[petsc-users] Hypre BoomerAMG has slow convergence

Robert Annewandter robert.annewandter at opengosim.com
Tue Jul 4 13:40:45 CDT 2017


Thank you Barry!



I believe the sub problem can be singular, because the first
preconditioner M1 in the CPR-AMG preconditioner

    Mcpr^(-1) = M2^(-1) [ I - J M1^(-1) ] + M1^(-1),

where

    M1^(-1) = C [ W^T J C ]^(-1) W^T,

has prolongation C and restriction W^T with size 3N x N resp. N x 3N
(and 3 # of primary variables).

Would that make sense?





On 04/07/17 18:24, Barry Smith wrote:
>    The large preconditioned norm relative to the true residual norm is often a sign that the preconditioner is not happy.
>
>   0 KSP preconditioned resid norm 2.495457360562e+08 true resid norm 9.213492769259e-01 ||r(i)||/||b|| 1.000000000000e+00
>
> Is there any chance this subproblem is singular? 
>
>    Run with -flow_sub_0_galerkin_ksp_view_mat binary -flow_sub_0_galerkin_ksp_view_rhs binary for 18 stages. This will save the matrices and the right hand sides for the 18 systems passed to hypre in a file called binaryoutput. Email the file to petsc-maint at mcs.anl.gov 
>
>    Barry
>
>
>> On Jul 4, 2017, at 11:59 AM, Robert Annewandter <robert.annewandter at opengosim.com> wrote:
>>
>> Hi all,
>>
>>
>> I'm working on a CPR-AMG Two-Stage preconditioner implemented as multiplicative PCComposite with outer FGMRES, where the first PC is Hypre AMG (PCGalerkin + KSPRichardson + PCHYPRE) and the second stage is Block Jacobi with LU. The pde's describe two-phase subsurface flow, and I kept the problem small at 8000 x 8000 dofs.
>>
>> The first stage is hard-wired because of the PCGalerkin part and the second stage Block Jacobi is configured via command line (with pflotran prefix flow_):
>>
>>   -flow_sub_1_pc_type bjacobi \
>>   -flow_sub_1_sub_pc_type lu \
>>
>> With this configuration I see occasionally that Hypre struggles to converge fast:
>>
>>
>> Step 16
>>
>>     0 2r: 3.95E-03 2x: 0.00E+00 2u: 0.00E+00 ir: 2.53E-03 iu: 0.00E+00 rsn:   0
>>     Residual norms for flow_ solve.
>>     0 KSP unpreconditioned resid norm 3.945216988332e-03 true resid norm 3.945216988332e-03 ||r(i)||/||b|| 1.000000000000e+00
>>     Residual norms for flow_sub_0_galerkin_ solve.
>>     0 KSP preconditioned resid norm 2.495457360562e+08 true resid norm 9.213492769259e-01 ||r(i)||/||b|| 1.000000000000e+00
>>     1 KSP preconditioned resid norm 3.900401635809e+07 true resid norm 1.211813734614e-01 ||r(i)||/||b|| 1.315259874797e-01
>>     2 KSP preconditioned resid norm 7.264015944695e+06 true resid norm 2.127154159346e-02 ||r(i)||/||b|| 2.308738078618e-02
>>     3 KSP preconditioned resid norm 1.523934370189e+06 true resid norm 4.507204888834e-03 ||r(i)||/||b|| 4.891961172285e-03
>>     4 KSP preconditioned resid norm 3.456355485206e+05 true resid norm 1.017486337883e-03 ||r(i)||/||b|| 1.104343774250e-03
>>     5 KSP preconditioned resid norm 8.215494701640e+04 true resid norm 2.386758602821e-04 ||r(i)||/||b|| 2.590503582729e-04
>>     6 KSP preconditioned resid norm 2.006221595869e+04 true resid norm 5.806707975375e-05 ||r(i)||/||b|| 6.302395975986e-05
>>     7 KSP preconditioned resid norm 4.975749682114e+03 true resid norm 1.457831681999e-05 ||r(i)||/||b|| 1.582279075383e-05
