[petsc-users] fieldsplit preconditioner for indefinite matrix

Matthew Knepley knepley at gmail.com
Thu Sep 15 09:28:55 CDT 2016


On Thu, Sep 15, 2016 at 9:07 AM, Hoang Giang Bui <hgbk2008 at gmail.com> wrote:

> Hi Matt
>
> Thanks for the comment. After looking carefully into the manual again, the
> key take away is that with selfp there is no option to compute the exact
> Schur, there are only two options to approximate the inv(A00) for selfp,
> which are lump and diag (diag by default). I misunderstood this previously.
>
> There is online manual entry mentioned about PC_FIELDSPLIT_SCHUR_PRE_FULL,
> which is not documented elsewhere in the offline manual. I tried to access
> that by setting
> -pc_fieldsplit_schur_precondition full
>

Yep, I wrote that specifically for testing, but its very slow so I did not
document it to prevent people from complaining.


> but it gives the error
>
> [0]PETSC ERROR: --------------------- Error Message
> --------------------------------------------------------------
> [0]PETSC ERROR: Arguments are incompatible
> [0]PETSC ERROR: MatMatMult requires A, mpiaij, to be compatible with B,
> seqaij
> [0]PETSC ERROR: See http://www.mcs.anl.gov/petsc/documentation/faq.html
> for trouble shooting.
> [0]PETSC ERROR: Petsc Release Version 3.7.3, Jul, 24, 2016
> [0]PETSC ERROR: python on a arch-linux2-c-opt named bermuda by hbui Thu
> Sep 15 15:46:56 2016
> [0]PETSC ERROR: Configure options --with-shared-libraries
> --with-debugging=0 --with-pic --download-fblaslapack=yes
> --download-suitesparse --download-ptscotch=yes --download-metis=yes
> --download-parmetis=yes --download-scalapack=yes --download-mumps=yes
> --download-hypre=yes --download-ml=yes --download-pastix=yes
> --with-mpi-dir=/opt/openmpi-1.10.1 --prefix=/home/hbui/opt/petsc-3.7.3
> [0]PETSC ERROR: #1 MatMatMult() line 9514 in /home/hbui/sw/petsc-3.7.3/src/
> mat/interface/matrix.c
> [0]PETSC ERROR: #2 MatSchurComplementComputeExplicitOperator() line 526
> in /home/hbui/sw/petsc-3.7.3/src/ksp/ksp/utils/schurm.c
> [0]PETSC ERROR: #3 PCSetUp_FieldSplit() line 792 in
> /home/hbui/sw/petsc-3.7.3/src/ksp/pc/impls/fieldsplit/fieldsplit.c
> [0]PETSC ERROR: #4 PCSetUp() line 968 in /home/hbui/sw/petsc-3.7.3/src/
> ksp/pc/interface/precon.c
> [0]PETSC ERROR: #5 KSPSetUp() line 390 in /home/hbui/sw/petsc-3.7.3/src/
> ksp/ksp/interface/itfunc.c
> [0]PETSC ERROR: #6 KSPSolve() line 599 in /home/hbui/sw/petsc-3.7.3/src/
> ksp/ksp/interface/itfunc.c
>
> Please excuse me to insist on forming the exact Schur complement, but as
> you said, I would like to track down what creates problem in my code by
> starting from a very exact but ineffective solution.
>

Sure, I understand. I do not understand how A can be MPI and B can be Seq.
Do you know how that happens?

  Thanks,

     Matt


> Giang
>
> On Thu, Sep 15, 2016 at 2:56 PM, Matthew Knepley <knepley at gmail.com>
> wrote:
>
>> On Thu, Sep 15, 2016 at 4:11 AM, Hoang Giang Bui <hgbk2008 at gmail.com>
>> wrote:
>>
>>> Dear Barry
>>>
>>> Thanks for the clarification. I got exactly what you said if the code
>>> changed to
>>> ierr = KSPSetOperators(ksp_S,B,B);CHKERRQ(ierr);
>>>   Residual norms for stokes_ solve.
>>>   0 KSP Residual norm 1.327791371202e-02
>>>     Residual norms for stokes_fieldsplit_p_ solve.
>>>     0 KSP preconditioned resid norm 0.000000000000e+00 true resid norm
>>> 0.000000000000e+00 ||r(i)||/||b||           -nan
>>>   1 KSP Residual norm 3.997711925708e-17
>>>
>>> but I guess we solve a different problem if B is used for the linear
>>> system.
>>>
>>> in addition, changed to
>>> ierr = KSPSetOperators(ksp_S,A,A);CHKERRQ(ierr);
>>> also works but inner iteration converged not in one iteration
>>>
>>>   Residual norms for stokes_ solve.
>>>   0 KSP Residual norm 1.327791371202e-02
>>>     Residual norms for stokes_fieldsplit_p_ solve.
>>>     0 KSP preconditioned resid norm 5.308049264070e+02 true resid norm
>>> 5.775755720828e-02 ||r(i)||/||b|| 1.000000000000e+00
>>>     1 KSP preconditioned resid norm 1.853645192358e+02 true resid norm
>>> 1.537879609454e-02 ||r(i)||/||b|| 2.662646558801e-01
>>>     2 KSP preconditioned resid norm 2.282724981527e+01 true resid norm
>>> 4.440700864158e-03 ||r(i)||/||b|| 7.688519180519e-02
>>>     3 KSP preconditioned resid norm 3.114190504933e+00 true resid norm
>>> 8.474158485027e-04 ||r(i)||/||b|| 1.467194752449e-02
>>>     4 KSP preconditioned resid norm 4.273258497986e-01 true resid norm
>>> 1.249911370496e-04 ||r(i)||/||b|| 2.164065502267e-03
>>>     5 KSP preconditioned resid norm 2.548558490130e-02 true resid norm
>>> 8.428488734654e-06 ||r(i)||/||b|| 1.459287605301e-04
>>>     6 KSP preconditioned resid norm 1.556370641259e-03 true resid norm
>>> 2.866605637380e-07 ||r(i)||/||b|| 4.963169801386e-06
>>>     7 KSP preconditioned resid norm 2.324584224817e-05 true resid norm
>>> 6.975804113442e-09 ||r(i)||/||b|| 1.207773398083e-07
>>>     8 KSP preconditioned resid norm 8.893330367907e-06 true resid norm
>>> 1.082096232921e-09 ||r(i)||/||b|| 1.873514541169e-08
>>>     9 KSP preconditioned resid norm 6.563740470820e-07 true resid norm
>>> 2.212185528660e-10 ||r(i)||/||b|| 3.830123079274e-09
>>>    10 KSP preconditioned resid norm 1.460372091709e-08 true resid norm
>>> 3.859545051902e-12 ||r(i)||/||b|| 6.682320441607e-11
>>>    11 KSP preconditioned resid norm 1.041947844812e-08 true resid norm
>>> 2.364389912927e-12 ||r(i)||/||b|| 4.093645969827e-11
>>>    12 KSP preconditioned resid norm 1.614713897816e-10 true resid norm
>>> 1.057061924974e-14 ||r(i)||/||b|| 1.830170762178e-13
>>>   1 KSP Residual norm 1.445282647127e-16
>>>
>>>
>>> Seem like zero pivot does not happen, but why the solver for Schur takes
>>> 13 steps if the preconditioner is direct solver?
>>>
>>
>> Look at the -ksp_view. I will bet that the default is to shift (add a
>> multiple of the identity) the matrix instead of failing. This
>> gives an inexact PC, but as you see it can converge.
>>
>>   Thanks,
>>
>>      Matt
>>
>>
>>>
>>> I also so tried another problem which I known does have a nonsingular
>>> Schur (at least A11 != 0) and it also have the same problem: 1 step outer
>>> convergence but multiple step inner convergence.
>>>
>>> Any ideas?
>>>
>>> Giang
>>>
>>> On Fri, Sep 9, 2016 at 1:04 AM, Barry Smith <bsmith at mcs.anl.gov> wrote:
>>>
>>>>
>>>>    Normally you'd be absolutely correct to expect convergence in one
>>>> iteration. However in this example note the call
>>>>
>>>>   ierr = KSPSetOperators(ksp_S,A,B);CHKERRQ(ierr);
>>>>
>>>> It is solving the linear system defined by A but building the
>>>> preconditioner (i.e. the entire fieldsplit process) from a different matrix
>>>> B. Since A is not B you should not expect convergence in one iteration. If
>>>> you change the code to
>>>>
>>>>   ierr = KSPSetOperators(ksp_S,B,B);CHKERRQ(ierr);
>>>>
>>>> you will see exactly what you expect, convergence in one iteration.
>>>>
>>>>   Sorry about this, the example is lacking clarity and documentation
>>>> its author obviously knew too well what he was doing that he didn't realize
>>>> everyone else in the world would need more comments in the code. If you
>>>> change the code to
>>>>
>>>>   ierr = KSPSetOperators(ksp_S,A,A);CHKERRQ(ierr);
>>>>
>>>> it will stop without being able to build the preconditioner because LU
>>>> factorization of the Sp matrix will result in a zero pivot. This is why
>>>> this "auxiliary" matrix B is used to define the preconditioner instead of A.
