Fri Mar 31 17:01:48 CDT 2017


Dear jose,

I have saved the matrices in Matlab format and am sending them to you using
pCloud. If you want another format, please tell me. Please also note that
they are about 1.4GB each.

I also attach a typical output of eps_view and log_view in output.txt, for
8 processes.

Thanks so much for helping me out! I think Petsc and Slepc are amazing
inventions that really have saved me many months of work!

Regards

On Fri, Mar 31, 2017 at 5:12 PM Jose E. Roman <jroman at dsic.upv.es> wrote:

In order to answer about GD I would need to know all the settings you are
using. Also if you could send me the matrix I could do some tests.
GD and JD are preconditioned eigensolvers, which need a reasonably good
preconditioner. But MUMPS is a direct solver, not a preconditioner, and
that is often counterproductive in this kind of methods.
Jose


> El 31 mar 2017, a las 16:45, Toon Weyens <toon.weyens at gmail.com> escribió:
>
> Dear both,
>
> I have recompiled slepc and petsc without debugging, as well as with the
recommended --with-fortran-kernels=1. In the attachment I show the scaling
for a typical "large" simulation with about 120 000 unkowns, using
Krylov-Schur.
>
> There are two sets of datapoints there, as I do two EPS solves in one
simulations. The second solve is faster as it results from a grid
refinement of the first solve, and takes the solution of the first solve as
a first, good guess. Note that there are two pages in the PDF and in the
second page I show the time · n_procs.
>
> As you can see, the scaling is better than before, especially up to 8
processes (which means about 15,000 unknowns per process, which is, as I
recall, cited as a good minimum on the website.
>
> I am currently trying to run  make streams NPMAX=8, but the cluster is
extraordinarily crowded today and it does not like my interactive jobs. I
will try to run them asap.
>
> The main issue now, however, is again the first issue: the Generalizeid
Davidson method does not converge to the physically correct negative
eigenvalue (it should be about -0.05 as Krylov-Schur gives me). In stead it
stays stuck at some small positive eigenvalue of about +0.0002. It looks as
if the solver really does not like passing the eigenvalue = 0 barrier, a
behavior I also see in smaller simulations, where the convergence is
greatly slowed down when crossing this.
>
> However, this time, for this big simulation, just increasing NCV does not
do the trick, at least not until NCV=2048.
>
> Also, I tried to use target magnitude without success either.
>
> I started implementing the capability to start with Krylov-Schur and then
switch to GD with EPSSetInitialSpace when a certain precision has been
reached, but then realized it might be a bit of overkill as the SLEPC
solution phase in my code is generally not more than 15% of the time. There
are probably other places where I can gain more than a few percents.
>
> However, if there is another trick that can make GD to work, it would
certainly be appreciated, as in my experience it is really about 5 times
faster than Krylov-Schur!
>
> Thanks!
>
> Toon
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20170331/d76c29e5/attachment-0001.html>
-------------- next part --------------
EPS Object: 8 MPI processes
  type: krylovschur
    Krylov-Schur: 50% of basis vectors kept after restart
    Krylov-Schur: using the locking variant
  problem type: generalized non-hermitian eigenvalue problem
  selected portion of the spectrum: smallest real parts
  number of eigenvalues (nev): 1
  number of column vectors (ncv): 32
  maximum dimension of projected problem (mpd): 32
  maximum number of iterations: 5000
  tolerance: 1e-05
  convergence test: relative to the eigenvalue
BV Object: 8 MPI processes
  type: svec
  33 columns of global length 60000
  vector orthogonalization method: classical Gram-Schmidt
  orthogonalization refinement: if needed (eta: 0.7071)
  block orthogonalization method: Gram-Schmidt
  doing matmult as a single matrix-matrix product
DS Object: 8 MPI processes
  type: nhep
ST Object: 8 MPI processes
  type: shift
  shift: 0
  number of matrices: 2
  all matrices have different nonzero pattern
  KSP Object:  (st_)   8 MPI processes
    type: preonly
    maximum iterations=10000, initial guess is zero
    tolerances:  relative=1e-08, absolute=1e-50, divergence=10000
    left preconditioning
    using NONE norm type for convergence test
  PC Object:  (st_)   8 MPI processes
    type: lu
      LU: out-of-place factorization
      tolerance for zero pivot 2.22045e-14
      matrix ordering: natural
      factor fill ratio given 0, needed 0
        Factored matrix follows:
          Mat Object:           8 MPI processes
            type: mpibaij
            rows=60000, cols=60000, bs=30
            package used to perform factorization: mumps
            total: nonzeros=0, allocated nonzeros=0