>>     8 KSP preconditioned resid norm 1.245359749620e+03 true resid norm 3.746721600730e-06 ||r(i)||/||b|| 4.066559441204e-06
>>     9 KSP preconditioned resid norm 3.134373137075e+02 true resid norm 9.784665277082e-07 ||r(i)||/||b|| 1.061993048904e-06
>>    10 KSP preconditioned resid norm 7.917076489741e+01 true resid norm 2.582765351245e-07 ||r(i)||/||b|| 2.803242392356e-07
>>    11 KSP preconditioned resid norm 2.004702594193e+01 true resid norm 6.867609287185e-08 ||r(i)||/||b|| 7.453860831257e-08
>>     1 KSP unpreconditioned resid norm 3.022346103074e-11 true resid norm 3.022346103592e-11 ||r(i)||/||b|| 7.660785484121e-09
>>   1 2r: 2.87E-04 2x: 3.70E+09 2u: 3.36E+02 ir: 1.67E-04 iu: 2.19E+01 rsn: stol
>> Nonlinear flow_ solve converged due to CONVERGED_SNORM_RELATIVE iterations 1
>>
>>
>> Step 17
>>
>>   0 2r: 3.85E-03 2x: 0.00E+00 2u: 0.00E+00 ir: 2.69E-03 iu: 0.00E+00 rsn:   0
>>     Residual norms for flow_ solve.
>>     0 KSP unpreconditioned resid norm 3.846677237838e-03 true resid norm 3.846677237838e-03 ||r(i)||/||b|| 1.000000000000e+00
>>     Residual norms for flow_sub_0_galerkin_ solve.
>>     0 KSP preconditioned resid norm 8.359592959751e+07 true resid norm 8.919381920269e-01 ||r(i)||/||b|| 1.000000000000e+00
>>     1 KSP preconditioned resid norm 2.046474217608e+07 true resid norm 1.356172589724e+00 ||r(i)||/||b|| 1.520478214574e+00
>>     2 KSP preconditioned resid norm 5.534610937223e+06 true resid norm 1.361527715124e+00 ||r(i)||/||b|| 1.526482134406e+00
>>     3 KSP preconditioned resid norm 1.642592089665e+06 true resid norm 1.359990274368e+00 ||r(i)||/||b|| 1.524758426677e+00
>>     4 KSP preconditioned resid norm 6.869446528993e+05 true resid norm 1.357740694885e+00 ||r(i)||/||b|| 1.522236301823e+00
>>     5 KSP preconditioned resid norm 5.245968674991e+05 true resid norm 1.355364470917e+00 ||r(i)||/||b|| 1.519572189007e+00
>>     6 KSP preconditioned resid norm 5.042030663187e+05 true resid norm 1.352962944308e+00 ||r(i)||/||b|| 1.516879708036e+00
>>     7 KSP preconditioned resid norm 5.007302249221e+05 true resid norm 1.350558656878e+00 ||r(i)||/||b|| 1.514184131760e+00
>>     8 KSP preconditioned resid norm 4.994105316949e+05 true resid norm 1.348156961110e+00 ||r(i)||/||b|| 1.511491461137e+00
>>     9 KSP preconditioned resid norm 4.984373051647e+05 true resid norm 1.345759135434e+00 ||r(i)||/||b|| 1.508803129481e+00
>>    10 KSP preconditioned resid norm 4.975323739321e+05 true resid norm 1.343365479502e+00 ||r(i)||/||b|| 1.506119472750e+00
>>    11 KSP preconditioned resid norm 4.966432959339e+05 true resid norm 1.340976058673e+00 ||r(i)||/||b|| 1.503440564224e+00
>> [...]
>>   193 KSP preconditioned resid norm 3.591931201817e+05 true resid norm 9.698521332569e-01 ||r(i)||/||b|| 1.087353520599e+00
>>   194 KSP preconditioned resid norm 3.585542278288e+05 true resid norm 9.681270691497e-01 ||r(i)||/||b|| 1.085419458213e+00
>>   195 KSP preconditioned resid norm 3.579164717745e+05 true resid norm 9.664050733935e-01 ||r(i)||/||b|| 1.083488835922e+00
>>   196 KSP preconditioned resid norm 3.572798501551e+05 true resid norm 9.646861405301e-01 ||r(i)||/||b|| 1.081561647605e+00