>>>>
>>>>   Barry
>>>>
>>>>
>>>>
>>>>
>>>> > On Sep 8, 2016, at 5:30 PM, Hoang Giang Bui <hgbk2008 at gmail.com>
>>>> wrote:
>>>> >
>>>> > Sorry I slept quite a while in this thread. Now I start to look at it
>>>> again. In the last try, the previous setting doesn't work either (in fact
>>>> diverge). So I would speculate if the Schur complement in my case is
>>>> actually not invertible. It's also possible that the code is wrong
>>>> somewhere. However, before looking at that, I want to understand thoroughly
>>>> the settings for Schur complement
>>>> >
>>>> > I experimented ex42 with the settings:
>>>> > mpirun -np 1 ex42 \
>>>> > -stokes_ksp_monitor \
>>>> > -stokes_ksp_type fgmres \
>>>> > -stokes_pc_type fieldsplit \
>>>> > -stokes_pc_fieldsplit_type schur \
>>>> > -stokes_pc_fieldsplit_schur_fact_type full \
>>>> > -stokes_pc_fieldsplit_schur_precondition selfp \
>>>> > -stokes_fieldsplit_u_ksp_type preonly \
>>>> > -stokes_fieldsplit_u_pc_type lu \
>>>> > -stokes_fieldsplit_u_pc_factor_mat_solver_package mumps \
>>>> > -stokes_fieldsplit_p_ksp_type gmres \
>>>> > -stokes_fieldsplit_p_ksp_monitor_true_residual \
>>>> > -stokes_fieldsplit_p_ksp_max_it 300 \
>>>> > -stokes_fieldsplit_p_ksp_rtol 1.0e-12 \
>>>> > -stokes_fieldsplit_p_ksp_gmres_restart 300 \
>>>> > -stokes_fieldsplit_p_ksp_gmres_modifiedgramschmidt \
>>>> > -stokes_fieldsplit_p_pc_type lu \
>>>> > -stokes_fieldsplit_p_pc_factor_mat_solver_package mumps
>>>> >
>>>> > In my understanding, the solver should converge in 1 (outer) step.
>>>> Execution gives:
>>>> >   Residual norms for stokes_ solve.
>>>> >   0 KSP Residual norm 1.327791371202e-02
>>>> >     Residual norms for stokes_fieldsplit_p_ solve.
>>>> >     0 KSP preconditioned resid norm 0.000000000000e+00 true resid
>>>> norm 0.000000000000e+00 ||r(i)||/||b||           -nan
>>>> >   1 KSP Residual norm 7.656238881621e-04
>>>> >     Residual norms for stokes_fieldsplit_p_ solve.
>>>> >     0 KSP preconditioned resid norm 1.512059266251e+03 true resid
>>>> norm 1.000000000000e+00 ||r(i)||/||b|| 1.000000000000e+00
>>>> >     1 KSP preconditioned resid norm 1.861905708091e-12 true resid
>>>> norm 2.934589919911e-16 ||r(i)||/||b|| 2.934589919911e-16
>>>> >   2 KSP Residual norm 9.895645456398e-06
>>>> >     Residual norms for stokes_fieldsplit_p_ solve.
>>>> >     0 KSP preconditioned resid norm 3.002531529083e+03 true resid
>>>> norm 1.000000000000e+00 ||r(i)||/||b|| 1.000000000000e+00
>>>> >     1 KSP preconditioned resid norm 6.388584944363e-12 true resid
>>>> norm 1.961047000344e-15 ||r(i)||/||b|| 1.961047000344e-15
>>>> >   3 KSP Residual norm 1.608206702571e-06
>>>> >     Residual norms for stokes_fieldsplit_p_ solve.
>>>> >     0 KSP preconditioned resid norm 3.004810086026e+03 true resid
>>>> norm 1.000000000000e+00 ||r(i)||/||b|| 1.000000000000e+00
>>>> >     1 KSP preconditioned resid norm 3.081350863773e-12 true resid
>>>> norm 7.721720636293e-16 ||r(i)||/||b|| 7.721720636293e-16
>>>> >   4 KSP Residual norm 2.453618999882e-07
>>>> >     Residual norms for stokes_fieldsplit_p_ solve.
>>>> >     0 KSP preconditioned resid norm 3.000681887478e+03 true resid
>>>> norm 1.000000000000e+00 ||r(i)||/||b|| 1.000000000000e+00
>>>> >     1 KSP preconditioned resid norm 3.909717465288e-12 true resid
>>>> norm 1.156131245879e-15 ||r(i)||/||b|| 1.156131245879e-15
>>>> >   5 KSP Residual norm 4.230399264750e-08
>>>> >
>>>> > Looks like the "selfp" does construct the Schur nicely. But does
>>>> "full" really construct the full block preconditioner?
>>>> >
>>>> > Giang
>>>> > P/S: I'm also generating a smaller size of the previous problem for
>>>> checking again.
>>>> >
>>>> >
>>>> > On Sun, Apr 17, 2016 at 3:16 PM, Matthew Knepley <knepley at gmail.com>
>>>> wrote:
>>>> > On Sun, Apr 17, 2016 at 4:25 AM, Hoang Giang Bui <hgbk2008 at gmail.com>
>>>> wrote:
>>>> >
>>>> > It could be taking time in the MatMatMult() here if that matrix is
>>>> dense. Is there any reason to
>>>> > believe that is a good preconditioner for your problem?
>>>> >
>>>> > This is the first approach to the problem, so I chose the most simple
>>>> setting. Do you have any other recommendation?
>>>> >
>>>> > This is in no way the simplest PC. We need to make it simpler first.
>>>> >
>>>> >   1) Run on only 1 proc
>>>> >
>>>> >   2) Use -pc_fieldsplit_schur_fact_type full
>>>> >
>>>> >   3) Use -fieldsplit_lu_ksp_type gmres -fieldsplit_lu_ksp_monitor_tru
>>>> e_residual
>>>> >
>>>> > This should converge in 1 outer iteration, but we will see how good
>>>> your Schur complement preconditioner
>>>> > is for this problem.
>>>> >
>>>> > You need to start out from something you understand and then start
>>>> making approximations.
>>>> >
>>>> >    Matt
>>>> >
>>>> > For any solver question, please send us the output of
>>>> >
>>>> >   -ksp_view -ksp_monitor_true_residual -ksp_converged_reason
>>>> >
>>>> >
>>>> > I sent here the full output (after changed to fgmres), again it takes
>>>> long at the first iteration but after that, it does not converge
>>>> >
>>>> > -ksp_type fgmres
>>>> > -ksp_max_it 300
>>>> > -ksp_gmres_restart 300
>>>> > -ksp_gmres_modifiedgramschmidt
>>>> > -pc_fieldsplit_type schur
>>>> > -pc_fieldsplit_schur_fact_type diag
>>>> > -pc_fieldsplit_schur_precondition selfp
>>>> > -pc_fieldsplit_detect_saddle_point
>>>> > -fieldsplit_u_ksp_type preonly
>>>> > -fieldsplit_u_pc_type lu
>>>> > -fieldsplit_u_pc_factor_mat_solver_package mumps
>>>> > -fieldsplit_lu_ksp_type preonly
>>>> > -fieldsplit_lu_pc_type lu
>>>> > -fieldsplit_lu_pc_factor_mat_solver_package mumps
>>>> >
>>>> >   0 KSP unpreconditioned resid norm 3.037772453815e+06 true resid
>>>> norm 3.037772453815e+06 ||r(i)||/||b|| 1.000000000000e+00
>>>> >   1 KSP unpreconditioned resid norm 3.024368791893e+06 true resid
>>>> norm 3.024368791296e+06 ||r(i)||/||b|| 9.955876673705e-01
>>>> >   2 KSP unpreconditioned resid norm 3.008534454663e+06 true resid
>>>> norm 3.008534454904e+06 ||r(i)||/||b|| 9.903751846607e-01
>>>> >   3 KSP unpreconditioned resid norm 4.633282412600e+02 true resid
>>>> norm 4.607539866185e+02 ||r(i)||/||b|| 1.516749505184e-04
>>>> >   4 KSP unpreconditioned resid norm 4.630592911836e+02 true resid
>>>> norm 4.605625897903e+02 ||r(i)||/||b|| 1.516119448683e-04
>>>> >   5 KSP unpreconditioned resid norm 2.145735509629e+02 true resid
>>>> norm 2.111697416683e+02 ||r(i)||/||b|| 6.951466736857e-05
>>>> >   6 KSP unpreconditioned resid norm 2.145734219762e+02 true resid
>>>> norm 2.112001242378e+02 ||r(i)||/||b|| 6.952466896346e-05
>>>> >   7 KSP unpreconditioned resid norm 1.892914067411e+02 true resid
>>>> norm 1.831020928502e+02 ||r(i)||/||b|| 6.027511791420e-05
>>>> >   8 KSP unpreconditioned resid norm 1.892906351597e+02 true resid
>>>> norm 1.831422357767e+02 ||r(i)||/||b|| 6.028833250718e-05
>>>> >   9 KSP unpreconditioned resid norm 1.891426729822e+02 true resid
>>>> norm 1.835600473014e+02 ||r(i)||/||b|| 6.042587128964e-05
>>>> >  10 KSP unpreconditioned resid norm 1.891425181679e+02 true resid
>>>> norm 1.855772578041e+02 ||r(i)||/||b|| 6.108991395027e-05
>>>> >  11 KSP unpreconditioned resid norm 1.891417382057e+02 true resid
>>>> norm 1.833302669042e+02 ||r(i)||/||b|| 6.035023020699e-05
