[petsc-users] Using PCFIELDSPLIT with -pc_fieldsplit_type schur
Dave May
dave.mayhem23 at gmail.com
Wed Jan 11 16:52:14 CST 2017
On 11 January 2017 at 22:29, David Knezevic <david.knezevic at akselos.com>
wrote:
> Thanks very much for the input. I tried with "selfp" and it's about the
> same (log below),
>
Yeah, looks similar.
> so I gather that I'll have to look into a user-defined approximation to S.
>
Where does the 2x2 block system come from?
Maybe someone on the list knows the right approximation to use for S.
>
> Thanks,
> David
>
>
> -----------------------------------------
>
> 0 KSP Residual norm 5.405528187695e+04
> 1 KSP Residual norm 2.187814910803e+02
> 2 KSP Residual norm 1.019051577515e-01
> 3 KSP Residual norm 4.370464012859e-04
> KSP Object: 1 MPI processes
> type: cg
> maximum iterations=1000
> tolerances: relative=1e-06, absolute=1e-50, divergence=10000.
> left preconditioning
> using nonzero initial guess
> using PRECONDITIONED norm type for convergence test
> PC Object: 1 MPI processes
> type: fieldsplit
> FieldSplit with Schur preconditioner, factorization FULL
> Preconditioner for the Schur complement formed from Sp, an assembled
> approximation to S, which uses (lumped, if requested) A00's diagonal's
> inverse
> Split info:
> Split number 0 Defined by IS
> Split number 1 Defined by IS
> KSP solver for A00 block
> KSP Object: (fieldsplit_RB_split_) 1 MPI processes
> type: preonly
> maximum iterations=10000, initial guess is zero
> tolerances: relative=1e-05, absolute=1e-50, divergence=10000.
> left preconditioning
> using NONE norm type for convergence test
> PC Object: (fieldsplit_RB_split_) 1 MPI processes
> type: cholesky
> Cholesky: out-of-place factorization
> tolerance for zero pivot 2.22045e-14
> matrix ordering: natural
> factor fill ratio given 0., needed 0.
> Factored matrix follows:
> Mat Object: 1 MPI processes
> type: seqaij
> rows=324, cols=324
> package used to perform factorization: mumps
> total: nonzeros=3042, allocated nonzeros=3042
> total number of mallocs used during MatSetValues calls =0
> MUMPS run parameters:
> SYM (matrix type): 2
> PAR (host participation): 1
> ICNTL(1) (output for error): 6
> ICNTL(2) (output of diagnostic msg): 0
> ICNTL(3) (output for global info): 0
> ICNTL(4) (level of printing): 0
> ICNTL(5) (input mat struct): 0
> ICNTL(6) (matrix prescaling): 7
> ICNTL(7) (sequentia matrix ordering):7
> ICNTL(8) (scalling strategy): 77
> ICNTL(10) (max num of refinements): 0
> ICNTL(11) (error analysis): 0
> ICNTL(12) (efficiency control):
> 0
> ICNTL(13) (efficiency control):
> 0
> ICNTL(14) (percentage of estimated workspace
> increase): 20
> ICNTL(18) (input mat struct):
> 0
> ICNTL(19) (Shur complement info):
> 0
> ICNTL(20) (rhs sparse pattern):
> 0
> ICNTL(21) (solution struct):
> 0
> ICNTL(22) (in-core/out-of-core facility):
> 0
> ICNTL(23) (max size of memory can be allocated
> locally):0
> ICNTL(24) (detection of null pivot rows):
> 0
> ICNTL(25) (computation of a null space basis):
> 0
> ICNTL(26) (Schur options for rhs or solution):
> 0
> ICNTL(27) (experimental parameter):
> -24
> ICNTL(28) (use parallel or sequential ordering):
> 1
> ICNTL(29) (parallel ordering):
> 0
> ICNTL(30) (user-specified set of entries in inv(A)):
> 0
> ICNTL(31) (factors is discarded in the solve phase):
> 0
> ICNTL(33) (compute determinant):
> 0
> CNTL(1) (relative pivoting threshold): 0.01
> CNTL(2) (stopping criterion of refinement):
> 1.49012e-08
> CNTL(3) (absolute pivoting threshold): 0.
> CNTL(4) (value of static pivoting): -1.
> CNTL(5) (fixation for null pivots): 0.
> RINFO(1) (local estimated flops for the elimination
> after analysis):
> [0] 29394.
> RINFO(2) (local estimated flops for the assembly after
> factorization):
> [0] 1092.
> RINFO(3) (local estimated flops for the elimination
> after factorization):
> [0] 29394.
> INFO(15) (estimated size of (in MB) MUMPS internal
> data for running numerical factorization):
> [0] 1
> INFO(16) (size of (in MB) MUMPS internal data used
> during numerical factorization):
> [0] 1
> INFO(23) (num of pivots eliminated on this processor
> after factorization):
> [0] 324
> RINFOG(1) (global estimated flops for the elimination
> after analysis): 29394.
> RINFOG(2) (global estimated flops for the assembly
> after factorization): 1092.
> RINFOG(3) (global estimated flops for the elimination
> after factorization): 29394.
> (RINFOG(12) RINFOG(13))*2^INFOG(34) (determinant):
> (0.,0.)*(2^0)
> INFOG(3) (estimated real workspace for factors on all
> processors after analysis): 3888
> INFOG(4) (estimated integer workspace for factors on
> all processors after analysis): 2067
> INFOG(5) (estimated maximum front size in the complete
> tree): 12
> INFOG(6) (number of nodes in the complete tree): 53
> INFOG(7) (ordering option effectively use after
> analysis): 2
> INFOG(8) (structural symmetry in percent of the
> permuted matrix after analysis): 100
> INFOG(9) (total real/complex workspace to store the
> matrix factors after factorization): 3888
> INFOG(10) (total integer space store the matrix
> factors after factorization): 2067
> INFOG(11) (order of largest frontal matrix after
> factorization): 12
> INFOG(12) (number of off-diagonal pivots): 0
> INFOG(13) (number of delayed pivots after
> factorization): 0
> INFOG(14) (number of memory compress after
> factorization): 0
> INFOG(15) (number of steps of iterative refinement
> after solution): 0
> INFOG(16) (estimated size (in MB) of all MUMPS
> internal data for factorization after analysis: value on the most memory
> consuming processor): 1
> INFOG(17) (estimated size of all MUMPS internal data
> for factorization after analysis: sum over all processors): 1
> INFOG(18) (size of all MUMPS internal data allocated
> during factorization: value on the most memory consuming processor): 1
> INFOG(19) (size of all MUMPS internal data allocated
> during factorization: sum over all processors): 1
> INFOG(20) (estimated number of entries in the
> factors): 3042
> INFOG(21) (size in MB of memory effectively used
> during factorization - value on the most memory consuming processor): 1
> INFOG(22) (size in MB of memory effectively used
> during factorization - sum over all processors): 1
> INFOG(23) (after analysis: value of ICNTL(6)
> effectively used): 5
> INFOG(24) (after analysis: value of ICNTL(12)
> effectively used): 1
> INFOG(25) (after factorization: number of pivots
> modified by static pivoting): 0
> INFOG(28) (after factorization: number of null pivots
> encountered): 0
> INFOG(29) (after factorization: effective number of
> entries in the factors (sum over all processors)): 3042
> INFOG(30, 31) (after solution: size in Mbytes of
> memory used during solution phase): 0, 0
> INFOG(32) (after analysis: type of analysis done): 1
> INFOG(33) (value used for ICNTL(8)): -2
> INFOG(34) (exponent of the determinant if determinant
> is requested): 0
> linear system matrix = precond matrix:
> Mat Object: (fieldsplit_RB_split_) 1 MPI processes
> type: seqaij
> rows=324, cols=324
> total: nonzeros=5760, allocated nonzeros=5760
> total number of mallocs used during MatSetValues calls =0
> using I-node routines: found 108 nodes, limit used is 5
> KSP solver for S = A11 - A10 inv(A00) A01
> KSP Object: (fieldsplit_FE_split_) 1 MPI processes
> type: cg
> maximum iterations=10000, initial guess is zero
> tolerances: relative=1e-05, absolute=1e-50, divergence=10000.