            total number of mallocs used during MatSetValues calls =0
              MUMPS run parameters:
                SYM (matrix type):                   0 
                PAR (host participation):            1 
                ICNTL(1) (output for error):         6 
                ICNTL(2) (output of diagnostic msg): 0 
                ICNTL(3) (output for global info):   0 
                ICNTL(4) (level of printing):        0 
                ICNTL(5) (input mat struct):         0 
                ICNTL(6) (matrix prescaling):        7 
                ICNTL(7) (sequentia matrix ordering):7 
                ICNTL(8) (scalling strategy):        77 
                ICNTL(10) (max num of refinements):  0 
                ICNTL(11) (error analysis):          0 
                ICNTL(12) (efficiency control):                         1 
                ICNTL(13) (efficiency control):                         0 
                ICNTL(14) (percentage of estimated workspace increase): 30 
                ICNTL(18) (input mat struct):                           3 
                ICNTL(19) (Shur complement info):                       0 
                ICNTL(20) (rhs sparse pattern):                         0 
                ICNTL(21) (solution struct):                            1 
                ICNTL(22) (in-core/out-of-core facility):               0 
                ICNTL(23) (max size of memory can be allocated locally):0 
                ICNTL(24) (detection of null pivot rows):               0 
                ICNTL(25) (computation of a null space basis):          0 
                ICNTL(26) (Schur options for rhs or solution):          0 
                ICNTL(27) (experimental parameter):                     -24 
                ICNTL(28) (use parallel or sequential ordering):        1 
                ICNTL(29) (parallel ordering):                          0 
                ICNTL(30) (user-specified set of entries in inv(A)):    0 
                ICNTL(31) (factors is discarded in the solve phase):    0 
                ICNTL(33) (compute determinant):                        0 
                CNTL(1) (relative pivoting threshold):      0.01 
                CNTL(2) (stopping criterion of refinement): 1.49012e-08 
                CNTL(3) (absolute pivoting threshold):      0 
                CNTL(4) (value of static pivoting):         -1 
                CNTL(5) (fixation for null pivots):         0 
                RINFO(1) (local estimated flops for the elimination after analysis): 
                  [0] 3.77789e+09 
                  [1] 4.28195e+09 
                  [2] 4.42748e+09 
                  [3] 4.448e+09 
                  [4] 4.37421e+09 
                  [5] 4.37421e+09 
                  [6] 4.37421e+09 
                  [7] 3.80882e+09 
                RINFO(2) (local estimated flops for the assembly after factorization): 
                  [0]  3.3372e+06 
                  [1]  2.3328e+06 
                  [2]  2.8512e+06 
                  [3]  2.8512e+06 
                  [4]  2.592e+06 
                  [5]  2.592e+06 
                  [6]  2.592e+06 
                  [7]  3.564e+06 
                RINFO(3) (local estimated flops for the elimination after factorization): 
                  [0]  3.77789e+09 
                  [1]  4.28195e+09 
                  [2]  4.42748e+09 
                  [3]  4.448e+09 
                  [4]  4.37421e+09 
                  [5]  4.37421e+09 
                  [6]  4.37421e+09 
                  [7]  3.80882e+09 
                INFO(15) (estimated size of (in MB) MUMPS internal data for running numerical factorization): 
                [0] 296 
                [1] 292 
                [2] 303 
                [3] 304 
                [4] 297 
                [5] 297 
                [6] 297 
                [7] 297 
                INFO(16) (size of (in MB) MUMPS internal data used during numerical factorization): 
                  [0] 296 
                  [1] 292 
                  [2] 303 
                  [3] 304 
                  [4] 297 
                  [5] 297 
                  [6] 297 
                  [7] 297 
                INFO(23) (num of pivots eliminated on this processor after factorization): 
                  [0] 8460 
                  [1] 6960 
                  [2] 7320 
                  [3] 7350 
                  [4] 7170 
                  [5] 7170 
                  [6] 7170 
                  [7] 8400 
                RINFOG(1) (global estimated flops for the elimination after analysis): 3.38668e+10 
                RINFOG(2) (global estimated flops for the assembly after factorization): 2.27124e+07 
                RINFOG(3) (global estimated flops for the elimination after factorization): 3.38668e+10 
                (RINFOG(12) RINFOG(13))*2^INFOG(34) (determinant): (0,0)*(2^0)