>>>> >  12 KSP unpreconditioned resid norm 1.891414749001e+02 true resid
>>>> norm 1.827923591605e+02 ||r(i)||/||b|| 6.017315712076e-05
>>>> >  13 KSP unpreconditioned resid norm 1.891414702834e+02 true resid
>>>> norm 1.849895606391e+02 ||r(i)||/||b|| 6.089645075515e-05
>>>> >  14 KSP unpreconditioned resid norm 1.891414687385e+02 true resid
>>>> norm 1.852700958573e+02 ||r(i)||/||b|| 6.098879974523e-05
>>>> >  15 KSP unpreconditioned resid norm 1.891399614701e+02 true resid
>>>> norm 1.817034334576e+02 ||r(i)||/||b|| 5.981469521503e-05
>>>> >  16 KSP unpreconditioned resid norm 1.891393964580e+02 true resid
>>>> norm 1.823173574739e+02 ||r(i)||/||b|| 6.001679199012e-05
>>>> >  17 KSP unpreconditioned resid norm 1.890868604964e+02 true resid
>>>> norm 1.834754811775e+02 ||r(i)||/||b|| 6.039803308740e-05
>>>> >  18 KSP unpreconditioned resid norm 1.888442703508e+02 true resid
>>>> norm 1.852079421560e+02 ||r(i)||/||b|| 6.096833945658e-05
>>>> >  19 KSP unpreconditioned resid norm 1.888131521870e+02 true resid
>>>> norm 1.810111295757e+02 ||r(i)||/||b|| 5.958679668335e-05
>>>> >  20 KSP unpreconditioned resid norm 1.888038471618e+02 true resid
>>>> norm 1.814080717355e+02 ||r(i)||/||b|| 5.971746550920e-05
>>>> >  21 KSP unpreconditioned resid norm 1.885794485272e+02 true resid
>>>> norm 1.843223565278e+02 ||r(i)||/||b|| 6.067681478129e-05
>>>> >  22 KSP unpreconditioned resid norm 1.884898771362e+02 true resid
>>>> norm 1.842766260526e+02 ||r(i)||/||b|| 6.066176083110e-05
>>>> >  23 KSP unpreconditioned resid norm 1.884840498049e+02 true resid
>>>> norm 1.813011285152e+02 ||r(i)||/||b|| 5.968226102238e-05
>>>> >  24 KSP unpreconditioned resid norm 1.884105698955e+02 true resid
>>>> norm 1.811513025118e+02 ||r(i)||/||b|| 5.963294001309e-05
>>>> >  25 KSP unpreconditioned resid norm 1.881392557375e+02 true resid
>>>> norm 1.835706567649e+02 ||r(i)||/||b|| 6.042936380386e-05
>>>> >  26 KSP unpreconditioned resid norm 1.881234481250e+02 true resid
>>>> norm 1.843633799886e+02 ||r(i)||/||b|| 6.069031923609e-05
>>>> >  27 KSP unpreconditioned resid norm 1.852572648925e+02 true resid
>>>> norm 1.791532195358e+02 ||r(i)||/||b|| 5.897519391579e-05
>>>> >  28 KSP unpreconditioned resid norm 1.852177694782e+02 true resid
>>>> norm 1.800935543889e+02 ||r(i)||/||b|| 5.928474141066e-05
>>>> >  29 KSP unpreconditioned resid norm 1.844720976468e+02 true resid
>>>> norm 1.806835899755e+02 ||r(i)||/||b|| 5.947897438749e-05
>>>> >  30 KSP unpreconditioned resid norm 1.843525447108e+02 true resid
>>>> norm 1.811351238391e+02 ||r(i)||/||b|| 5.962761417881e-05
>>>> >  31 KSP unpreconditioned resid norm 1.834262885149e+02 true resid
>>>> norm 1.778584233423e+02 ||r(i)||/||b|| 5.854896179565e-05
>>>> >  32 KSP unpreconditioned resid norm 1.833523213017e+02 true resid
>>>> norm 1.773290649733e+02 ||r(i)||/||b|| 5.837470306591e-05
>>>> >  33 KSP unpreconditioned resid norm 1.821645929344e+02 true resid
>>>> norm 1.781151248933e+02 ||r(i)||/||b|| 5.863346501467e-05
>>>> >  34 KSP unpreconditioned resid norm 1.820831279534e+02 true resid
>>>> norm 1.789778939067e+02 ||r(i)||/||b|| 5.891747872094e-05
>>>> >  35 KSP unpreconditioned resid norm 1.814860919375e+02 true resid
>>>> norm 1.757339506869e+02 ||r(i)||/||b|| 5.784960965928e-05
>>>> >  36 KSP unpreconditioned resid norm 1.812512010159e+02 true resid
>>>> norm 1.764086437459e+02 ||r(i)||/||b|| 5.807171090922e-05
>>>> >  37 KSP unpreconditioned resid norm 1.804298150360e+02 true resid
>>>> norm 1.780147196442e+02 ||r(i)||/||b|| 5.860041275333e-05
>>>> >  38 KSP unpreconditioned resid norm 1.799675012847e+02 true resid
>>>> norm 1.780554543786e+02 ||r(i)||/||b|| 5.861382216269e-05
>>>> >  39 KSP unpreconditioned resid norm 1.793156052097e+02 true resid
>>>> norm 1.747985717965e+02 ||r(i)||/||b|| 5.754169361071e-05
>>>> >  40 KSP unpreconditioned resid norm 1.789109248325e+02 true resid
>>>> norm 1.734086984879e+02 ||r(i)||/||b|| 5.708416319009e-05
>>>> >  41 KSP unpreconditioned resid norm 1.788931581371e+02 true resid
>>>> norm 1.766103879126e+02 ||r(i)||/||b|| 5.813812278494e-05
>>>> >  42 KSP unpreconditioned resid norm 1.785522436483e+02 true resid
>>>> norm 1.762597032909e+02 ||r(i)||/||b|| 5.802268141233e-05
>>>> >  43 KSP unpreconditioned resid norm 1.783317950582e+02 true resid
>>>> norm 1.752774080448e+02 ||r(i)||/||b|| 5.769932103530e-05
>>>> >  44 KSP unpreconditioned resid norm 1.782832982797e+02 true resid
>>>> norm 1.741667594885e+02 ||r(i)||/||b|| 5.733370821430e-05
>>>> >  45 KSP unpreconditioned resid norm 1.781302427969e+02 true resid
>>>> norm 1.760315735899e+02 ||r(i)||/||b|| 5.794758372005e-05
>>>> >  46 KSP unpreconditioned resid norm 1.780557458973e+02 true resid
>>>> norm 1.757279911034e+02 ||r(i)||/||b|| 5.784764783244e-05
>>>> >  47 KSP unpreconditioned resid norm 1.774691940686e+02 true resid
>>>> norm 1.729436852773e+02 ||r(i)||/||b|| 5.693108615167e-05
>>>> >  48 KSP unpreconditioned resid norm 1.771436357084e+02 true resid
>>>> norm 1.734001323688e+02 ||r(i)||/||b|| 5.708134332148e-05
>>>> >  49 KSP unpreconditioned resid norm 1.756105727417e+02 true resid
>>>> norm 1.740222172981e+02 ||r(i)||/||b|| 5.728612657594e-05
>>>> >  50 KSP unpreconditioned resid norm 1.756011794480e+02 true resid
>>>> norm 1.736979026533e+02 ||r(i)||/||b|| 5.717936589858e-05
>>>> >  51 KSP unpreconditioned resid norm 1.751096154950e+02 true resid
>>>> norm 1.713154407940e+02 ||r(i)||/||b|| 5.639508666256e-05
>>>> >  52 KSP unpreconditioned resid norm 1.712639990486e+02 true resid
>>>> norm 1.684444278579e+02 ||r(i)||/||b|| 5.544998199137e-05
>>>> >  53 KSP unpreconditioned resid norm 1.710183053728e+02 true resid
>>>> norm 1.692712952670e+02 ||r(i)||/||b|| 5.572217729951e-05
>>>> >  54 KSP unpreconditioned resid norm 1.655470115849e+02 true resid
>>>> norm 1.631767858448e+02 ||r(i)||/||b|| 5.371593439788e-05
>>>> >  55 KSP unpreconditioned resid norm 1.648313805392e+02 true resid
>>>> norm 1.617509396670e+02 ||r(i)||/||b|| 5.324656211951e-05
>>>> >  56 KSP unpreconditioned resid norm 1.643417766012e+02 true resid
>>>> norm 1.614766932468e+02 ||r(i)||/||b|| 5.315628332992e-05
>>>> >  57 KSP unpreconditioned resid norm 1.643165564782e+02 true resid
>>>> norm 1.611660297521e+02 ||r(i)||/||b|| 5.305401645527e-05
>>>> >  58 KSP unpreconditioned resid norm 1.639561245303e+02 true resid
>>>> norm 1.616105878219e+02 ||r(i)||/||b|| 5.320035989496e-05
>>>> >  59 KSP unpreconditioned resid norm 1.636859175366e+02 true resid
>>>> norm 1.601704798933e+02 ||r(i)||/||b|| 5.272629281109e-05
>>>> >  60 KSP unpreconditioned resid norm 1.633269681891e+02 true resid
>>>> norm 1.603249334191e+02 ||r(i)||/||b|| 5.277713714789e-05
>>>> >  61 KSP unpreconditioned resid norm 1.633257086864e+02 true resid
>>>> norm 1.602922744638e+02 ||r(i)||/||b|| 5.276638619280e-05
>>>> >  62 KSP unpreconditioned resid norm 1.629449737049e+02 true resid
>>>> norm 1.605812790996e+02 ||r(i)||/||b|| 5.286152321842e-05
>>>> >  63 KSP unpreconditioned resid norm 1.629422151091e+02 true resid
>>>> norm 1.589656479615e+02 ||r(i)||/||b|| 5.232967589850e-05
>>>> >  64 KSP unpreconditioned resid norm 1.624767340901e+02 true resid
>>>> norm 1.601925152173e+02 ||r(i)||/||b|| 5.273354658809e-05
>>>> >  65 KSP unpreconditioned resid norm 1.614000473427e+02 true resid