> left preconditioning
> using PRECONDITIONED norm type for convergence test
> PC Object: (fieldsplit_FE_split_) 1 MPI processes
> type: bjacobi
> block Jacobi: number of blocks = 1
> Local solve is same for all blocks, in the following KSP and PC
> objects:
> KSP Object: (fieldsplit_FE_split_sub_) 1 MPI
> processes
> type: preonly
> maximum iterations=10000, initial guess is zero
> tolerances: relative=1e-05, absolute=1e-50, divergence=10000.
> left preconditioning
> using NONE norm type for convergence test
> PC Object: (fieldsplit_FE_split_sub_) 1 MPI
> processes
> type: ilu
> ILU: out-of-place factorization
> 0 levels of fill
> tolerance for zero pivot 2.22045e-14
> matrix ordering: natural
> factor fill ratio given 1., needed 1.
> Factored matrix follows:
> Mat Object: 1 MPI processes
> type: seqaij
> rows=28476, cols=28476
> package used to perform factorization: petsc
> total: nonzeros=1037052, allocated nonzeros=1037052
> total number of mallocs used during MatSetValues calls
> =0
> using I-node routines: found 9489 nodes, limit used
> is 5
> linear system matrix = precond matrix:
> Mat Object: 1 MPI processes
> type: seqaij
> rows=28476, cols=28476
> total: nonzeros=1037052, allocated nonzeros=1037052
> total number of mallocs used during MatSetValues calls =0
> using I-node routines: found 9489 nodes, limit used is 5
> linear system matrix followed by preconditioner matrix:
> Mat Object: (fieldsplit_FE_split_) 1 MPI processes
> type: schurcomplement
> rows=28476, cols=28476
> Schur complement A11 - A10 inv(A00) A01
> A11
> Mat Object: (fieldsplit_FE_split_)
> 1 MPI processes
> type: seqaij
> rows=28476, cols=28476
> total: nonzeros=1017054, allocated nonzeros=1017054
> total number of mallocs used during MatSetValues calls =0
> using I-node routines: found 9492 nodes, limit used is 5
> A10
> Mat Object: 1 MPI processes
> type: seqaij
> rows=28476, cols=324
> total: nonzeros=936, allocated nonzeros=936
> total number of mallocs used during MatSetValues calls =0
> using I-node routines: found 5717 nodes, limit used is 5
> KSP of A00
> KSP Object: (fieldsplit_RB_split_)
> 1 MPI processes
> type: preonly
> maximum iterations=10000, initial guess is zero
> tolerances: relative=1e-05, absolute=1e-50,
> divergence=10000.
> left preconditioning
> using NONE norm type for convergence test
> PC Object: (fieldsplit_RB_split_)
> 1 MPI processes
> type: cholesky
> Cholesky: out-of-place factorization
> tolerance for zero pivot 2.22045e-14
> matrix ordering: natural
> factor fill ratio given 0., needed 0.
> Factored matrix follows:
> Mat Object: 1 MPI processes
> type: seqaij
> rows=324, cols=324
> package used to perform factorization: mumps
> total: nonzeros=3042, allocated nonzeros=3042
> total number of mallocs used during MatSetValues
> calls =0
> MUMPS run parameters:
> SYM (matrix type): 2
> PAR (host participation): 1
> ICNTL(1) (output for error): 6
> ICNTL(2) (output of diagnostic msg): 0
> ICNTL(3) (output for global info): 0
> ICNTL(4) (level of printing): 0
> ICNTL(5) (input mat struct): 0
> ICNTL(6) (matrix prescaling): 7
> ICNTL(7) (sequentia matrix ordering):7
> ICNTL(8) (scalling strategy): 77
> ICNTL(10) (max num of refinements): 0
> ICNTL(11) (error analysis): 0
> ICNTL(12) (efficiency control):
> 0
> ICNTL(13) (efficiency control):
> 0
> ICNTL(14) (percentage of estimated workspace
> increase): 20
> ICNTL(18) (input mat struct):
> 0
> ICNTL(19) (Shur complement info):
> 0
> ICNTL(20) (rhs sparse pattern):
> 0
> ICNTL(21) (solution struct):
> 0
> ICNTL(22) (in-core/out-of-core facility):
> 0
> ICNTL(23) (max size of memory can be allocated
> locally):0
> ICNTL(24) (detection of null pivot rows):
> 0
> ICNTL(25) (computation of a null space basis):
> 0
> ICNTL(26) (Schur options for rhs or solution):
> 0
> ICNTL(27) (experimental parameter):
> -24
> ICNTL(28) (use parallel or sequential
> ordering): 1
> ICNTL(29) (parallel ordering):
> 0
> ICNTL(30) (user-specified set of entries in
> inv(A)): 0
> ICNTL(31) (factors is discarded in the solve
> phase): 0
> ICNTL(33) (compute determinant):
> 0
> CNTL(1) (relative pivoting threshold):
> 0.01
> CNTL(2) (stopping criterion of refinement):
> 1.49012e-08
> CNTL(3) (absolute pivoting threshold): 0.
> CNTL(4) (value of static pivoting):
> -1.
> CNTL(5) (fixation for null pivots): 0.
> RINFO(1) (local estimated flops for the
> elimination after analysis):
> [0] 29394.
> RINFO(2) (local estimated flops for the
> assembly after factorization):
> [0] 1092.
> RINFO(3) (local estimated flops for the
> elimination after factorization):
> [0] 29394.
> INFO(15) (estimated size of (in MB) MUMPS
> internal data for running numerical factorization):
> [0] 1
> INFO(16) (size of (in MB) MUMPS internal data
> used during numerical factorization):
> [0] 1
> INFO(23) (num of pivots eliminated on this
> processor after factorization):
> [0] 324
> RINFOG(1) (global estimated flops for the
> elimination after analysis): 29394.
> RINFOG(2) (global estimated flops for the
> assembly after factorization): 1092.
> RINFOG(3) (global estimated flops for the
> elimination after factorization): 29394.