                INFOG(3) (estimated real workspace for factors on all processors after analysis): 61590600 
                INFOG(4) (estimated integer workspace for factors on all processors after analysis): 257430 
                INFOG(5) (estimated maximum front size in the complete tree): 750 
                INFOG(6) (number of nodes in the complete tree): 210 
                INFOG(7) (ordering option effectively use after analysis): 5 
                INFOG(8) (structural symmetry in percent of the permuted matrix after analysis): 100 
                INFOG(9) (total real/complex workspace to store the matrix factors after factorization): 61590600 
                INFOG(10) (total integer space store the matrix factors after factorization): 257430 
                INFOG(11) (order of largest frontal matrix after factorization): 750 
                INFOG(12) (number of off-diagonal pivots): 0 
                INFOG(13) (number of delayed pivots after factorization): 0 
                INFOG(14) (number of memory compress after factorization): 0 
                INFOG(15) (number of steps of iterative refinement after solution): 0 
                INFOG(16) (estimated size (in MB) of all MUMPS internal data for factorization after analysis: value on the most memory consuming processor): 304 
                INFOG(17) (estimated size of all MUMPS internal data for factorization after analysis: sum over all processors): 2383 
                INFOG(18) (size of all MUMPS internal data allocated during factorization: value on the most memory consuming processor): 304 
                INFOG(19) (size of all MUMPS internal data allocated during factorization: sum over all processors): 2383 
                INFOG(20) (estimated number of entries in the factors): 61590600 
                INFOG(21) (size in MB of memory effectively used during factorization - value on the most memory consuming processor): 255 
                INFOG(22) (size in MB of memory effectively used during factorization - sum over all processors): 2018 
                INFOG(23) (after analysis: value of ICNTL(6) effectively used): 0 
                INFOG(24) (after analysis: value of ICNTL(12) effectively used): 1 
                INFOG(25) (after factorization: number of pivots modified by static pivoting): 0 
                INFOG(28) (after factorization: number of null pivots encountered): 0
                INFOG(29) (after factorization: effective number of entries in the factors (sum over all processors)): 61590600
                INFOG(30, 31) (after solution: size in Mbytes of memory used during solution phase): 194, 1499
                INFOG(32) (after analysis: type of analysis done): 1
                INFOG(33) (value used for ICNTL(8)): 7
                INFOG(34) (exponent of the determinant if determinant is requested): 0
    linear system matrix = precond matrix:
    Mat Object:     8 MPI processes
      type: mpibaij
      rows=60000, cols=60000, bs=30
      total: nonzeros=2.33622e+07, allocated nonzeros=2.33622e+07
      total number of mallocs used during MatSetValues calls =0
          block size is 30
 11:34:22:     Summarize solution
 11:34:22:       krylovschur solver with tolerance 1.00E-05 and maximum 5000 iterations
 11:34:22:       number of iterations: 147
 11:34:22:       number of converged solutions: 1
 11:34:22:       number of requested solutions: 1
 11:34:22:       maximum dimension of the subspace to be used by solver: 32
 11:34:22:       maximum dimension allowed for projected problem : 32
 11:34:22:     Store results for 1 least stable Eigenvalues
 11:34:22:       Checking whether A x - omega^2 B x = 0 for EV 1: -4.81E-03 -  5.29E-10 i
 11:34:22:         X*(A-omega^2B)X = 2.48E-02 +  1.19E-02 i
 11:34:22:         error: 1.0127729749385715E+03, given: 1.3104261036323470E+02, estimate: 9.1902202228962019E-06
 11:34:23:         step_size = 1.6903712754623413E-05
 11:34:23:         E_pot = X*AX*step_size = -1.8249444573959570E+00 -  6.9666241470887725E-21
 11:34:23:         E_kin = X*BX*step_size = 3.7949522108799880E+02 -  1.3572640832222037E-19
 11:34:23:         X*AX/X*BX = -4.8088733559382077E-03 -  2.0077499879767631E-23
 11:34:23:         omega^2   = -4.8088744602323725E-03 -  5.2905885580072376E-10
 11:34:23:       1 Eigenvalues were written in the file "PB3D_out_EV_R_1.txt"
 11:34:23:       basic statistics:
 11:34:23:         min: -4.81E-03 -  5.29E-10 i
 11:34:23:         max: -4.81E-03 -  5.29E-10 i
 11:34:23:     Finalize SLEPC
************************************************************************************************************************
***             WIDEN YOUR WINDOW TO 120 CHARACTERS.  Use 'enscript -r -fCourier9' to print this document            ***
************************************************************************************************************************