>>>> norm 1.600055285874e+02 ||r(i)||/||b|| 5.267199272497e-05
>>>> >  66 KSP unpreconditioned resid norm 1.599192711038e+02 true resid
>>>> norm 1.602225820054e+02 ||r(i)||/||b|| 5.274344423136e-05
>>>> >  67 KSP unpreconditioned resid norm 1.562002802473e+02 true resid
>>>> norm 1.582069452329e+02 ||r(i)||/||b|| 5.207991962471e-05
>>>> >  68 KSP unpreconditioned resid norm 1.552436010567e+02 true resid
>>>> norm 1.584249134588e+02 ||r(i)||/||b|| 5.215167227548e-05
>>>> >  69 KSP unpreconditioned resid norm 1.507627069906e+02 true resid
>>>> norm 1.530713322210e+02 ||r(i)||/||b|| 5.038933447066e-05
>>>> >  70 KSP unpreconditioned resid norm 1.503802419288e+02 true resid
>>>> norm 1.526772130725e+02 ||r(i)||/||b|| 5.025959494786e-05
>>>> >  71 KSP unpreconditioned resid norm 1.483645684459e+02 true resid
>>>> norm 1.509599328686e+02 ||r(i)||/||b|| 4.969428591633e-05
>>>> >  72 KSP unpreconditioned resid norm 1.481979533059e+02 true resid
>>>> norm 1.535340885300e+02 ||r(i)||/||b|| 5.054166856281e-05
>>>> >  73 KSP unpreconditioned resid norm 1.481400704979e+02 true resid
>>>> norm 1.509082933863e+02 ||r(i)||/||b|| 4.967728678847e-05
>>>> >  74 KSP unpreconditioned resid norm 1.481132272449e+02 true resid
>>>> norm 1.513298398754e+02 ||r(i)||/||b|| 4.981605507858e-05
>>>> >  75 KSP unpreconditioned resid norm 1.481101708026e+02 true resid
>>>> norm 1.502466334943e+02 ||r(i)||/||b|| 4.945947590828e-05
>>>> >  76 KSP unpreconditioned resid norm 1.481010335860e+02 true resid
>>>> norm 1.533384206564e+02 ||r(i)||/||b|| 5.047725693339e-05
>>>> >  77 KSP unpreconditioned resid norm 1.480865328511e+02 true resid
>>>> norm 1.508354096349e+02 ||r(i)||/||b|| 4.965329428986e-05
>>>> >  78 KSP unpreconditioned resid norm 1.480582653674e+02 true resid
>>>> norm 1.493335938981e+02 ||r(i)||/||b|| 4.915891370027e-05
>>>> >  79 KSP unpreconditioned resid norm 1.480031554288e+02 true resid
>>>> norm 1.505131104808e+02 ||r(i)||/||b|| 4.954719708903e-05
>>>> >  80 KSP unpreconditioned resid norm 1.479574822714e+02 true resid
>>>> norm 1.540226621640e+02 ||r(i)||/||b|| 5.070250142355e-05
>>>> >  81 KSP unpreconditioned resid norm 1.479574535946e+02 true resid
>>>> norm 1.498368142318e+02 ||r(i)||/||b|| 4.932456808727e-05
>>>> >  82 KSP unpreconditioned resid norm 1.479436001532e+02 true resid
>>>> norm 1.512355315895e+02 ||r(i)||/||b|| 4.978500986785e-05
>>>> >  83 KSP unpreconditioned resid norm 1.479410419985e+02 true resid
>>>> norm 1.513924042216e+02 ||r(i)||/||b|| 4.983665054686e-05
>>>> >  84 KSP unpreconditioned resid norm 1.477087197314e+02 true resid
>>>> norm 1.519847216835e+02 ||r(i)||/||b|| 5.003163469095e-05
>>>> >  85 KSP unpreconditioned resid norm 1.477081559094e+02 true resid
>>>> norm 1.507153721984e+02 ||r(i)||/||b|| 4.961377933660e-05
>>>> >  86 KSP unpreconditioned resid norm 1.476420890986e+02 true resid
>>>> norm 1.512147907360e+02 ||r(i)||/||b|| 4.977818221576e-05
>>>> >  87 KSP unpreconditioned resid norm 1.476086929880e+02 true resid
>>>> norm 1.508513380647e+02 ||r(i)||/||b|| 4.965853774704e-05
>>>> >  88 KSP unpreconditioned resid norm 1.475729830724e+02 true resid
>>>> norm 1.521640656963e+02 ||r(i)||/||b|| 5.009067269183e-05
>>>> >  89 KSP unpreconditioned resid norm 1.472338605465e+02 true resid
>>>> norm 1.506094588356e+02 ||r(i)||/||b|| 4.957891386713e-05
>>>> >  90 KSP unpreconditioned resid norm 1.472079944867e+02 true resid
>>>> norm 1.504582871439e+02 ||r(i)||/||b|| 4.952914987262e-05
>>>> >  91 KSP unpreconditioned resid norm 1.469363056078e+02 true resid
>>>> norm 1.506425446156e+02 ||r(i)||/||b|| 4.958980532804e-05
>>>> >  92 KSP unpreconditioned resid norm 1.469110799022e+02 true resid
>>>> norm 1.509842019134e+02 ||r(i)||/||b|| 4.970227500870e-05
>>>> >  93 KSP unpreconditioned resid norm 1.468779696240e+02 true resid
>>>> norm 1.501105195969e+02 ||r(i)||/||b|| 4.941466876770e-05
>>>> >  94 KSP unpreconditioned resid norm 1.468777757710e+02 true resid
>>>> norm 1.491460779150e+02 ||r(i)||/||b|| 4.909718558007e-05
>>>> >  95 KSP unpreconditioned resid norm 1.468774588833e+02 true resid
>>>> norm 1.519041612996e+02 ||r(i)||/||b|| 5.000511513258e-05
>>>> >  96 KSP unpreconditioned resid norm 1.468771672305e+02 true resid
>>>> norm 1.508986277767e+02 ||r(i)||/||b|| 4.967410498018e-05
>>>> >  97 KSP unpreconditioned resid norm 1.468771086724e+02 true resid
>>>> norm 1.500987040931e+02 ||r(i)||/||b|| 4.941077923878e-05
>>>> >  98 KSP unpreconditioned resid norm 1.468769529855e+02 true resid
>>>> norm 1.509749203169e+02 ||r(i)||/||b|| 4.969921961314e-05
>>>> >  99 KSP unpreconditioned resid norm 1.468539019917e+02 true resid
>>>> norm 1.505087391266e+02 ||r(i)||/||b|| 4.954575808916e-05
>>>> > 100 KSP unpreconditioned resid norm 1.468527260351e+02 true resid
>>>> norm 1.519470484364e+02 ||r(i)||/||b|| 5.001923308823e-05
>>>> > 101 KSP unpreconditioned resid norm 1.468342327062e+02 true resid
>>>> norm 1.489814197970e+02 ||r(i)||/||b|| 4.904298200804e-05
>>>> > 102 KSP unpreconditioned resid norm 1.468333201903e+02 true resid
>>>> norm 1.491479405434e+02 ||r(i)||/||b|| 4.909779873608e-05
>>>> > 103 KSP unpreconditioned resid norm 1.468287736823e+02 true resid
>>>> norm 1.496401088908e+02 ||r(i)||/||b|| 4.925981493540e-05
>>>> > 104 KSP unpreconditioned resid norm 1.468269778777e+02 true resid
>>>> norm 1.509676608058e+02 ||r(i)||/||b|| 4.969682986500e-05
>>>> > 105 KSP unpreconditioned resid norm 1.468214752527e+02 true resid
>>>> norm 1.500441644659e+02 ||r(i)||/||b|| 4.939282541636e-05
>>>> > 106 KSP unpreconditioned resid norm 1.468208033546e+02 true resid
>>>> norm 1.510964155942e+02 ||r(i)||/||b|| 4.973921447094e-05
>>>> > 107 KSP unpreconditioned resid norm 1.467590018852e+02 true resid
>>>> norm 1.512302088409e+02 ||r(i)||/||b|| 4.978325767980e-05
>>>> > 108 KSP unpreconditioned resid norm 1.467588908565e+02 true resid
>>>> norm 1.501053278370e+02 ||r(i)||/||b|| 4.941295969963e-05
>>>> > 109 KSP unpreconditioned resid norm 1.467570731153e+02 true resid
>>>> norm 1.485494378220e+02 ||r(i)||/||b|| 4.890077847519e-05
>>>> > 110 KSP unpreconditioned resid norm 1.467399860352e+02 true resid
>>>> norm 1.504418099302e+02 ||r(i)||/||b|| 4.952372576205e-05
>>>> > 111 KSP unpreconditioned resid norm 1.467095654863e+02 true resid
>>>> norm 1.507288583410e+02 ||r(i)||/||b|| 4.961821882075e-05
>>>> > 112 KSP unpreconditioned resid norm 1.467065865602e+02 true resid
>>>> norm 1.517786399520e+02 ||r(i)||/||b|| 4.996379493842e-05
>>>> > 113 KSP unpreconditioned resid norm 1.466898232510e+02 true resid
>>>> norm 1.491434236258e+02 ||r(i)||/||b|| 4.909631181838e-05
>>>> > 114 KSP unpreconditioned resid norm 1.466897921426e+02 true resid
>>>> norm 1.505605420512e+02 ||r(i)||/||b|| 4.956281102033e-05
>>>> > 115 KSP unpreconditioned resid norm 1.466593121787e+02 true resid
>>>> norm 1.500608650677e+02 ||r(i)||/||b|| 4.939832306376e-05
>>>> > 116 KSP unpreconditioned resid norm 1.466590894710e+02 true resid
>>>> norm 1.503102560128e+02 ||r(i)||/||b|| 4.948041971478e-05
>>>> > 117 KSP unpreconditioned resid norm 1.465338856917e+02 true resid
>>>> norm 1.501331730933e+02 ||r(i)||/||b|| 4.942212604002e-05
>>>> > 118 KSP unpreconditioned resid norm 1.464192893188e+02 true resid