> (RINFOG(12) RINFOG(13))*2^INFOG(34)
> (determinant): (0.,0.)*(2^0)
> INFOG(3) (estimated real workspace for factors
> on all processors after analysis): 3888
> INFOG(4) (estimated integer workspace for
> factors on all processors after analysis): 2067
> INFOG(5) (estimated maximum front size in the
> complete tree): 12
> INFOG(6) (number of nodes in the complete
> tree): 53
> INFOG(7) (ordering option effectively use
> after analysis): 2
> INFOG(8) (structural symmetry in percent of
> the permuted matrix after analysis): 100
> INFOG(9) (total real/complex workspace to
> store the matrix factors after factorization): 3888
> INFOG(10) (total integer space store the
> matrix factors after factorization): 2067
> INFOG(11) (order of largest frontal matrix
> after factorization): 12
> INFOG(12) (number of off-diagonal pivots): 0
> INFOG(13) (number of delayed pivots after
> factorization): 0
> INFOG(14) (number of memory compress after
> factorization): 0
> INFOG(15) (number of steps of iterative
> refinement after solution): 0
> INFOG(16) (estimated size (in MB) of all MUMPS
> internal data for factorization after analysis: value on the most memory
> consuming processor): 1
> INFOG(17) (estimated size of all MUMPS
> internal data for factorization after analysis: sum over all processors): 1
> INFOG(18) (size of all MUMPS internal data
> allocated during factorization: value on the most memory consuming
> processor): 1
> INFOG(19) (size of all MUMPS internal data
> allocated during factorization: sum over all processors): 1
> INFOG(20) (estimated number of entries in the
> factors): 3042
> INFOG(21) (size in MB of memory effectively
> used during factorization - value on the most memory consuming processor):
> 1
> INFOG(22) (size in MB of memory effectively
> used during factorization - sum over all processors): 1
> INFOG(23) (after analysis: value of ICNTL(6)
> effectively used): 5
> INFOG(24) (after analysis: value of ICNTL(12)
> effectively used): 1
> INFOG(25) (after factorization: number of
> pivots modified by static pivoting): 0
> INFOG(28) (after factorization: number of null
> pivots encountered): 0
> INFOG(29) (after factorization: effective
> number of entries in the factors (sum over all processors)): 3042
> INFOG(30, 31) (after solution: size in Mbytes
> of memory used during solution phase): 0, 0
> INFOG(32) (after analysis: type of analysis
> done): 1
> INFOG(33) (value used for ICNTL(8)): -2
> INFOG(34) (exponent of the determinant if
> determinant is requested): 0
> linear system matrix = precond matrix:
> Mat Object: (fieldsplit_RB_split_)
> 1 MPI processes
> type: seqaij
> rows=324, cols=324
> total: nonzeros=5760, allocated nonzeros=5760
> total number of mallocs used during MatSetValues calls =0
> using I-node routines: found 108 nodes, limit used is 5
> A01
> Mat Object: 1 MPI processes
> type: seqaij
> rows=324, cols=28476
> total: nonzeros=936, allocated nonzeros=936
> total number of mallocs used during MatSetValues calls =0
> using I-node routines: found 67 nodes, limit used is 5
> Mat Object: 1 MPI processes
> type: seqaij
> rows=28476, cols=28476
> total: nonzeros=1037052, allocated nonzeros=1037052
> total number of mallocs used during MatSetValues calls =0
> using I-node routines: found 9489 nodes, limit used is 5
> linear system matrix = precond matrix:
> Mat Object: () 1 MPI processes
> type: seqaij
> rows=28800, cols=28800
> total: nonzeros=1024686, allocated nonzeros=1024794
> total number of mallocs used during MatSetValues calls =0
> using I-node routines: found 9600 nodes, limit used is 5
>
> ---------------------------------------------- PETSc Performance Summary:
> ----------------------------------------------
>
> /home/dknez/akselos-dev/scrbe/build/bin/fe_solver-opt_real on a
> arch-linux2-c-opt named david-Lenovo with 1 processor, by dknez Wed Jan 11
> 17:22:10 2017
> Using Petsc Release Version 3.7.3, unknown
>
> Max Max/Min Avg Total
> Time (sec): 9.638e+01 1.00000 9.638e+01
> Objects: 2.030e+02 1.00000 2.030e+02
> Flops: 1.732e+11 1.00000 1.732e+11 1.732e+11
> Flops/sec: 1.797e+09 1.00000 1.797e+09 1.797e+09
> MPI Messages: 0.000e+00 0.00000 0.000e+00 0.000e+00
> MPI Message Lengths: 0.000e+00 0.00000 0.000e+00 0.000e+00
> MPI Reductions: 0.000e+00 0.00000
>
> Flop counting convention: 1 flop = 1 real number operation of type
> (multiply/divide/add/subtract)
> e.g., VecAXPY() for real vectors of length N
> --> 2N flops
> and VecAXPY() for complex vectors of length N
> --> 8N flops
>
> Summary of Stages: ----- Time ------ ----- Flops ----- --- Messages
> --- -- Message Lengths -- -- Reductions --
> Avg %Total Avg %Total counts
> %Total Avg %Total counts %Total
> 0: Main Stage: 9.6379e+01 100.0% 1.7318e+11 100.0% 0.000e+00
> 0.0% 0.000e+00 0.0% 0.000e+00 0.0%
>
> ------------------------------------------------------------
> ------------------------------------------------------------
> See the 'Profiling' chapter of the users' manual for details on
> interpreting output.
> Phase summary info:
> Count: number of times phase was executed
> Time and Flops: Max - maximum over all processors
> Ratio - ratio of maximum to minimum over all processors
> Mess: number of messages sent
> Avg. len: average message length (bytes)
> Reduct: number of global reductions
> Global: entire computation
> Stage: stages of a computation. Set stages with PetscLogStagePush() and
> PetscLogStagePop().
> %T - percent time in this phase %F - percent flops in this
> phase
> %M - percent messages in this phase %L - percent message lengths
> in this phase
> %R - percent reductions in this phase
> Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time
> over all processors)
> ------------------------------------------------------------
> ------------------------------------------------------------
> Event Count Time (sec) Flops
> --- Global --- --- Stage --- Total
> Max Ratio Max Ratio Max Ratio Mess Avg len
> Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s
> ------------------------------------------------------------
> ------------------------------------------------------------
>
> --- Event Stage 0: Main Stage
>
> VecDot 42 1.0 2.2411e-05 1.0 8.53e+03 1.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 380
> VecTDot 77761 1.0 1.4294e+00 1.0 4.43e+09 1.0 0.0e+00 0.0e+00
> 0.0e+00 1 3 0 0 0 1 3 0 0 0 3098
> VecNorm 38894 1.0 9.1002e-01 1.0 2.22e+09 1.0 0.0e+00 0.0e+00
> 0.0e+00 1 1 0 0 0 1 1 0 0 0 2434
> VecScale 38882 1.0 3.7314e-01 1.0 1.11e+09 1.0 0.0e+00 0.0e+00
> 0.0e+00 0 1 0 0 0 0 1 0 0 0 2967
> VecCopy 38908 1.0 2.1655e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> VecSet 77887 1.0 3.2034e-01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> VecAXPY 77777 1.0 1.8382e+00 1.0 4.43e+09 1.0 0.0e+00 0.0e+00
> 0.0e+00 2 3 0 0 0 2 3 0 0 0 2409
> VecAYPX 38875 1.0 1.2884e+00 1.0 2.21e+09 1.0 0.0e+00 0.0e+00
> 0.0e+00 1 1 0 0 0 1 1 0 0 0 1718
> VecAssemblyBegin 68 1.0 1.9407e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> VecAssemblyEnd 68 1.0 2.6941e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> VecScatterBegin 48 1.0 4.6349e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> MatMult 38891 1.0 4.3045e+01 1.0 8.03e+10 1.0 0.0e+00 0.0e+00
> 0.0e+00 45 46 0 0 0 45 46 0 0 0 1866
> MatMultAdd 38889 1.0 3.5360e+01 1.0 7.91e+10 1.0 0.0e+00 0.0e+00
> 0.0e+00 37 46 0 0 0 37 46 0 0 0 2236
> MatSolve 77769 1.0 4.8780e+01 1.0 7.95e+10 1.0 0.0e+00 0.0e+00
> 0.0e+00 51 46 0 0 0 51 46 0 0 0 1631
> MatLUFactorNum 1 1.0 1.9575e-02 1.0 2.49e+07 1.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 1274
> MatCholFctrSym 1 1.0 9.4891e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> MatCholFctrNum 1 1.0 3.7885e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> MatILUFactorSym 1 1.0 4.1780e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> MatConvert 1 1.0 3.0041e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> MatScale 2 1.0 2.7180e-05 1.0 2.53e+04 1.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 930
> MatAssemblyBegin 32 1.0 4.0531e-06 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> MatAssemblyEnd 32 1.0 1.2032e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> MatGetRow 114978 1.0 5.9254e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> MatGetRowIJ 2 1.0 2.1458e-06 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> MatGetSubMatrice 6 1.0 1.5707e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> MatGetOrdering 2 1.0 3.2425e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> MatZeroEntries 6 1.0 3.0580e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> MatView 7 1.0 3.5119e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> MatAXPY 1 1.0 1.9384e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> MatMatMult 1 1.0 2.7120e-03 1.0 3.16e+05 1.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 117
> MatMatMultSym 1 1.0 1.8010e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> MatMatMultNum 1 1.0 6.1703e-04 1.0 3.16e+05 1.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 513
> KSPSetUp 4 1.0 9.8944e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> KSPSolve 1 1.0 9.3380e+01 1.0 1.73e+11 1.0 0.0e+00 0.0e+00
> 0.0e+00 97100 0 0 0 97100 0 0 0 1855
> PCSetUp 4 1.0 6.6326e-02 1.0 2.53e+07 1.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 381
> PCSetUpOnBlocks 5 1.0 2.4082e-02 1.0 2.49e+07 1.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 1036
> PCApply 5 1.0 9.3376e+01 1.0 1.73e+11 1.0 0.0e+00 0.0e+00
> 0.0e+00 97100 0 0 0 97100 0 0 0 1855
> KSPSolve_FS_0 5 1.0 7.0214e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> KSPSolve_FS_Schu 5 1.0 9.3372e+01 1.0 1.73e+11 1.0 0.0e+00 0.0e+00
> 0.0e+00 97100 0 0 0 97100 0 0 0 1855
> KSPSolve_FS_Low 5 1.0 2.1377e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
> ------------------------------------------------------------
> ------------------------------------------------------------
>
> Memory usage is given in bytes:
>
> Object Type Creations Destructions Memory Descendants' Mem.