>>   197 KSP preconditioned resid norm 3.566443608646e+05 true resid norm 9.629702651108e-01 ||r(i)||/||b|| 1.079637887153e+00
>>   198 KSP preconditioned resid norm 3.560100018703e+05 true resid norm 9.612574416991e-01 ||r(i)||/||b|| 1.077717548471e+00
>>   199 KSP preconditioned resid norm 3.553767713002e+05 true resid norm 9.595476648643e-01 ||r(i)||/||b|| 1.075800625471e+00
>>   200 KSP preconditioned resid norm 3.547446669197e+05 true resid norm 9.578409291897e-01 ||r(i)||/||b|| 1.073887112080e+00
>>     1 KSP unpreconditioned resid norm 3.816569407795e-11 true resid norm 3.816569407353e-11 ||r(i)||/||b|| 9.921730291825e-09
>>   1 2r: 2.74E-02 2x: 3.70E+09 2u: 1.23E+02 ir: 1.99E-02 iu: 2.71E+01 rsn: stol
>> Nonlinear flow_ solve converged due to CONVERGED_SNORM_RELATIVE iterations 1
>>
>> Step 18
>>
>>   0 2r: 2.73E-02 2x: 0.00E+00 2u: 0.00E+00 ir: 2.02E-02 iu: 0.00E+00 rsn:   0
>>     Residual norms for flow_ solve.
>>     0 KSP unpreconditioned resid norm 2.734891161446e-02 true resid norm 2.734891161446e-02 ||r(i)||/||b|| 1.000000000000e+00
>>     Residual norms for flow_sub_0_galerkin_ solve.
>>     0 KSP preconditioned resid norm 3.550345478098e+07 true resid norm 1.048585361984e+00 ||r(i)||/||b|| 1.000000000000e+00
>>     1 KSP preconditioned resid norm 6.139218831613e+06 true resid norm 1.797822962324e-02 ||r(i)||/||b|| 1.714522276873e-02
>>     2 KSP preconditioned resid norm 1.301871956838e+06 true resid norm 3.761355992926e-03 ||r(i)||/||b|| 3.587076578878e-03
>>     3 KSP preconditioned resid norm 3.070518418113e+05 true resid norm 9.283056182563e-04 ||r(i)||/||b|| 8.852933217570e-04
>>     4 KSP preconditioned resid norm 7.639640178912e+04 true resid norm 2.348078927331e-04 ||r(i)||/||b|| 2.239282572941e-04
>>     5 KSP preconditioned resid norm 1.953032767966e+04 true resid norm 5.930230662989e-05 ||r(i)||/||b|| 5.655458180124e-05
>>     6 KSP preconditioned resid norm 5.066937883132e+03 true resid norm 1.497534370201e-05 ||r(i)||/||b|| 1.428147315892e-05
>>     7 KSP preconditioned resid norm 1.326441080568e+03 true resid norm 3.793872760594e-06 ||r(i)||/||b|| 3.618086708188e-06
>>     8 KSP preconditioned resid norm 3.494353490063e+02 true resid norm 9.659536247849e-07 ||r(i)||/||b|| 9.211969380896e-07
>>     9 KSP preconditioned resid norm 9.251497983280e+01 true resid norm 2.472922526467e-07 ||r(i)||/||b|| 2.358341644011e-07
>>    10 KSP preconditioned resid norm 2.459917675189e+01 true resid norm 6.364691902290e-08 ||r(i)||/||b|| 6.069789006257e-08
>>    11 KSP preconditioned resid norm 6.566117552226e+00 true resid norm 1.646205416458e-08 ||r(i)||/||b|| 1.569929808426e-08
>>    12 KSP preconditioned resid norm 1.758927386308e+00 true resid norm 4.277033775892e-09 ||r(i)||/||b|| 4.078860845245e-09
>>     1 KSP unpreconditioned resid norm 2.831146511164e-10 true resid norm 2.831146511142e-10 ||r(i)||/||b|| 1.035195312725e-08
>>   1 2r: 1.31E-02 2x: 3.70E+09 2u: 3.66E+02 ir: 9.77E-03 iu: 6.03E+01 rsn: stol
>> Nonlinear flow_ solve converged due to CONVERGED_SNORM_RELATIVE iterations 1
>>
>>
>>
>> SNES_view:
>>
>>
>> SNES Object: (flow_) 2 MPI processes
>>   type: newtonls
>>   maximum iterations=8, maximum function evaluations=10000
>>   tolerances: relative=1e-05, absolute=1e-05, solution=1e-05