---------------------------------------------- PETSc Performance Summary: ----------------------------------------------

./PB3D on a arch-linux2-c-opt named c04b03 with 8 processors, by weyenst Thu Mar 30 11:34:23 2017
Using Petsc Release Version 3.6.4, Apr, 12, 2016 

                         Max       Max/Min        Avg      Total 
Time (sec):           1.650e+02      1.00006   1.650e+02
Objects:              6.300e+01      1.00000   6.300e+01
Flops:                7.411e+10      1.00487   7.402e+10  5.921e+11
Flops/sec:            4.491e+08      1.00493   4.485e+08  3.588e+09
MPI Messages:         9.577e+03      1.14929   8.931e+03  7.145e+04
MPI Message Lengths:  4.495e+08      1.05554   4.870e+04  3.479e+09
MPI Reductions:       7.146e+03      1.00000

Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
                            e.g., VecAXPY() for real vectors of length N --> 2N flops
                            and VecAXPY() for complex vectors of length N --> 8N flops

Summary of Stages:   ----- Time ------  ----- Flops -----  --- Messages ---  -- Message Lengths --  -- Reductions --
                        Avg     %Total     Avg     %Total   counts   %Total     Avg         %Total   counts   %Total 
 0:      Main Stage: 1.6502e+02 100.0%  5.9214e+11 100.0%  7.145e+04 100.0%  4.870e+04      100.0%  7.145e+03 100.0% 

------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
   Count: number of times phase was executed
   Time and Flops: Max - maximum over all processors
                   Ratio - ratio of maximum to minimum over all processors
   Mess: number of messages sent
   Avg. len: average message length (bytes)
   Reduct: number of global reductions
   Global: entire computation
   Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
      %T - percent time in this phase         %F - percent flops in this phase
      %M - percent messages in this phase     %L - percent message lengths in this phase
      %R - percent reductions in this phase
   Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------
Event                Count      Time (sec)     Flops                             --- Global ---  --- Stage ---   Total
                   Max Ratio  Max     Ratio   Max  Ratio  Mess   Avg len Reduct  %T %F %M %L %R  %T %F %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------