> Reports information only for process 0.
>
> --- Event Stage 0: Main Stage
>
> Vector 92 92 9698040 0.
> Vector Scatter 24 24 15936 0.
> Index Set 51 51 537876 0.
> IS L to G Mapping 3 3 240408 0.
> Matrix 16 16 77377776 0.
> Krylov Solver 6 6 7888 0.
> Preconditioner 6 6 6288 0.
> Viewer 1 0 0 0.
> Distributed Mesh 1 1 4624 0.
> Star Forest Bipartite Graph 2 2 1616 0.
> Discrete System 1 1 872 0.
> ============================================================
> ============================================================
> Average time to get PetscTime(): 0.
> #PETSc Option Table entries:
> -ksp_monitor
> -ksp_view
> -log_view
> #End of PETSc Option Table entries
> Compiled without FORTRAN kernels
> Compiled with full precision matrices (default)
> sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8
> sizeof(PetscScalar) 8 sizeof(PetscInt) 4
> Configure options: --with-shared-libraries=1 --with-debugging=0
> --download-suitesparse --download-blacs --download-ptscotch=yes
> --with-blas-lapack-dir=/opt/intel/system_studio_2015.2.050/mkl
> --CXXFLAGS=-Wl,--no-as-needed --download-scalapack --download-mumps
> --download-metis --prefix=/home/dknez/software/libmesh_install/opt_real/petsc
> --download-hypre --download-ml
> -----------------------------------------
> Libraries compiled on Wed Sep 21 17:38:52 2016 on david-Lenovo
> Machine characteristics: Linux-4.4.0-38-generic-x86_64-
> with-Ubuntu-16.04-xenial
> Using PETSc directory: /home/dknez/software/petsc-src
> Using PETSc arch: arch-linux2-c-opt
> -----------------------------------------
>
> Using C compiler: mpicc -fPIC -Wall -Wwrite-strings -Wno-strict-aliasing
> -Wno-unknown-pragmas -fvisibility=hidden -g -O ${COPTFLAGS} ${CFLAGS}
> Using Fortran compiler: mpif90 -fPIC -Wall -ffree-line-length-0
> -Wno-unused-dummy-argument -g -O ${FOPTFLAGS} ${FFLAGS}
> -----------------------------------------
>
> Using include paths: -I/home/dknez/software/petsc-src/arch-linux2-c-opt/include
> -I/home/dknez/software/petsc-src/include -I/home/dknez/software/petsc-src/include
> -I/home/dknez/software/petsc-src/arch-linux2-c-opt/include
> -I/home/dknez/software/libmesh_install/opt_real/petsc/include
> -I/usr/lib/openmpi/include/openmpi/opal/mca/event/libevent2021/libevent
> -I/usr/lib/openmpi/include/openmpi/opal/mca/event/libevent2021/libevent/include
> -I/usr/lib/openmpi/include -I/usr/lib/openmpi/include/openmpi
> -----------------------------------------
>
> Using C linker: mpicc
> Using Fortran linker: mpif90
> Using libraries: -Wl,-rpath,/home/dknez/software/petsc-src/arch-linux2-c-opt/lib
> -L/home/dknez/software/petsc-src/arch-linux2-c-opt/lib -lpetsc
> -Wl,-rpath,/home/dknez/software/libmesh_install/opt_real/petsc/lib
> -L/home/dknez/software/libmesh_install/opt_real/petsc/lib -lcmumps
> -ldmumps -lsmumps -lzmumps -lmumps_common -lpord -lmetis -lHYPRE
> -Wl,-rpath,/usr/lib/openmpi/lib -L/usr/lib/openmpi/lib
> -Wl,-rpath,/usr/lib/gcc/x86_64-linux-gnu/5 -L/usr/lib/gcc/x86_64-linux-gnu/5
> -Wl,-rpath,/usr/lib/x86_64-linux-gnu -L/usr/lib/x86_64-linux-gnu
> -Wl,-rpath,/lib/x86_64-linux-gnu -L/lib/x86_64-linux-gnu -lmpi_cxx
> -lstdc++ -lscalapack -lml -lmpi_cxx -lstdc++ -lumfpack -lklu -lcholmod
> -lbtf -lccolamd -lcolamd -lcamd -lamd -lsuitesparseconfig
> -Wl,-rpath,/opt/intel/system_studio_2015.2.050/mkl/lib/intel64
> -L/opt/intel/system_studio_2015.2.050/mkl/lib/intel64 -lmkl_intel_lp64
> -lmkl_sequential -lmkl_core -lpthread -lm -lhwloc -lptesmumps -lptscotch
> -lptscotcherr -lscotch -lscotcherr -lX11 -lm -lmpi_usempif08
> -lmpi_usempi_ignore_tkr -lmpi_mpifh -lgfortran -lm -lgfortran -lm
> -lquadmath -lm -lmpi_cxx -lstdc++ -lrt -lm -lpthread -lz
> -Wl,-rpath,/usr/lib/openmpi/lib -L/usr/lib/openmpi/lib
> -Wl,-rpath,/usr/lib/gcc/x86_64-linux-gnu/5 -L/usr/lib/gcc/x86_64-linux-gnu/5
> -Wl,-rpath,/usr/lib/x86_64-linux-gnu -L/usr/lib/x86_64-linux-gnu
> -Wl,-rpath,/lib/x86_64-linux-gnu -L/lib/x86_64-linux-gnu
> -Wl,-rpath,/usr/lib/x86_64-linux-gnu -L/usr/lib/x86_64-linux-gnu -ldl
> -Wl,-rpath,/usr/lib/openmpi/lib -lmpi -lgcc_s -lpthread -ldl
> -----------------------------------------
>
>
>
>
> On Wed, Jan 11, 2017 at 4:49 PM, Dave May <dave.mayhem23 at gmail.com> wrote:
>
>> It looks like the Schur solve is requiring a huge number of iterates to
>> converge (based on the instances of MatMult).
>> This is killing the performance.
>>
>> Are you sure that A11 is a good approximation to S? You might consider
>> trying the selfp option
>>
>> http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/
>> PC/PCFieldSplitSetSchurPre.html#PCFieldSplitSetSchurPre
>>
>> Note that the best approx to S is likely both problem and discretisation
>> dependent so if selfp is also terrible, you might want to consider coding
>> up your own approx to S for your specific system.
>>
>>
>> Thanks,
>> Dave
>>
>>
>> On Wed, 11 Jan 2017 at 22:34, David Knezevic <david.knezevic at akselos.com>
>> wrote:
>>
>> I have a definite block 2x2 system and I figured it'd be good to apply
>> the PCFIELDSPLIT functionality with Schur complement, as described in
>> Section 4.5 of the manual.
>>
>> The A00 block of my matrix is very small so I figured I'd specify a
>> direct solver (i.e. MUMPS) for that block.