>>   total number of linear solver iterations=1
>>   total number of function evaluations=2
>>   norm schedule ALWAYS
>>   SNESLineSearch Object: (flow_) 2 MPI processes
>>     type: basic
>>     maxstep=1.000000e+08, minlambda=1.000000e-05
>>     tolerances: relative=1.000000e-08, absolute=1.000000e-15, lambda=1.000000e-08
>>     maximum iterations=40
>>     using user-defined precheck step
>>   KSP Object: (flow_) 2 MPI processes
>>     type: fgmres
>>       GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
>>       GMRES: happy breakdown tolerance 1e-30
>>     maximum iterations=200, initial guess is zero
>>     tolerances:  relative=1e-07, absolute=1e-50, divergence=10000.
>>     right preconditioning
>>     using UNPRECONDITIONED norm type for convergence test
>>   PC Object: (flow_) 2 MPI processes
>>     type: composite
>>     Composite PC type - MULTIPLICATIVE
>>     PCs on composite preconditioner follow
>>     ---------------------------------
>>       PC Object: (flow_sub_0_) 2 MPI processes
>>         type: galerkin
>>         Galerkin PC
>>         KSP on Galerkin follow
>>         ---------------------------------
>>         KSP Object: (flow_sub_0_galerkin_) 2 MPI processes
>>           type: richardson
>>             Richardson: damping factor=1.
>>           maximum iterations=200, initial guess is zero
>>           tolerances:  relative=1e-07, absolute=1e-50, divergence=10000.
>>           left preconditioning
>>           using PRECONDITIONED norm type for convergence test
>>         PC Object: (flow_sub_0_galerkin_) 2 MPI processes
>>           type: hypre
>>             HYPRE BoomerAMG preconditioning
>>             HYPRE BoomerAMG: Cycle type V
>>             HYPRE BoomerAMG: Maximum number of levels 25
>>             HYPRE BoomerAMG: Maximum number of iterations PER hypre call 1
>>             HYPRE BoomerAMG: Convergence tolerance PER hypre call 0.
>>             HYPRE BoomerAMG: Threshold for strong coupling 0.25
>>             HYPRE BoomerAMG: Interpolation truncation factor 0.
>>             HYPRE BoomerAMG: Interpolation: max elements per row 0
>>             HYPRE BoomerAMG: Number of levels of aggressive coarsening 0
>>             HYPRE BoomerAMG: Number of paths for aggressive coarsening 1
>>             HYPRE BoomerAMG: Maximum row sums 0.9
>>             HYPRE BoomerAMG: Sweeps down         1
>>             HYPRE BoomerAMG: Sweeps up           1
>>             HYPRE BoomerAMG: Sweeps on coarse    1
>>             HYPRE BoomerAMG: Relax down          symmetric-SOR/Jacobi
>>             HYPRE BoomerAMG: Relax up            symmetric-SOR/Jacobi
>>             HYPRE BoomerAMG: Relax on coarse     Gaussian-elimination
>>             HYPRE BoomerAMG: Relax weight  (all)      1.
>>             HYPRE BoomerAMG: Outer relax weight (all) 1.
>>             HYPRE BoomerAMG: Using CF-relaxation
>>             HYPRE BoomerAMG: Not using more complex smoothers.
>>             HYPRE BoomerAMG: Measure type        local
>>             HYPRE BoomerAMG: Coarsen type        Falgout
>>             HYPRE BoomerAMG: Interpolation type  classical
>>           linear system matrix = precond matrix:
>>           Mat Object: 2 MPI processes