--- Event Stage 0: Main Stage

MatMult             2373 1.0 3.4775e+01 2.1 5.55e+10 1.0 3.3e+04 1.5e+03 0.0e+00 18 75 46  1  0  18 75 46  1  0 12737
MatSolve            2368 1.0 1.3440e+02 1.2 0.00e+00 0.0 3.8e+04 9.0e+04 2.4e+03 73  0 53 98 33  73  0 53 98 33     0
MatLUFactorSym         1 1.0 9.1249e-01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 5.0e+00  1  0  0  0  0   1  0  0  0  0     0
MatLUFactorNum         1 1.0 3.6064e+00 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  2  0  0  0  0   2  0  0  0  0     0
MatCopy                1 1.0 4.0790e-02 2.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatConvert             2 1.0 6.2410e-02 2.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatAssemblyBegin       7 1.0 1.0136e-0112.2 0.00e+00 0.0 8.4e+01 2.3e+05 2.1e+01  0  0  0  1  0   0  0  0  1  0     0
MatAssemblyEnd         7 1.0 6.0353e-03 1.4 0.00e+00 0.0 5.6e+01 1.4e+01 1.2e+01  0  0  0  0  0   0  0  0  0  0     0
MatGetRow          15000 1.0 5.6869e-02 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatView                2 1.0 3.4671e-03 2.5 0.00e+00 0.0 1.7e+02 2.1e+03 2.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatAXPY                1 1.0 3.2246e-01 1.1 0.00e+00 0.0 2.8e+01 1.4e+01 1.1e+01  0  0  0  0  0   0  0  0  0  0     0
VecDot                 3 1.0 2.9414e-02103.9 1.80e+05 1.0 0.0e+00 0.0e+00 3.0e+00  0  0  0  0  0   0  0  0  0  0    49
VecNorm                2 1.0 1.6545e-02180.2 1.20e+05 1.0 0.0e+00 0.0e+00 2.0e+00  0  0  0  0  0   0  0  0  0  0    58
VecCopy              150 1.0 1.2825e-02 7.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet              2373 1.0 8.1837e-02 2.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY                1 1.0 1.5283e-04 2.5 6.00e+04 1.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0  3141
VecScatterBegin     7109 1.0 2.0114e+0141.2 0.00e+00 0.0 7.1e+04 4.9e+04 2.4e+03  3  0100 99 33   3  0100 99 33     0
VecScatterEnd       4741 1.0 6.6763e-01 2.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
EPSSetUp               1 1.0 4.5218e+00 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 1.7e+01  3  0  0  0  0   3  0  0  0  0     0
EPSSolve               1 1.0 1.6407e+02 1.0 7.40e+10 1.0 7.1e+04 4.9e+04 7.1e+03 99100 99 99 99  99100 99 99 99  3603
STSetUp                1 1.0 4.5194e+00 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 9.0e+00  3  0  0  0  0   3  0  0  0  0     0
STApply             2368 1.0 1.5129e+02 1.0 5.53e+10 1.0 7.1e+04 4.9e+04 2.4e+03 91 75 99 99 33  91 75 99 99 33  2922
STMatSolve          2368 1.0 1.3450e+02 1.2 0.00e+00 0.0 3.8e+04 9.0e+04 2.4e+03 73  0 53 98 33  73  0 53 98 33     0
BVCopy               149 1.0 1.3258e-02 6.8 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
BVMult              4859 1.0 4.9419e+00 3.8 1.14e+10 1.0 0.0e+00 0.0e+00 0.0e+00  2 15  0  0  0   2 15  0  0  0 18441
BVDot               4711 1.0 6.8612e+00 1.5 7.19e+09 1.0 0.0e+00 0.0e+00 4.7e+03  3 10  0  0 66   3 10  0  0 66  8380
BVOrthogonalize     2369 1.0 9.3547e+00 1.2 1.41e+10 1.0 0.0e+00 0.0e+00 4.7e+03  5 19  0  0 66   5 19  0  0 66 12051
BVScale             2369 1.0 2.4911e-02 1.3 7.11e+07 1.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0 22824
BVSetRandom            1 1.0 1.6389e-03 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
DSSolve              147 1.0 9.8380e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
DSVectors            149 1.0 2.5978e-03 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
DSOther              147 1.0 2.1844e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
KSPSetUp               1 1.0 2.8610e-06 3.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
KSPSolve            2368 1.0 1.3447e+02 1.2 0.00e+00 0.0 3.8e+04 9.0e+04 2.4e+03 73  0 53 98 33  73  0 53 98 33     0
PCSetUp                1 1.0 4.5193e+00 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 7.0e+00  3  0  0  0  0   3  0  0  0  0     0
PCApply             2368 1.0 1.3440e+02 1.2 0.00e+00 0.0 3.8e+04 9.0e+04 2.4e+03 73  0 53 98 33  73  0 53 98 33     0
------------------------------------------------------------------------------------------------------------------------

Memory usage is given in bytes:

Object Type          Creations   Destructions     Memory  Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

              Matrix    17             17    186274616     0
              Vector    22             21      6044400     0
      Vector Scatter     6              6         5968     0
           Index Set     9              9        40848     0
          EPS Solver     1              1         3620     0
         PetscRandom     1              1          632     0
  Spectral Transform     1              1          816     0
              Viewer     1              0            0     0
       Basis Vectors     1              1        18456     0
              Region     1              1          640     0
       Direct Solver     1              1        72104     0
       Krylov Solver     1              1         1136     0
      Preconditioner     1              1          984     0
========================================================================================================================
Average time to get PetscTime(): 9.53674e-08
Average time for MPI_Barrier(): 5.00679e-06
Average time for zero size MPI_Send(): 1.2219e-06
#PETSc Option Table entries:
-eps_monitor
-eps_ncv 32
-eps_type krylovschur
-eps_view
-log_view
-st_pc_factor_mat_solver_package mumps
-st_pc_type lu
#End of PETSc Option Table entries
Compiled with FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 16 sizeof(PetscInt) 4
Configure options: --prefix=/home/ITER/weyenst/Compiled_MVAPICH2 --with-scalar-type=complex --with-shared-libraries=0 --download-mumps --download-metis --download-parmetis --download-scalapack --with-blas-lapack-dir=/home/ITER/weyenst/Compiled_MVAPICH2/lib --with-cc=mpicc --with-fc=mpif90 --with-cxx=mpicxx --with-fortran-kernels=1 --with-debugging=no
-----------------------------------------
Libraries compiled on Thu Mar 30 09:25:32 2017 on hpc-app1.iter.org 
Machine characteristics: Linux-2.6.18-406.el5-x86_64-with-redhat-5.11-Final
Using PETSc directory: /home/ITER/weyenst/Programs_MVAPICH2/petsc-3.6.4
Using PETSc arch: arch-linux2-c-opt
-----------------------------------------