>>
>> So I did the following:
>> - PCFieldSplitSetIS to specify the indices of the two splits
>> - PCFieldSplitGetSubKSP to get the two KSP objects, and to set the solver
>> and PC types for each (MUMPS for A00, ILU+CG for A11)
>> - I set -pc_fieldsplit_schur_fact_type full
>>
>> Below I have pasted the output of "-ksp_view -ksp_monitor -log_view" for
>> a test case. It seems to converge well, but I'm concerned about the speed
>> (about 90 seconds, vs. about 1 second if I use a direct solver for the
>> entire system). I just wanted to check if I'm setting this up in a good way?
>>
>> Many thanks,
>> David
>>
>> ------------------------------------------------------------
>> -----------------------
>>
>> 0 KSP Residual norm 5.405774214400e+04
>> 1 KSP Residual norm 1.849649014371e+02
>> 2 KSP Residual norm 7.462775074989e-02
>> 3 KSP Residual norm 2.680497175260e-04
>> KSP Object: 1 MPI processes
>> type: cg
>> maximum iterations=1000
>> tolerances: relative=1e-06, absolute=1e-50, divergence=10000.
>> left preconditioning
>> using nonzero initial guess
>> using PRECONDITIONED norm type for convergence test
>> PC Object: 1 MPI processes
>> type: fieldsplit
>> FieldSplit with Schur preconditioner, factorization FULL
>> Preconditioner for the Schur complement formed from A11
>> Split info:
>> Split number 0 Defined by IS
>> Split number 1 Defined by IS
>> KSP solver for A00 block
>> KSP Object: (fieldsplit_RB_split_) 1 MPI processes
>> type: preonly
>> maximum iterations=10000, initial guess is zero
>> tolerances: relative=1e-05, absolute=1e-50, divergence=10000.
>> left preconditioning
>> using NONE norm type for convergence test
>> PC Object: (fieldsplit_RB_split_) 1 MPI processes
>> type: cholesky
>> Cholesky: out-of-place factorization
>> tolerance for zero pivot 2.22045e-14
>> matrix ordering: natural
>> factor fill ratio given 0., needed 0.
>> Factored matrix follows:
>> Mat Object: 1 MPI processes
>> type: seqaij
>> rows=324, cols=324
>> package used to perform factorization: mumps
>> total: nonzeros=3042, allocated nonzeros=3042
>> total number of mallocs used during MatSetValues calls =0
>> MUMPS run parameters:
>> SYM (matrix type): 2
>> PAR (host participation): 1
>> ICNTL(1) (output for error): 6
>> ICNTL(2) (output of diagnostic msg): 0
>> ICNTL(3) (output for global info): 0
>> ICNTL(4) (level of printing): 0
>> ICNTL(5) (input mat struct): 0
>> ICNTL(6) (matrix prescaling): 7
>> ICNTL(7) (sequentia matrix ordering):7
>> ICNTL(8) (scalling strategy): 77
>> ICNTL(10) (max num of refinements): 0
>> ICNTL(11) (error analysis): 0
>> ICNTL(12) (efficiency control):
>> 0
>> ICNTL(13) (efficiency control):
>> 0
>> ICNTL(14) (percentage of estimated workspace
>> increase): 20
>> ICNTL(18) (input mat struct):
>> 0
>> ICNTL(19) (Shur complement info):
>> 0
>> ICNTL(20) (rhs sparse pattern):
>> 0
>> ICNTL(21) (solution struct):
>> 0
>> ICNTL(22) (in-core/out-of-core facility):
>> 0
>> ICNTL(23) (max size of memory can be allocated
>> locally):0
>> ICNTL(24) (detection of null pivot rows):
>> 0
>> ICNTL(25) (computation of a null space basis):
>> 0
>> ICNTL(26) (Schur options for rhs or solution):
>> 0
>> ICNTL(27) (experimental parameter):
>> -24
>> ICNTL(28) (use parallel or sequential ordering):
>> 1
>> ICNTL(29) (parallel ordering):
>> 0
>> ICNTL(30) (user-specified set of entries in inv(A)):
>> 0
>> ICNTL(31) (factors is discarded in the solve phase):
>> 0
>> ICNTL(33) (compute determinant):
>> 0
>> CNTL(1) (relative pivoting threshold): 0.01
>> CNTL(2) (stopping criterion of refinement):
>> 1.49012e-08
>> CNTL(3) (absolute pivoting threshold): 0.
>> CNTL(4) (value of static pivoting): -1.
>> CNTL(5) (fixation for null pivots): 0.
>> RINFO(1) (local estimated flops for the elimination
>> after analysis):
>> [0] 29394.
>> RINFO(2) (local estimated flops for the assembly
>> after factorization):
>> [0] 1092.
>> RINFO(3) (local estimated flops for the elimination
>> after factorization):
>> [0] 29394.
>> INFO(15) (estimated size of (in MB) MUMPS internal
>> data for running numerical factorization):
>> [0] 1
>> INFO(16) (size of (in MB) MUMPS internal data used
>> during numerical factorization):
>> [0] 1
>> INFO(23) (num of pivots eliminated on this processor
>> after factorization):
>> [0] 324
>> RINFOG(1) (global estimated flops for the elimination
>> after analysis): 29394.
>> RINFOG(2) (global estimated flops for the assembly
>> after factorization): 1092.
>> RINFOG(3) (global estimated flops for the elimination
>> after factorization): 29394.
>> (RINFOG(12) RINFOG(13))*2^INFOG(34) (determinant):
>> (0.,0.)*(2^0)
>> INFOG(3) (estimated real workspace for factors on all
>> processors after analysis): 3888
>> INFOG(4) (estimated integer workspace for factors on
>> all processors after analysis): 2067
>> INFOG(5) (estimated maximum front size in the
>> complete tree): 12
>> INFOG(6) (number of nodes in the complete tree): 53
>> INFOG(7) (ordering option effectively use after
>> analysis): 2
>> INFOG(8) (structural symmetry in percent of the
>> permuted matrix after analysis): 100
>> INFOG(9) (total real/complex workspace to store the
>> matrix factors after factorization): 3888
>> INFOG(10) (total integer space store the matrix
>> factors after factorization): 2067
>> INFOG(11) (order of largest frontal matrix after
>> factorization): 12
>> INFOG(12) (number of off-diagonal pivots): 0
>> INFOG(13) (number of delayed pivots after
>> factorization): 0
>> INFOG(14) (number of memory compress after
>> factorization): 0
>> INFOG(15) (number of steps of iterative refinement
>> after solution): 0
>> INFOG(16) (estimated size (in MB) of all MUMPS
>> internal data for factorization after analysis: value on the most memory
>> consuming processor): 1
>> INFOG(17) (estimated size of all MUMPS internal data
>> for factorization after analysis: sum over all processors): 1
>> INFOG(18) (size of all MUMPS internal data allocated
>> during factorization: value on the most memory consuming processor): 1
>> INFOG(19) (size of all MUMPS internal data allocated
>> during factorization: sum over all processors): 1
>> INFOG(20) (estimated number of entries in the
>> factors): 3042
>> INFOG(21) (size in MB of memory effectively used
>> during factorization - value on the most memory consuming processor): 1
>> INFOG(22) (size in MB of memory effectively used
>> during factorization - sum over all processors): 1
>> INFOG(23) (after analysis: value of ICNTL(6)
>> effectively used): 5
>> INFOG(24) (after analysis: value of ICNTL(12)
>> effectively used): 1
>> INFOG(25) (after factorization: number of pivots
>> modified by static pivoting): 0
>> INFOG(28) (after factorization: number of null pivots
>> encountered): 0
>> INFOG(29) (after factorization: effective number of
>> entries in the factors (sum over all processors)): 3042
>> INFOG(30, 31) (after solution: size in Mbytes of
>> memory used during solution phase): 0, 0
>> INFOG(32) (after analysis: type of analysis done): 1
>> INFOG(33) (value used for ICNTL(8)): -2
>> INFOG(34) (exponent of the determinant if determinant
>> is requested): 0
>> linear system matrix = precond matrix:
>> Mat Object: (fieldsplit_RB_split_) 1 MPI processes
>> type: seqaij
>> rows=324, cols=324
>> total: nonzeros=5760, allocated nonzeros=5760
>> total number of mallocs used during MatSetValues calls =0
>> using I-node routines: found 108 nodes, limit used is 5
>> KSP solver for S = A11 - A10 inv(A00) A01
>> KSP Object: (fieldsplit_FE_split_) 1 MPI processes
>> type: cg
>> maximum iterations=10000, initial guess is zero
>> tolerances: relative=1e-05, absolute=1e-50, divergence=10000.