>>>> norm 1.505131429801e+02 ||r(i)||/||b|| 4.954720778744e-05
>>>> > 119 KSP unpreconditioned resid norm 1.463859793112e+02 true resid
>>>> norm 1.504355712014e+02 ||r(i)||/||b|| 4.952167204377e-05
>>>> > 120 KSP unpreconditioned resid norm 1.459254939182e+02 true resid
>>>> norm 1.526513923221e+02 ||r(i)||/||b|| 5.025109505170e-05
>>>> > 121 KSP unpreconditioned resid norm 1.456973020864e+02 true resid
>>>> norm 1.496897691500e+02 ||r(i)||/||b|| 4.927616252562e-05
>>>> > 122 KSP unpreconditioned resid norm 1.456904663212e+02 true resid
>>>> norm 1.488752755634e+02 ||r(i)||/||b|| 4.900804053853e-05
>>>> > 123 KSP unpreconditioned resid norm 1.449254956591e+02 true resid
>>>> norm 1.494048196254e+02 ||r(i)||/||b|| 4.918236039628e-05
>>>> > 124 KSP unpreconditioned resid norm 1.448408616171e+02 true resid
>>>> norm 1.507801939332e+02 ||r(i)||/||b|| 4.963511791142e-05
>>>> > 125 KSP unpreconditioned resid norm 1.447662934870e+02 true resid
>>>> norm 1.495157701445e+02 ||r(i)||/||b|| 4.921888404010e-05
>>>> > 126 KSP unpreconditioned resid norm 1.446934748257e+02 true resid
>>>> norm 1.511098625097e+02 ||r(i)||/||b|| 4.974364104196e-05
>>>> > 127 KSP unpreconditioned resid norm 1.446892504333e+02 true resid
>>>> norm 1.493367018275e+02 ||r(i)||/||b|| 4.915993679512e-05
>>>> > 128 KSP unpreconditioned resid norm 1.446838883996e+02 true resid
>>>> norm 1.510097796622e+02 ||r(i)||/||b|| 4.971069491153e-05
>>>> > 129 KSP unpreconditioned resid norm 1.446696373784e+02 true resid
>>>> norm 1.463776964101e+02 ||r(i)||/||b|| 4.818586600396e-05
>>>> > 130 KSP unpreconditioned resid norm 1.446690766798e+02 true resid
>>>> norm 1.495018999638e+02 ||r(i)||/||b|| 4.921431813499e-05
>>>> > 131 KSP unpreconditioned resid norm 1.446480744133e+02 true resid
>>>> norm 1.499605592408e+02 ||r(i)||/||b|| 4.936530353102e-05
>>>> > 132 KSP unpreconditioned resid norm 1.446220543422e+02 true resid
>>>> norm 1.498225445439e+02 ||r(i)||/||b|| 4.931987066895e-05
>>>> > 133 KSP unpreconditioned resid norm 1.446156526760e+02 true resid
>>>> norm 1.481441673781e+02 ||r(i)||/||b|| 4.876736807329e-05
>>>> > 134 KSP unpreconditioned resid norm 1.446152477418e+02 true resid
>>>> norm 1.501616466283e+02 ||r(i)||/||b|| 4.943149920257e-05
>>>> > 135 KSP unpreconditioned resid norm 1.445744489044e+02 true resid
>>>> norm 1.505958339620e+02 ||r(i)||/||b|| 4.957442871432e-05
>>>> > 136 KSP unpreconditioned resid norm 1.445307936181e+02 true resid
>>>> norm 1.502091787932e+02 ||r(i)||/||b|| 4.944714624841e-05
>>>> > 137 KSP unpreconditioned resid norm 1.444543817248e+02 true resid
>>>> norm 1.491871661616e+02 ||r(i)||/||b|| 4.911071136162e-05
>>>> > 138 KSP unpreconditioned resid norm 1.444176915911e+02 true resid
>>>> norm 1.478091693367e+02 ||r(i)||/||b|| 4.865709054379e-05
>>>> > 139 KSP unpreconditioned resid norm 1.444173719058e+02 true resid
>>>> norm 1.495962731374e+02 ||r(i)||/||b|| 4.924538470600e-05
>>>> > 140 KSP unpreconditioned resid norm 1.444075340820e+02 true resid
>>>> norm 1.515103203654e+02 ||r(i)||/||b|| 4.987546719477e-05
>>>> > 141 KSP unpreconditioned resid norm 1.444050342939e+02 true resid
>>>> norm 1.498145746307e+02 ||r(i)||/||b|| 4.931724706454e-05
>>>> > 142 KSP unpreconditioned resid norm 1.443757787691e+02 true resid
>>>> norm 1.492291154146e+02 ||r(i)||/||b|| 4.912452057664e-05
>>>> > 143 KSP unpreconditioned resid norm 1.440588930707e+02 true resid
>>>> norm 1.485032724987e+02 ||r(i)||/||b|| 4.888558137795e-05
>>>> > 144 KSP unpreconditioned resid norm 1.438299468441e+02 true resid
>>>> norm 1.506129385276e+02 ||r(i)||/||b|| 4.958005934200e-05
>>>> > 145 KSP unpreconditioned resid norm 1.434543079403e+02 true resid
>>>> norm 1.471733741230e+02 ||r(i)||/||b|| 4.844779402032e-05
>>>> > 146 KSP unpreconditioned resid norm 1.433157223870e+02 true resid
>>>> norm 1.481025707968e+02 ||r(i)||/||b|| 4.875367495378e-05
>>>> > 147 KSP unpreconditioned resid norm 1.430111913458e+02 true resid
>>>> norm 1.485000481919e+02 ||r(i)||/||b|| 4.888451997299e-05
>>>> > 148 KSP unpreconditioned resid norm 1.430056153071e+02 true resid
>>>> norm 1.496425172884e+02 ||r(i)||/||b|| 4.926060775239e-05
>>>> > 149 KSP unpreconditioned resid norm 1.429327762233e+02 true resid
>>>> norm 1.467613264791e+02 ||r(i)||/||b|| 4.831215264157e-05
>>>> > 150 KSP unpreconditioned resid norm 1.424230217603e+02 true resid
>>>> norm 1.460277537447e+02 ||r(i)||/||b|| 4.807066887493e-05
>>>> > 151 KSP unpreconditioned resid norm 1.421912821676e+02 true resid
>>>> norm 1.470486188164e+02 ||r(i)||/||b|| 4.840672599809e-05
>>>> > 152 KSP unpreconditioned resid norm 1.420344275315e+02 true resid
>>>> norm 1.481536901943e+02 ||r(i)||/||b|| 4.877050287565e-05
>>>> > 153 KSP unpreconditioned resid norm 1.420071178597e+02 true resid
>>>> norm 1.450813684108e+02 ||r(i)||/||b|| 4.775912963085e-05
>>>> > 154 KSP unpreconditioned resid norm 1.419367456470e+02 true resid
>>>> norm 1.472052819440e+02 ||r(i)||/||b|| 4.845829771059e-05
>>>> > 155 KSP unpreconditioned resid norm 1.419032748919e+02 true resid
>>>> norm 1.479193155584e+02 ||r(i)||/||b|| 4.869334942209e-05
>>>> > 156 KSP unpreconditioned resid norm 1.418899781440e+02 true resid
>>>> norm 1.478677351572e+02 ||r(i)||/||b|| 4.867636974307e-05
>>>> > 157 KSP unpreconditioned resid norm 1.418895621075e+02 true resid
>>>> norm 1.455168237674e+02 ||r(i)||/||b|| 4.790247656128e-05
>>>> > 158 KSP unpreconditioned resid norm 1.418061469023e+02 true resid
>>>> norm 1.467147028974e+02 ||r(i)||/||b|| 4.829680469093e-05
>>>> > 159 KSP unpreconditioned resid norm 1.417948698213e+02 true resid
>>>> norm 1.478376854834e+02 ||r(i)||/||b|| 4.866647773362e-05
>>>> > 160 KSP unpreconditioned resid norm 1.415166832324e+02 true resid
>>>> norm 1.475436433192e+02 ||r(i)||/||b|| 4.856968241116e-05
>>>> > 161 KSP unpreconditioned resid norm 1.414939087573e+02 true resid
>>>> norm 1.468361945080e+02 ||r(i)||/||b|| 4.833679834170e-05
>>>> > 162 KSP unpreconditioned resid norm 1.414544622036e+02 true resid
>>>> norm 1.475730757600e+02 ||r(i)||/||b|| 4.857937123456e-05
>>>> > 163 KSP unpreconditioned resid norm 1.413780373982e+02 true resid
>>>> norm 1.463891808066e+02 ||r(i)||/||b|| 4.818964653614e-05
>>>> > 164 KSP unpreconditioned resid norm 1.413741853943e+02 true resid
>>>> norm 1.481999741168e+02 ||r(i)||/||b|| 4.878573901436e-05
>>>> > 165 KSP unpreconditioned resid norm 1.413725682642e+02 true resid
>>>> norm 1.458413423932e+02 ||r(i)||/||b|| 4.800930438685e-05
>>>> > 166 KSP unpreconditioned resid norm 1.412970845566e+02 true resid
>>>> norm 1.481492296610e+02 ||r(i)||/||b|| 4.876903451901e-05
>>>> > 167 KSP unpreconditioned resid norm 1.410100899597e+02 true resid
>>>> norm 1.468338434340e+02 ||r(i)||/||b|| 4.833602439497e-05
>>>> > 168 KSP unpreconditioned resid norm 1.409983320599e+02 true resid
>>>> norm 1.485378957202e+02 ||r(i)||/||b|| 4.889697894709e-05
>>>> > 169 KSP unpreconditioned resid norm 1.407688141293e+02 true resid
>>>> norm 1.461003623074e+02 ||r(i)||/||b|| 4.809457078458e-05
>>>> > 170 KSP unpreconditioned resid norm 1.407072771004e+02 true resid
>>>> norm 1.463217409181e+02 ||r(i)||/||b|| 4.816744609502e-05
>>>> > 171 KSP unpreconditioned resid norm 1.407069670790e+02 true resid