Using C compiler: mpicc  -wd1572 -O3  ${COPTFLAGS} ${CFLAGS}
Using Fortran compiler: mpif90  -O3   ${FOPTFLAGS} ${FFLAGS} 
-----------------------------------------

Using include paths: -I/home/ITER/weyenst/Programs_MVAPICH2/petsc-3.6.4/arch-linux2-c-opt/include -I/home/ITER/weyenst/Programs_MVAPICH2/petsc-3.6.4/include -I/home/ITER/weyenst/Programs_MVAPICH2/petsc-3.6.4/include -I/home/ITER/weyenst/Programs_MVAPICH2/petsc-3.6.4/arch-linux2-c-opt/include -I/home/ITER/weyenst/Compiled_MVAPICH2/include -I/shared/hpc/mpi/mvapich2-intel/include
-----------------------------------------

Using C linker: mpicc
Using Fortran linker: mpif90
Using libraries: -Wl,-rpath,/home/ITER/weyenst/Programs_MVAPICH2/petsc-3.6.4/arch-linux2-c-opt/lib -L/home/ITER/weyenst/Programs_MVAPICH2/petsc-3.6.4/arch-linux2-c-opt/lib -lpetsc -Wl,-rpath,/home/ITER/weyenst/Compiled_MVAPICH2/lib -L/home/ITER/weyenst/Compiled_MVAPICH2/lib -lcmumps -ldmumps -lsmumps -lzmumps -lmumps_common -lpord -lscalapack -lmkl_intel_lp64 -lmkl_sequential -lmkl_core -lpthread -lm -lparmetis -lmetis -lssl -lcrypto -lX11 -L/shared/hpc/mpi/mvapich2-intel/lib -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/ipp/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/mkl/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/tbb/lib/intel64/cc4.1.0_libc2.4_kernel2.6.16.21 -L/usr/lib/gcc/x86_64-redhat-linux/4.1.2 -lmpichf90 -lifport -lifcore -lm -lmpichcxx -ldl -L/shared/hpc/mpi/mvapich2-intel/lib -L/shared/hpc/mpi/mvapich2-intel/lib -lmpich -lopa -lpthread -libverbs -libumad -lrt -L/shared/hpc/mpi/mvapich2-intel/lib -L/shared/hpc/mpi/mvapich2-intel/lib -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/ipp/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/mkl/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/tbb/lib/intel64/cc4.1.0_libc2.4_kernel2.6.16.21 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/ipp/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/mkl/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/tbb/lib/intel64/cc4.1.0_libc2.4_kernel2.6.16.21 -L/usr/lib/gcc/x86_64-redhat-linux/4.1.2 -limf -lsvml -lipgo -ldecimal -lcilkrts -lstdc++ -lgcc_s -lirc -lirc_s -L/shared/hpc/mpi/mvapich2-intel/lib -L/shared/hpc/mpi/mvapich2-intel/lib -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/ipp/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/mkl/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/tbb/lib/intel64/cc4.1.0_libc2.4_kernel2.6.16.21 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/compiler/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/ipp/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/mkl/lib/intel64 -L/shared/hpc/compiler/intel/composerxe-2011.2.137/tbb/lib/intel64/cc4.1.0_libc2.4_kernel2.6.16.21 -L/usr/lib/gcc/x86_64-redhat-linux/4.1.2 -ldl 
-----------------------------------------


More information about the petsc-users mailing list