>> left preconditioning
>> using PRECONDITIONED norm type for convergence test
>> PC Object: (fieldsplit_FE_split_) 1 MPI processes
>> type: bjacobi
>> block Jacobi: number of blocks = 1
>> Local solve is same for all blocks, in the following KSP and PC
>> objects:
>> KSP Object: (fieldsplit_FE_split_sub_) 1 MPI
>> processes
>> type: preonly
>> maximum iterations=10000, initial guess is zero
>> tolerances: relative=1e-05, absolute=1e-50, divergence=10000.
>> left preconditioning
>> using NONE norm type for convergence test
>> PC Object: (fieldsplit_FE_split_sub_) 1 MPI
>> processes
>> type: ilu
>> ILU: out-of-place factorization
>> 0 levels of fill
>> tolerance for zero pivot 2.22045e-14
>> matrix ordering: natural
>> factor fill ratio given 1., needed 1.
>> Factored matrix follows:
>> Mat Object: 1 MPI processes
>> type: seqaij
>> rows=28476, cols=28476
>> package used to perform factorization: petsc
>> total: nonzeros=1017054, allocated nonzeros=1017054
>> total number of mallocs used during MatSetValues
>> calls =0
>> using I-node routines: found 9492 nodes, limit used
>> is 5
>> linear system matrix = precond matrix:
>> Mat Object: (fieldsplit_FE_split_) 1
>> MPI processes
>> type: seqaij
>> rows=28476, cols=28476
>> total: nonzeros=1017054, allocated nonzeros=1017054
>> total number of mallocs used during MatSetValues calls =0
>> using I-node routines: found 9492 nodes, limit used is 5
>> linear system matrix followed by preconditioner matrix:
>> Mat Object: (fieldsplit_FE_split_) 1 MPI processes
>> type: schurcomplement
>> rows=28476, cols=28476
>> Schur complement A11 - A10 inv(A00) A01
>> A11
>> Mat Object: (fieldsplit_FE_split_)
>> 1 MPI processes
>> type: seqaij
>> rows=28476, cols=28476
>> total: nonzeros=1017054, allocated nonzeros=1017054
>> total number of mallocs used during MatSetValues calls =0
>> using I-node routines: found 9492 nodes, limit used is 5
>> A10
>> Mat Object: 1 MPI processes
>> type: seqaij
>> rows=28476, cols=324
>> total: nonzeros=936, allocated nonzeros=936
>> total number of mallocs used during MatSetValues calls =0
>> using I-node routines: found 5717 nodes, limit used is 5
>> KSP of A00
>> KSP Object: (fieldsplit_RB_split_)
>> 1 MPI processes
>> type: preonly
>> maximum iterations=10000, initial guess is zero
>> tolerances: relative=1e-05, absolute=1e-50,
>> divergence=10000.
>> left preconditioning
>> using NONE norm type for convergence test
>> PC Object: (fieldsplit_RB_split_)
>> 1 MPI processes
>> type: cholesky
>> Cholesky: out-of-place factorization
>> tolerance for zero pivot 2.22045e-14
>> matrix ordering: natural
>> factor fill ratio given 0., needed 0.
>> Factored matrix follows:
>> Mat Object: 1 MPI processes
>> type: seqaij
>> rows=324, cols=324
>> package used to perform factorization: mumps
>> total: nonzeros=3042, allocated nonzeros=3042
>> total number of mallocs used during MatSetValues
>> calls =0
>> MUMPS run parameters:
>> SYM (matrix type): 2
>> PAR (host participation): 1
>> ICNTL(1) (output for error): 6
>> ICNTL(2) (output of diagnostic msg): 0
>> ICNTL(3) (output for global info): 0
>> ICNTL(4) (level of printing): 0
>> ICNTL(5) (input mat struct): 0
>> ICNTL(6) (matrix prescaling): 7
>> ICNTL(7) (sequentia matrix ordering):7
>> ICNTL(8) (scalling strategy): 77
>> ICNTL(10) (max num of refinements): 0
>> ICNTL(11) (error analysis): 0
>> ICNTL(12) (efficiency control):
>> 0
>> ICNTL(13) (efficiency control):
>> 0
>> ICNTL(14) (percentage of estimated workspace
>> increase): 20
>> ICNTL(18) (input mat struct):
>> 0
>> ICNTL(19) (Shur complement info):
>> 0
>> ICNTL(20) (rhs sparse pattern):
>> 0
>> ICNTL(21) (solution struct):
>> 0
>> ICNTL(22) (in-core/out-of-core facility):
>> 0
>> ICNTL(23) (max size of memory can be
>> allocated locally):0
>> ICNTL(24) (detection of null pivot rows):
>> 0
>> ICNTL(25) (computation of a null space
>> basis): 0
>> ICNTL(26) (Schur options for rhs or
>> solution): 0
>> ICNTL(27) (experimental parameter):
>> -24
>> ICNTL(28) (use parallel or sequential
>> ordering): 1
>> ICNTL(29) (parallel ordering):
>> 0
>> ICNTL(30) (user-specified set of entries in
>> inv(A)): 0
>> ICNTL(31) (factors is discarded in the solve
>> phase): 0
>> ICNTL(33) (compute determinant):
>> 0
>> CNTL(1) (relative pivoting threshold):
>> 0.01
>> CNTL(2) (stopping criterion of refinement):
>> 1.49012e-08
>> CNTL(3) (absolute pivoting threshold):
>> 0.
>> CNTL(4) (value of static pivoting):
>> -1.
>> CNTL(5) (fixation for null pivots):
>> 0.
>> RINFO(1) (local estimated flops for the
>> elimination after analysis):
>> [0] 29394.
>> RINFO(2) (local estimated flops for the
>> assembly after factorization):
>> [0] 1092.
>> RINFO(3) (local estimated flops for the
>> elimination after factorization):
>> [0] 29394.
>> INFO(15) (estimated size of (in MB) MUMPS
>> internal data for running numerical factorization):
>> [0] 1
>> INFO(16) (size of (in MB) MUMPS internal data
>> used during numerical factorization):
>> [0] 1
>> INFO(23) (num of pivots eliminated on this
>> processor after factorization):
>> [0] 324
>> RINFOG(1) (global estimated flops for the
>> elimination after analysis): 29394.
>> RINFOG(2) (global estimated flops for the
>> assembly after factorization): 1092.
>> RINFOG(3) (global estimated flops for the
>> elimination after factorization): 29394.