>>>> norm 1.464695099700e+02 ||r(i)||/||b|| 4.821608997937e-05
>>>> > 172 KSP unpreconditioned resid norm 1.402361094414e+02 true resid
>>>> norm 1.493786053835e+02 ||r(i)||/||b|| 4.917373096721e-05
>>>> > 173 KSP unpreconditioned resid norm 1.400618325859e+02 true resid
>>>> norm 1.465475533254e+02 ||r(i)||/||b|| 4.824178096070e-05
>>>> > 174 KSP unpreconditioned resid norm 1.400573078320e+02 true resid
>>>> norm 1.471993735980e+02 ||r(i)||/||b|| 4.845635275056e-05
>>>> > 175 KSP unpreconditioned resid norm 1.400258865388e+02 true resid
>>>> norm 1.479779387468e+02 ||r(i)||/||b|| 4.871264750624e-05
>>>> > 176 KSP unpreconditioned resid norm 1.396589283831e+02 true resid
>>>> norm 1.476626943974e+02 ||r(i)||/||b|| 4.860887266654e-05
>>>> > 177 KSP unpreconditioned resid norm 1.395796112440e+02 true resid
>>>> norm 1.443093901655e+02 ||r(i)||/||b|| 4.750500320860e-05
>>>> > 178 KSP unpreconditioned resid norm 1.394749154493e+02 true resid
>>>> norm 1.447914005206e+02 ||r(i)||/||b|| 4.766367551289e-05
>>>> > 179 KSP unpreconditioned resid norm 1.394476969416e+02 true resid
>>>> norm 1.455635964329e+02 ||r(i)||/||b|| 4.791787358864e-05
>>>> > 180 KSP unpreconditioned resid norm 1.391990722790e+02 true resid
>>>> norm 1.457511594620e+02 ||r(i)||/||b|| 4.797961719582e-05
>>>> > 181 KSP unpreconditioned resid norm 1.391686315799e+02 true resid
>>>> norm 1.460567495143e+02 ||r(i)||/||b|| 4.808021395114e-05
>>>> > 182 KSP unpreconditioned resid norm 1.387654475794e+02 true resid
>>>> norm 1.468215388414e+02 ||r(i)||/||b|| 4.833197386362e-05
>>>> > 183 KSP unpreconditioned resid norm 1.384925240232e+02 true resid
>>>> norm 1.456091052791e+02 ||r(i)||/||b|| 4.793285458106e-05
>>>> > 184 KSP unpreconditioned resid norm 1.378003249970e+02 true resid
>>>> norm 1.453421051371e+02 ||r(i)||/||b|| 4.784496118351e-05
>>>> > 185 KSP unpreconditioned resid norm 1.377904214978e+02 true resid
>>>> norm 1.441752187090e+02 ||r(i)||/||b|| 4.746083549740e-05
>>>> > 186 KSP unpreconditioned resid norm 1.376670282479e+02 true resid
>>>> norm 1.441674745344e+02 ||r(i)||/||b|| 4.745828620353e-05
>>>> > 187 KSP unpreconditioned resid norm 1.376636051755e+02 true resid
>>>> norm 1.463118783906e+02 ||r(i)||/||b|| 4.816419946362e-05
>>>> > 188 KSP unpreconditioned resid norm 1.363148994276e+02 true resid
>>>> norm 1.432997756128e+02 ||r(i)||/||b|| 4.717264962781e-05
>>>> > 189 KSP unpreconditioned resid norm 1.363051099558e+02 true resid
>>>> norm 1.451009062639e+02 ||r(i)||/||b|| 4.776556126897e-05
>>>> > 190 KSP unpreconditioned resid norm 1.362538398564e+02 true resid
>>>> norm 1.438957985476e+02 ||r(i)||/||b|| 4.736885357127e-05
>>>> > 191 KSP unpreconditioned resid norm 1.358335705250e+02 true resid
>>>> norm 1.436616069458e+02 ||r(i)||/||b|| 4.729176037047e-05
>>>> > 192 KSP unpreconditioned resid norm 1.337424103882e+02 true resid
>>>> norm 1.432816138672e+02 ||r(i)||/||b|| 4.716667098856e-05
>>>> > 193 KSP unpreconditioned resid norm 1.337419543121e+02 true resid
>>>> norm 1.405274691954e+02 ||r(i)||/||b|| 4.626003801533e-05
>>>> > 194 KSP unpreconditioned resid norm 1.322568117657e+02 true resid
>>>> norm 1.417123189671e+02 ||r(i)||/||b|| 4.665007702902e-05
>>>> > 195 KSP unpreconditioned resid norm 1.320880115122e+02 true resid
>>>> norm 1.413658215058e+02 ||r(i)||/||b|| 4.653601402181e-05
>>>> > 196 KSP unpreconditioned resid norm 1.312526182172e+02 true resid
>>>> norm 1.420574070412e+02 ||r(i)||/||b|| 4.676367608204e-05
>>>> > 197 KSP unpreconditioned resid norm 1.311651332692e+02 true resid
>>>> norm 1.398984125128e+02 ||r(i)||/||b|| 4.605295973934e-05
>>>> > 198 KSP unpreconditioned resid norm 1.294482397720e+02 true resid
>>>> norm 1.380390703259e+02 ||r(i)||/||b|| 4.544088552537e-05
>>>> > 199 KSP unpreconditioned resid norm 1.293598434732e+02 true resid
>>>> norm 1.373830689903e+02 ||r(i)||/||b|| 4.522493737731e-05
>>>> > 200 KSP unpreconditioned resid norm 1.265165992897e+02 true resid
>>>> norm 1.375015523244e+02 ||r(i)||/||b|| 4.526394073779e-05
>>>> > 201 KSP unpreconditioned resid norm 1.263813235463e+02 true resid
>>>> norm 1.356820166419e+02 ||r(i)||/||b|| 4.466497037047e-05
>>>> > 202 KSP unpreconditioned resid norm 1.243190164198e+02 true resid
>>>> norm 1.366420975402e+02 ||r(i)||/||b|| 4.498101803792e-05
>>>> > 203 KSP unpreconditioned resid norm 1.230747513665e+02 true resid
>>>> norm 1.348856851681e+02 ||r(i)||/||b|| 4.440282714351e-05
>>>> > 204 KSP unpreconditioned resid norm 1.198014010398e+02 true resid
>>>> norm 1.325188356617e+02 ||r(i)||/||b|| 4.362368731578e-05
>>>> > 205 KSP unpreconditioned resid norm 1.195977240348e+02 true resid
>>>> norm 1.299721846860e+02 ||r(i)||/||b|| 4.278535889769e-05
>>>> > 206 KSP unpreconditioned resid norm 1.130620928393e+02 true resid
>>>> norm 1.266961052950e+02 ||r(i)||/||b|| 4.170691097546e-05
>>>> > 207 KSP unpreconditioned resid norm 1.123992882530e+02 true resid
>>>> norm 1.270907813369e+02 ||r(i)||/||b|| 4.183683382120e-05
>>>> > 208 KSP unpreconditioned resid norm 1.063236317163e+02 true resid
>>>> norm 1.182163029843e+02 ||r(i)||/||b|| 3.891545689533e-05
>>>> > 209 KSP unpreconditioned resid norm 1.059802897214e+02 true resid
>>>> norm 1.187516613498e+02 ||r(i)||/||b|| 3.909169075539e-05
>>>> > 210 KSP unpreconditioned resid norm 9.878733567790e+01 true resid
>>>> norm 1.124812677115e+02 ||r(i)||/||b|| 3.702754877846e-05
>>>> > 211 KSP unpreconditioned resid norm 9.861048081032e+01 true resid
>>>> norm 1.117192174341e+02 ||r(i)||/||b|| 3.677669052986e-05
>>>> > 212 KSP unpreconditioned resid norm 9.169383217455e+01 true resid
>>>> norm 1.102172324977e+02 ||r(i)||/||b|| 3.628225424167e-05
>>>> > 213 KSP unpreconditioned resid norm 9.146164223196e+01 true resid
>>>> norm 1.121134424773e+02 ||r(i)||/||b|| 3.690646491198e-05
>>>> > 214 KSP unpreconditioned resid norm 8.692213412954e+01 true resid
>>>> norm 1.056264039532e+02 ||r(i)||/||b|| 3.477100591276e-05
>>>> > 215 KSP unpreconditioned resid norm 8.685846611574e+01 true resid
>>>> norm 1.029018845366e+02 ||r(i)||/||b|| 3.387412523521e-05
>>>> > 216 KSP unpreconditioned resid norm 7.808516472373e+01 true resid
>>>> norm 9.749023000535e+01 ||r(i)||/||b|| 3.209267036539e-05
>>>> > 217 KSP unpreconditioned resid norm 7.786400257086e+01 true resid
>>>> norm 1.004515546585e+02 ||r(i)||/||b|| 3.306750462244e-05
>>>> > 218 KSP unpreconditioned resid norm 6.646475864029e+01 true resid
>>>> norm 9.429020541969e+01 ||r(i)||/||b|| 3.103925881653e-05
>>>> > 219 KSP unpreconditioned resid norm 6.643821996375e+01 true resid
>>>> norm 8.864525788550e+01 ||r(i)||/||b|| 2.918100655438e-05
>>>> > 220 KSP unpreconditioned resid norm 5.625046780791e+01 true resid
>>>> norm 8.410041684883e+01 ||r(i)||/||b|| 2.768489678784e-05
>>>> > 221 KSP unpreconditioned resid norm 5.623343238032e+01 true resid
>>>> norm 8.815552919640e+01 ||r(i)||/||b|| 2.901979346270e-05
>>>> > 222 KSP unpreconditioned resid norm 4.491016868776e+01 true resid
>>>> norm 8.557052117768e+01 ||r(i)||/||b|| 2.816883834410e-05
>>>> > 223 KSP unpreconditioned resid norm 4.461976108543e+01 true resid
>>>> norm 7.867894425332e+01 ||r(i)||/||b|| 2.590020992340e-05
>>>> > 224 KSP unpreconditioned resid norm 3.535718264955e+01 true resid