>>             type: mpiaij
>>             rows=8000, cols=8000
>>             total: nonzeros=53600, allocated nonzeros=53600
>>             total number of mallocs used during MatSetValues calls =0
>>               not using I-node (on process 0) routines
>>         linear system matrix = precond matrix:
>>         Mat Object: (flow_) 2 MPI processes
>>           type: mpibaij
>>           rows=24000, cols=24000, bs=3
>>           total: nonzeros=482400, allocated nonzeros=482400
>>           total number of mallocs used during MatSetValues calls =0
>>       PC Object: (flow_sub_1_) 2 MPI processes
>>         type: bjacobi
>>           block Jacobi: number of blocks = 2
>>           Local solve is same for all blocks, in the following KSP and PC objects:
>>         KSP Object: (flow_sub_1_sub_) 1 MPI processes
>>           type: preonly
>>           maximum iterations=10000, initial guess is zero
>>           tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
>>           left preconditioning
>>           using NONE norm type for convergence test
>>         PC Object: (flow_sub_1_sub_) 1 MPI processes
>>           type: lu
>>             out-of-place factorization
>>             tolerance for zero pivot 2.22045e-14
>>             matrix ordering: nd
>>             factor fill ratio given 5., needed 18.3108
>>               Factored matrix follows:
>>                 Mat Object: 1 MPI processes
>>                   type: seqbaij
>>                   rows=12000, cols=12000, bs=3
>>                   package used to perform factorization: petsc
>>                   total: nonzeros=4350654, allocated nonzeros=4350654
>>                   total number of mallocs used during MatSetValues calls =0
>>                       block size is 3
>>           linear system matrix = precond matrix:
>>           Mat Object: (flow_) 1 MPI processes
>>             type: seqbaij
>>             rows=12000, cols=12000, bs=3
>>             total: nonzeros=237600, allocated nonzeros=237600
>>             total number of mallocs used during MatSetValues calls =0
>>                 block size is 3
>>         linear system matrix = precond matrix:
>>         Mat Object: (flow_) 2 MPI processes
>>           type: mpibaij
>>           rows=24000, cols=24000, bs=3
>>           total: nonzeros=482400, allocated nonzeros=482400
>>           total number of mallocs used during MatSetValues calls =0
>>     ---------------------------------
>>     linear system matrix = precond matrix:
>>     Mat Object: (flow_) 2 MPI processes
>>       type: mpibaij
>>       rows=24000, cols=24000, bs=3
>>       total: nonzeros=482400, allocated nonzeros=482400
>>       total number of mallocs used during MatSetValues calls =0
>>
>>
>>
>> Is there a way to improve on the AMG part? Do I have to adjust the tolerances (make the inner tighter)? Which Hypre AMG parameters are worth tuning?  This problem occurs for 1 MPI process as well, and solving the problem in Standard PFLOTRAN (i.e. Block Jacobi + ILU) is without any issue.
>>
>> Grateful for any help!
>> Robert
>>
>>
>>

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20170704/87f3b297/attachment.html>


More information about the petsc-users mailing list