>> (RINFOG(12) RINFOG(13))*2^INFOG(34)
>> (determinant): (0.,0.)*(2^0)
>> INFOG(3) (estimated real workspace for
>> factors on all processors after analysis): 3888
>> INFOG(4) (estimated integer workspace for
>> factors on all processors after analysis): 2067
>> INFOG(5) (estimated maximum front size in the
>> complete tree): 12
>> INFOG(6) (number of nodes in the complete
>> tree): 53
>> INFOG(7) (ordering option effectively use
>> after analysis): 2
>> INFOG(8) (structural symmetry in percent of
>> the permuted matrix after analysis): 100
>> INFOG(9) (total real/complex workspace to
>> store the matrix factors after factorization): 3888
>> INFOG(10) (total integer space store the
>> matrix factors after factorization): 2067
>> INFOG(11) (order of largest frontal matrix
>> after factorization): 12
>> INFOG(12) (number of off-diagonal pivots): 0
>> INFOG(13) (number of delayed pivots after
>> factorization): 0
>> INFOG(14) (number of memory compress after
>> factorization): 0
>> INFOG(15) (number of steps of iterative
>> refinement after solution): 0
>> INFOG(16) (estimated size (in MB) of all
>> MUMPS internal data for factorization after analysis: value on the most
>> memory consuming processor): 1
>> INFOG(17) (estimated size of all MUMPS
>> internal data for factorization after analysis: sum over all processors): 1
>> INFOG(18) (size of all MUMPS internal data
>> allocated during factorization: value on the most memory consuming
>> processor): 1
>> INFOG(19) (size of all MUMPS internal data
>> allocated during factorization: sum over all processors): 1
>> INFOG(20) (estimated number of entries in the
>> factors): 3042
>> INFOG(21) (size in MB of memory effectively
>> used during factorization - value on the most memory consuming processor):
>> 1
>> INFOG(22) (size in MB of memory effectively
>> used during factorization - sum over all processors): 1
>> INFOG(23) (after analysis: value of ICNTL(6)
>> effectively used): 5
>> INFOG(24) (after analysis: value of ICNTL(12)
>> effectively used): 1
>> INFOG(25) (after factorization: number of
>> pivots modified by static pivoting): 0
>> INFOG(28) (after factorization: number of
>> null pivots encountered): 0
>> INFOG(29) (after factorization: effective
>> number of entries in the factors (sum over all processors)): 3042
>> INFOG(30, 31) (after solution: size in Mbytes
>> of memory used during solution phase): 0, 0
>> INFOG(32) (after analysis: type of analysis
>> done): 1
>> INFOG(33) (value used for ICNTL(8)): -2
>> INFOG(34) (exponent of the determinant if
>> determinant is requested): 0
>> linear system matrix = precond matrix:
>> Mat Object: (fieldsplit_RB_split_)
>> 1 MPI processes
>> type: seqaij
>> rows=324, cols=324
>> total: nonzeros=5760, allocated nonzeros=5760
>> total number of mallocs used during MatSetValues calls
>> =0
>> using I-node routines: found 108 nodes, limit used is
>> 5
>> A01
>> Mat Object: 1 MPI processes
>> type: seqaij
>> rows=324, cols=28476
>> total: nonzeros=936, allocated nonzeros=936
>> total number of mallocs used during MatSetValues calls =0
>> using I-node routines: found 67 nodes, limit used is 5
>> Mat Object: (fieldsplit_FE_split_) 1 MPI processes
>> type: seqaij
>> rows=28476, cols=28476
>> total: nonzeros=1017054, allocated nonzeros=1017054
>> total number of mallocs used during MatSetValues calls =0
>> using I-node routines: found 9492 nodes, limit used is 5
>> linear system matrix = precond matrix:
>> Mat Object: () 1 MPI processes
>> type: seqaij
>> rows=28800, cols=28800
>> total: nonzeros=1024686, allocated nonzeros=1024794
>> total number of mallocs used during MatSetValues calls =0
>> using I-node routines: found 9600 nodes, limit used is 5
>>
>>
>> ---------------------------------------------- PETSc Performance
>> Summary: ----------------------------------------------
>>
>> /home/dknez/akselos-dev/scrbe/build/bin/fe_solver-opt_real on a
>> arch-linux2-c-opt named david-Lenovo with 1 processor, by dknez Wed Jan 11
>> 16:16:47 2017
>> Using Petsc Release Version 3.7.3, unknown
>>
>> Max Max/Min Avg Total
>> Time (sec): 9.179e+01 1.00000 9.179e+01
>> Objects: 1.990e+02 1.00000 1.990e+02
>> Flops: 1.634e+11 1.00000 1.634e+11 1.634e+11
>> Flops/sec: 1.780e+09 1.00000 1.780e+09 1.780e+09
>> MPI Messages: 0.000e+00 0.00000 0.000e+00 0.000e+00
>> MPI Message Lengths: 0.000e+00 0.00000 0.000e+00 0.000e+00
>> MPI Reductions: 0.000e+00 0.00000
>>
>> Flop counting convention: 1 flop = 1 real number operation of type
>> (multiply/divide/add/subtract)
>> e.g., VecAXPY() for real vectors of length N
>> --> 2N flops
>> and VecAXPY() for complex vectors of length N
>> --> 8N flops
>>
>> Summary of Stages: ----- Time ------ ----- Flops ----- --- Messages
>> --- -- Message Lengths -- -- Reductions --
>> Avg %Total Avg %Total counts
>> %Total Avg %Total counts %Total
>> 0: Main Stage: 9.1787e+01 100.0% 1.6336e+11 100.0% 0.000e+00
>> 0.0% 0.000e+00 0.0% 0.000e+00 0.0%
>>
>> ------------------------------------------------------------
>> ------------------------------------------------------------
>> See the 'Profiling' chapter of the users' manual for details on
>> interpreting output.
>> Phase summary info:
>> Count: number of times phase was executed
>> Time and Flops: Max - maximum over all processors
>> Ratio - ratio of maximum to minimum over all processors
>> Mess: number of messages sent
>> Avg. len: average message length (bytes)
>> Reduct: number of global reductions
>> Global: entire computation
>> Stage: stages of a computation. Set stages with PetscLogStagePush()
>> and PetscLogStagePop().
>> %T - percent time in this phase %F - percent flops in this
>> phase
>> %M - percent messages in this phase %L - percent message
>> lengths in this phase
>> %R - percent reductions in this phase
>> Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time
>> over all processors)
>> ------------------------------------------------------------
>> ------------------------------------------------------------
>> Event Count Time (sec) Flops
>> --- Global --- --- Stage --- Total
>> Max Ratio Max Ratio Max Ratio Mess Avg len
>> Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s
>> ------------------------------------------------------------
>> ------------------------------------------------------------
>>
>> --- Event Stage 0: Main Stage
>>
>> VecDot 42 1.0 2.4080e-05 1.0 8.53e+03 1.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 354
>> VecTDot 74012 1.0 1.2440e+00 1.0 4.22e+09 1.0 0.0e+00 0.0e+00
>> 0.0e+00 1 3 0 0 0 1 3 0 0 0 3388
>> VecNorm 37020 1.0 8.3580e-01 1.0 2.11e+09 1.0 0.0e+00 0.0e+00
>> 0.0e+00 1 1 0 0 0 1 1 0 0 0 2523
>> VecScale 37008 1.0 3.5800e-01 1.0 1.05e+09 1.0 0.0e+00 0.0e+00
>> 0.0e+00 0 1 0 0 0 0 1 0 0 0 2944
>> VecCopy 37034 1.0 2.5754e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> VecSet 74137 1.0 3.0537e-01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> VecAXPY 74029 1.0 1.7233e+00 1.0 4.22e+09 1.0 0.0e+00 0.0e+00
>> 0.0e+00 2 3 0 0 0 2 3 0 0 0 2446
>> VecAYPX 37001 1.0 1.2214e+00 1.0 2.11e+09 1.0 0.0e+00 0.0e+00
>> 0.0e+00 1 1 0 0 0 1 1 0 0 0 1725
>> VecAssemblyBegin 68 1.0 2.0432e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> VecAssemblyEnd 68 1.0 2.5988e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> VecScatterBegin 48 1.0 4.6921e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> MatMult 37017 1.0 4.1269e+01 1.0 7.65e+10 1.0 0.0e+00 0.0e+00
>> 0.0e+00 45 47 0 0 0 45 47 0 0 0 1853
>> MatMultAdd 37015 1.0 3.3638e+01 1.0 7.53e+10 1.0 0.0e+00 0.0e+00
>> 0.0e+00 37 46 0 0 0 37 46 0 0 0 2238
>> MatSolve 74021 1.0 4.6602e+01 1.0 7.42e+10 1.0 0.0e+00 0.0e+00
>> 0.0e+00 51 45 0 0 0 51 45 0 0 0 1593
>> MatLUFactorNum 1 1.0 1.7209e-02 1.0 2.44e+07 1.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 1420
>> MatCholFctrSym 1 1.0 8.8310e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> MatCholFctrNum 1 1.0 3.6907e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> MatILUFactorSym 1 1.0 3.7372e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> MatAssemblyBegin 29 1.0 2.1458e-06 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> MatAssemblyEnd 29 1.0 9.9473e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> MatGetRow 58026 1.0 2.8155e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> MatGetRowIJ 2 1.0 0.0000e+00 0.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> MatGetSubMatrice 6 1.0 1.5399e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> MatGetOrdering 2 1.0 3.0112e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> MatZeroEntries 6 1.0 2.9490e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> MatView 7 1.0 3.4356e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> KSPSetUp 4 1.0 9.4891e-05 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> KSPSolve 1 1.0 8.8793e+01 1.0 1.63e+11 1.0 0.0e+00 0.0e+00
>> 0.0e+00 97100 0 0 0 97100 0 0 0 1840
>> PCSetUp 4 1.0 3.8375e-02 1.0 2.44e+07 1.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 637
>> PCSetUpOnBlocks 5 1.0 2.1250e-02 1.0 2.44e+07 1.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 1150
>> PCApply 5 1.0 8.8789e+01 1.0 1.63e+11 1.0 0.0e+00 0.0e+00
>> 0.0e+00 97100 0 0 0 97100 0 0 0 1840
>> KSPSolve_FS_0 5 1.0 7.5364e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> KSPSolve_FS_Schu 5 1.0 8.8785e+01 1.0 1.63e+11 1.0 0.0e+00 0.0e+00
>> 0.0e+00 97100 0 0 0 97100 0 0 0 1840
>> KSPSolve_FS_Low 5 1.0 2.1019e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00
>> 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
>> ------------------------------------------------------------
>> ------------------------------------------------------------
>>
>> Memory usage is given in bytes:
>>
>> Object Type Creations Destructions Memory Descendants'
>> Mem.