>>>> norm 7.609346753983e+01 ||r(i)||/||b|| 2.504910051583e-05
>>>> > 225 KSP unpreconditioned resid norm 3.525592897743e+01 true resid
>>>> norm 7.926812413349e+01 ||r(i)||/||b|| 2.609416121143e-05
>>>> > 226 KSP unpreconditioned resid norm 2.633469451114e+01 true resid
>>>> norm 7.883483297310e+01 ||r(i)||/||b|| 2.595152670968e-05
>>>> > 227 KSP unpreconditioned resid norm 2.614440577316e+01 true resid
>>>> norm 7.398963634249e+01 ||r(i)||/||b|| 2.435654331172e-05
>>>> > 228 KSP unpreconditioned resid norm 1.988460252721e+01 true resid
>>>> norm 7.147825835126e+01 ||r(i)||/||b|| 2.352982635730e-05
>>>> > 229 KSP unpreconditioned resid norm 1.975927240058e+01 true resid
>>>> norm 7.488507147714e+01 ||r(i)||/||b|| 2.465131033205e-05
>>>> > 230 KSP unpreconditioned resid norm 1.505732242656e+01 true resid
>>>> norm 7.888901529160e+01 ||r(i)||/||b|| 2.596936291016e-05
>>>> > 231 KSP unpreconditioned resid norm 1.504120870628e+01 true resid
>>>> norm 7.126366562975e+01 ||r(i)||/||b|| 2.345918488406e-05
>>>> > 232 KSP unpreconditioned resid norm 1.163470506257e+01 true resid
>>>> norm 7.142763663542e+01 ||r(i)||/||b|| 2.351316226655e-05
>>>> > 233 KSP unpreconditioned resid norm 1.157114340949e+01 true resid
>>>> norm 7.464790352976e+01 ||r(i)||/||b|| 2.457323735226e-05
>>>> > 234 KSP unpreconditioned resid norm 8.702850618357e+00 true resid
>>>> norm 7.798031063059e+01 ||r(i)||/||b|| 2.567022771329e-05
>>>> > 235 KSP unpreconditioned resid norm 8.702017371082e+00 true resid
>>>> norm 7.032943782131e+01 ||r(i)||/||b|| 2.315164775854e-05
>>>> > 236 KSP unpreconditioned resid norm 6.422855779486e+00 true resid
>>>> norm 6.800345168870e+01 ||r(i)||/||b|| 2.238595968678e-05
>>>> > 237 KSP unpreconditioned resid norm 6.413921210094e+00 true resid
>>>> norm 7.408432731879e+01 ||r(i)||/||b|| 2.438771449973e-05
>>>> > 238 KSP unpreconditioned resid norm 4.949111361190e+00 true resid
>>>> norm 7.744087979524e+01 ||r(i)||/||b|| 2.549265324267e-05
>>>> > 239 KSP unpreconditioned resid norm 4.947369357666e+00 true resid
>>>> norm 7.104259266677e+01 ||r(i)||/||b|| 2.338641018933e-05
>>>> > 240 KSP unpreconditioned resid norm 3.873645232239e+00 true resid
>>>> norm 6.908028336929e+01 ||r(i)||/||b|| 2.274044037845e-05
>>>> > 241 KSP unpreconditioned resid norm 3.841473653930e+00 true resid
>>>> norm 7.431718972562e+01 ||r(i)||/||b|| 2.446437014474e-05
>>>> > 242 KSP unpreconditioned resid norm 3.057267436362e+00 true resid
>>>> norm 7.685939322732e+01 ||r(i)||/||b|| 2.530123450517e-05
>>>> > 243 KSP unpreconditioned resid norm 2.980906717815e+00 true resid
>>>> norm 6.975661521135e+01 ||r(i)||/||b|| 2.296308109705e-05
>>>> > 244 KSP unpreconditioned resid norm 2.415633545154e+00 true resid
>>>> norm 6.989644258184e+01 ||r(i)||/||b|| 2.300911067057e-05
>>>> > 245 KSP unpreconditioned resid norm 2.363923146996e+00 true resid
>>>> norm 7.486631867276e+01 ||r(i)||/||b|| 2.464513712301e-05
>>>> > 246 KSP unpreconditioned resid norm 1.947823635306e+00 true resid
>>>> norm 7.671103669547e+01 ||r(i)||/||b|| 2.525239722914e-05
>>>> > 247 KSP unpreconditioned resid norm 1.942156637334e+00 true resid
>>>> norm 6.835715877902e+01 ||r(i)||/||b|| 2.250239602152e-05
>>>> > 248 KSP unpreconditioned resid norm 1.675749569790e+00 true resid
>>>> norm 7.111781390782e+01 ||r(i)||/||b|| 2.341117216285e-05
>>>> > 249 KSP unpreconditioned resid norm 1.673819729570e+00 true resid
>>>> norm 7.552508026111e+01 ||r(i)||/||b|| 2.486199391474e-05
>>>> > 250 KSP unpreconditioned resid norm 1.453311843294e+00 true resid
>>>> norm 7.639099426865e+01 ||r(i)||/||b|| 2.514704291716e-05
>>>> > 251 KSP unpreconditioned resid norm 1.452846325098e+00 true resid
>>>> norm 6.951401359923e+01 ||r(i)||/||b|| 2.288321941689e-05
>>>> > 252 KSP unpreconditioned resid norm 1.335008887441e+00 true resid
>>>> norm 6.912230871414e+01 ||r(i)||/||b|| 2.275427464204e-05
>>>> > 253 KSP unpreconditioned resid norm 1.334477013356e+00 true resid
>>>> norm 7.412281497148e+01 ||r(i)||/||b|| 2.440038419546e-05
>>>> > 254 KSP unpreconditioned resid norm 1.248507835050e+00 true resid
>>>> norm 7.801932499175e+01 ||r(i)||/||b|| 2.568307079543e-05
>>>> > 255 KSP unpreconditioned resid norm 1.248246596771e+00 true resid
>>>> norm 7.094899926215e+01 ||r(i)||/||b|| 2.335560030938e-05
>>>> > 256 KSP unpreconditioned resid norm 1.208952722414e+00 true resid
>>>> norm 7.101235824005e+01 ||r(i)||/||b|| 2.337645736134e-05
>>>> > 257 KSP unpreconditioned resid norm 1.208780664971e+00 true resid
>>>> norm 7.562936418444e+01 ||r(i)||/||b|| 2.489632299136e-05
>>>> > 258 KSP unpreconditioned resid norm 1.179956701653e+00 true resid
>>>> norm 7.812300941072e+01 ||r(i)||/||b|| 2.571720252207e-05
>>>> > 259 KSP unpreconditioned resid norm 1.179219541297e+00 true resid
>>>> norm 7.131201918549e+01 ||r(i)||/||b|| 2.347510232240e-05
>>>> > 260 KSP unpreconditioned resid norm 1.160215487467e+00 true resid
>>>> norm 7.222079766175e+01 ||r(i)||/||b|| 2.377426181841e-05
>>>> > 261 KSP unpreconditioned resid norm 1.159115040554e+00 true resid
>>>> norm 7.481372509179e+01 ||r(i)||/||b|| 2.462782391678e-05
>>>> > 262 KSP unpreconditioned resid norm 1.151973184765e+00 true resid
>>>> norm 7.709040836137e+01 ||r(i)||/||b|| 2.537728204907e-05
>>>> > 263 KSP unpreconditioned resid norm 1.150882463576e+00 true resid
>>>> norm 7.032588895526e+01 ||r(i)||/||b|| 2.315047951236e-05
>>>> > 264 KSP unpreconditioned resid norm 1.137617003277e+00 true resid
>>>> norm 7.004055871264e+01 ||r(i)||/||b|| 2.305655205500e-05
>>>> > 265 KSP unpreconditioned resid norm 1.137134003401e+00 true resid
>>>> norm 7.610459827221e+01 ||r(i)||/||b|| 2.505276462582e-05
>>>> > 266 KSP unpreconditioned resid norm 1.131425778253e+00 true resid
>>>> norm 7.852741072990e+01 ||r(i)||/||b|| 2.585032681802e-05
>>>> > 267 KSP unpreconditioned resid norm 1.131176695314e+00 true resid
>>>> norm 7.064571495865e+01 ||r(i)||/||b|| 2.325576258022e-05
>>>> > 268 KSP unpreconditioned resid norm 1.125420065063e+00 true resid
>>>> norm 7.138837220124e+01 ||r(i)||/||b|| 2.350023686323e-05
>>>> > 269 KSP unpreconditioned resid norm 1.124779989266e+00 true resid
>>>> norm 7.585594020759e+01 ||r(i)||/||b|| 2.497090923065e-05
>>>> > 270 KSP unpreconditioned resid norm 1.119805446125e+00 true resid
>>>> norm 7.703631305135e+01 ||r(i)||/||b|| 2.535947449079e-05
>>>> > 271 KSP unpreconditioned resid norm 1.119024433863e+00 true resid
>>>> norm 7.081439585094e+01 ||r(i)||/||b|| 2.331129040360e-05
>>>> > 272 KSP unpreconditioned resid norm 1.115694452861e+00 true resid
>>>> norm 7.134872343512e+01 ||r(i)||/||b|| 2.348718494222e-05
>>>> > 273 KSP unpreconditioned resid norm 1.113572716158e+00 true resid
>>>> norm 7.600475566242e+01 ||r(i)||/||b|| 2.501989757889e-05
>>>> > 274 KSP unpreconditioned resid norm 1.108711406381e+00 true resid
>>>> norm 7.738835220359e+01 ||r(i)||/||b|| 2.547536175937e-05
>>>> > 275 KSP unpreconditioned resid norm 1.107890435549e+00 true resid
>>>> norm 7.093429729336e+01 ||r(i)||/||b|| 2.335076058915e-05
>>>> > 276 KSP unpreconditioned resid norm 1.103340227961e+00 true resid
>>>> norm 7.145267197866e+01 ||r(i)||/||b|| 2.352140361564e-05
>>>> > 277 KSP unpreconditioned resid norm 1.102897652964e+00 true resid