>> Reports information only for process 0.
>>
>> --- Event Stage 0: Main Stage
>>
>> Vector 91 91 9693912 0.
>> Vector Scatter 24 24 15936 0.
>> Index Set 51 51 537888 0.
>> IS L to G Mapping 3 3 240408 0.
>> Matrix 13 13 64097868 0.
>> Krylov Solver 6 6 7888 0.
>> Preconditioner 6 6 6288 0.
>> Viewer 1 0 0 0.
>> Distributed Mesh 1 1 4624 0.
>> Star Forest Bipartite Graph 2 2 1616 0.
>> Discrete System 1 1 872 0.
>> ============================================================
>> ============================================================
>> Average time to get PetscTime(): 0.
>> #PETSc Option Table entries:
>> -ksp_monitor
>> -ksp_view
>> -log_view
>> #End of PETSc Option Table entries
>> Compiled without FORTRAN kernels
>> Compiled with full precision matrices (default)
>> sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8
>> sizeof(PetscScalar) 8 sizeof(PetscInt) 4
>> Configure options: --with-shared-libraries=1 --with-debugging=0
>> --download-suitesparse --download-blacs --download-ptscotch=yes
>> --with-blas-lapack-dir=/opt/intel/system_studio_2015.2.050/mkl
>> --CXXFLAGS=-Wl,--no-as-needed --download-scalapack --download-mumps
>> --download-metis --prefix=/home/dknez/software/libmesh_install/opt_real/petsc
>> --download-hypre --download-ml
>> -----------------------------------------
>> Libraries compiled on Wed Sep 21 17:38:52 2016 on david-Lenovo
>> Machine characteristics: Linux-4.4.0-38-generic-x86_64-
>> with-Ubuntu-16.04-xenial
>> Using PETSc directory: /home/dknez/software/petsc-src
>> Using PETSc arch: arch-linux2-c-opt
>> -----------------------------------------
>>
>> Using C compiler: mpicc -fPIC -Wall -Wwrite-strings
>> -Wno-strict-aliasing -Wno-unknown-pragmas -fvisibility=hidden -g -O
>> ${COPTFLAGS} ${CFLAGS}
>> Using Fortran compiler: mpif90 -fPIC -Wall -ffree-line-length-0
>> -Wno-unused-dummy-argument -g -O ${FOPTFLAGS} ${FFLAGS}
>> -----------------------------------------
>>
>> Using include paths: -I/home/dknez/software/petsc-src/arch-linux2-c-opt/include
>> -I/home/dknez/software/petsc-src/include -I/home/dknez/software/petsc-src/include
>> -I/home/dknez/software/petsc-src/arch-linux2-c-opt/include
>> -I/home/dknez/software/libmesh_install/opt_real/petsc/include
>> -I/usr/lib/openmpi/include/openmpi/opal/mca/event/libevent2021/libevent
>> -I/usr/lib/openmpi/include/openmpi/opal/mca/event/libevent2021/libevent/include
>> -I/usr/lib/openmpi/include -I/usr/lib/openmpi/include/openmpi
>> -----------------------------------------
>>
>> Using C linker: mpicc
>> Using Fortran linker: mpif90
>> Using libraries: -Wl,-rpath,/home/dknez/softwar
>> e/petsc-src/arch-linux2-c-opt/lib -L/home/dknez/software/petsc-src/arch-linux2-c-opt/lib
>> -lpetsc -Wl,-rpath,/home/dknez/software/libmesh_install/opt_real/petsc/lib
>> -L/home/dknez/software/libmesh_install/opt_real/petsc/lib -lcmumps
>> -ldmumps -lsmumps -lzmumps -lmumps_common -lpord -lmetis -lHYPRE
>> -Wl,-rpath,/usr/lib/openmpi/lib -L/usr/lib/openmpi/lib
>> -Wl,-rpath,/usr/lib/gcc/x86_64-linux-gnu/5 -L/usr/lib/gcc/x86_64-linux-gnu/5
>> -Wl,-rpath,/usr/lib/x86_64-linux-gnu -L/usr/lib/x86_64-linux-gnu
>> -Wl,-rpath,/lib/x86_64-linux-gnu -L/lib/x86_64-linux-gnu -lmpi_cxx
>> -lstdc++ -lscalapack -lml -lmpi_cxx -lstdc++ -lumfpack -lklu -lcholmod
>> -lbtf -lccolamd -lcolamd -lcamd -lamd -lsuitesparseconfig
>> -Wl,-rpath,/opt/intel/system_studio_2015.2.050/mkl/lib/intel64
>> -L/opt/intel/system_studio_2015.2.050/mkl/lib/intel64 -lmkl_intel_lp64
>> -lmkl_sequential -lmkl_core -lpthread -lm -lhwloc -lptesmumps -lptscotch
>> -lptscotcherr -lscotch -lscotcherr -lX11 -lm -lmpi_usempif08
>> -lmpi_usempi_ignore_tkr -lmpi_mpifh -lgfortran -lm -lgfortran -lm
>> -lquadmath -lm -lmpi_cxx -lstdc++ -lrt -lm -lpthread -lz
>> -Wl,-rpath,/usr/lib/openmpi/lib -L/usr/lib/openmpi/lib
>> -Wl,-rpath,/usr/lib/gcc/x86_64-linux-gnu/5 -L/usr/lib/gcc/x86_64-linux-gnu/5
>> -Wl,-rpath,/usr/lib/x86_64-linux-gnu -L/usr/lib/x86_64-linux-gnu
>> -Wl,-rpath,/lib/x86_64-linux-gnu -L/lib/x86_64-linux-gnu
>> -Wl,-rpath,/usr/lib/x86_64-linux-gnu -L/usr/lib/x86_64-linux-gnu -ldl
>> -Wl,-rpath,/usr/lib/openmpi/lib -lmpi -lgcc_s -lpthread -ldl
>> -----------------------------------------
>>
>>
>>
>>
>>
>>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20170111/2342788e/attachment-0001.html>
More information about the petsc-users
mailing list