>>>> norm 7.448617654625e+01 ||r(i)||/||b|| 2.451999867624e-05
>>>> > 278 KSP unpreconditioned resid norm 1.102576754158e+00 true resid
>>>> norm 7.707165090465e+01 ||r(i)||/||b|| 2.537110730854e-05
>>>> > 279 KSP unpreconditioned resid norm 1.102564028537e+00 true resid
>>>> norm 7.009637628868e+01 ||r(i)||/||b|| 2.307492656359e-05
>>>> > 280 KSP unpreconditioned resid norm 1.100828424712e+00 true resid
>>>> norm 7.059832880916e+01 ||r(i)||/||b|| 2.324016360096e-05
>>>> > 281 KSP unpreconditioned resid norm 1.100686341559e+00 true resid
>>>> norm 7.460867988528e+01 ||r(i)||/||b|| 2.456032537644e-05
>>>> > 282 KSP unpreconditioned resid norm 1.099417185996e+00 true resid
>>>> norm 7.763784632467e+01 ||r(i)||/||b|| 2.555749237477e-05
>>>> > 283 KSP unpreconditioned resid norm 1.099379061087e+00 true resid
>>>> norm 7.017139420999e+01 ||r(i)||/||b|| 2.309962160657e-05
>>>> > 284 KSP unpreconditioned resid norm 1.097928047676e+00 true resid
>>>> norm 6.983706716123e+01 ||r(i)||/||b|| 2.298956496018e-05
>>>> > 285 KSP unpreconditioned resid norm 1.096490152934e+00 true resid
>>>> norm 7.414445779601e+01 ||r(i)||/||b|| 2.440750876614e-05
>>>> > 286 KSP unpreconditioned resid norm 1.094691490227e+00 true resid
>>>> norm 7.634526287231e+01 ||r(i)||/||b|| 2.513198866374e-05
>>>> > 287 KSP unpreconditioned resid norm 1.093560358328e+00 true resid
>>>> norm 7.003716824146e+01 ||r(i)||/||b|| 2.305543595061e-05
>>>> > 288 KSP unpreconditioned resid norm 1.093357856424e+00 true resid
>>>> norm 6.964715939684e+01 ||r(i)||/||b|| 2.292704949292e-05
>>>> > 289 KSP unpreconditioned resid norm 1.091881434739e+00 true resid
>>>> norm 7.429955169250e+01 ||r(i)||/||b|| 2.445856390566e-05
>>>> > 290 KSP unpreconditioned resid norm 1.091817808496e+00 true resid
>>>> norm 7.607892786798e+01 ||r(i)||/||b|| 2.504431422190e-05
>>>> > 291 KSP unpreconditioned resid norm 1.090295101202e+00 true resid
>>>> norm 6.942248339413e+01 ||r(i)||/||b|| 2.285308871866e-05
>>>> > 292 KSP unpreconditioned resid norm 1.089995012773e+00 true resid
>>>> norm 6.995557798353e+01 ||r(i)||/||b|| 2.302857736947e-05
>>>> > 293 KSP unpreconditioned resid norm 1.089975910578e+00 true resid
>>>> norm 7.453210925277e+01 ||r(i)||/||b|| 2.453511919866e-05
>>>> > 294 KSP unpreconditioned resid norm 1.085570944646e+00 true resid
>>>> norm 7.629598425927e+01 ||r(i)||/||b|| 2.511576670710e-05
>>>> > 295 KSP unpreconditioned resid norm 1.085363565621e+00 true resid
>>>> norm 7.025539955712e+01 ||r(i)||/||b|| 2.312727520749e-05
>>>> > 296 KSP unpreconditioned resid norm 1.083348574106e+00 true resid
>>>> norm 7.003219621882e+01 ||r(i)||/||b|| 2.305379921754e-05
>>>> > 297 KSP unpreconditioned resid norm 1.082180374430e+00 true resid
>>>> norm 7.473048827106e+01 ||r(i)||/||b|| 2.460042330597e-05
>>>> > 298 KSP unpreconditioned resid norm 1.081326671068e+00 true resid
>>>> norm 7.660142838935e+01 ||r(i)||/||b|| 2.521631542651e-05
>>>> > 299 KSP unpreconditioned resid norm 1.078679751898e+00 true resid
>>>> norm 7.077868424247e+01 ||r(i)||/||b|| 2.329953454992e-05
>>>> > 300 KSP unpreconditioned resid norm 1.078656949888e+00 true resid
>>>> norm 7.074960394994e+01 ||r(i)||/||b|| 2.328996164972e-05
>>>> > Linear solve did not converge due to DIVERGED_ITS iterations 300
>>>> > KSP Object: 2 MPI processes
>>>> >   type: fgmres
>>>> >     GMRES: restart=300, using Modified Gram-Schmidt Orthogonalization
>>>> >     GMRES: happy breakdown tolerance 1e-30
>>>> >   maximum iterations=300, initial guess is zero
>>>> >   tolerances:  relative=1e-09, absolute=1e-20, divergence=10000
>>>> >   right preconditioning
>>>> >   using UNPRECONDITIONED norm type for convergence test
>>>> > PC Object: 2 MPI processes
>>>> >   type: fieldsplit
>>>> >     FieldSplit with Schur preconditioner, factorization DIAG
>>>> >     Preconditioner for the Schur complement formed from Sp, an
>>>> assembled approximation to S, which uses (lumped, if requested) A00's
>>>> diagonal's inverse
>>>> >     Split info:
>>>> >     Split number 0 Defined by IS
>>>> >     Split number 1 Defined by IS
>>>> >     KSP solver for A00 block
>>>> >       KSP Object:      (fieldsplit_u_)       2 MPI processes
>>>> >         type: preonly
>>>> >         maximum iterations=10000, initial guess is zero
>>>> >         tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
>>>> >         left preconditioning
>>>> >         using NONE norm type for convergence test
>>>> >       PC Object:      (fieldsplit_u_)       2 MPI processes
>>>> >         type: lu
>>>> >           LU: out-of-place factorization
>>>> >           tolerance for zero pivot 2.22045e-14
>>>> >           matrix ordering: natural
>>>> >           factor fill ratio given 0, needed 0
>>>> >             Factored matrix follows:
>>>> >               Mat Object:               2 MPI processes
>>>> >                 type: mpiaij
>>>> >                 rows=184326, cols=184326
>>>> >                 package used to perform factorization: mumps
>>>> >                 total: nonzeros=4.03041e+08, allocated
>>>> nonzeros=4.03041e+08
>>>> >                 total number of mallocs used during MatSetValues
>>>> calls =0
>>>> >                   MUMPS run parameters:
>>>> >                     SYM (matrix type):                   0
>>>> >                     PAR (host participation):            1
>>>> >                     ICNTL(1) (output for error):         6
>>>> >                     ICNTL(2) (output of diagnostic msg): 0
>>>> >                     ICNTL(3) (output for global info):   0
>>>> >                     ICNTL(4) (level of printing):        0
>>>> >                     ICNTL(5) (input mat struct):         0
>>>> >                     ICNTL(6) (matrix prescaling):        7
>>>> >                     ICNTL(7) (sequentia matrix ordering):7
>>>> >                     ICNTL(8) (scalling strategy):        77
>>>> >                     ICNTL(10) (max num of refinements):  0
>>>> >                     ICNTL(11) (error analysis):          0
>>>> >                     ICNTL(12) (efficiency control):
>>>>        1
>>>> >                     ICNTL(13) (efficiency control):
>>>>        0
>>>> >                     ICNTL(14) (percentage of estimated workspace
>>>> increase): 20
>>>> >                     ICNTL(18) (input mat struct):
>>>>        3
>>>> >                     ICNTL(19) (Shur complement info):
>>>>        0
>>>> >                     ICNTL(20) (rhs sparse pattern):
>>>>        0
>>>> >                     ICNTL(21) (solution struct):
>>>>       1
>>>> >                     ICNTL(22) (in-core/out-of-core facility):
>>>>        0
>>>> >                     ICNTL(23) (max size of memory can be allocated
>>>> locally):0
>>>> >                     ICNTL(24) (detection of null pivot rows):
>>>>        0
>>>> >                     ICNTL(25) (computation of a null space basis):
>>>>       0
>>>> >                     ICNTL(26) (Schur options for rhs or solution):
>>>>       0
>>>> >                     ICNTL(27) (experimental parameter):
>>>>        -24
>>>> >                     ICNTL(28) (use parallel or sequential ordering):
>>>>       1
>>>> >                     ICNTL(29) (parallel ordering):
>>>>       0
>>>> >                     ICNTL(30) (user-specified set of entries in
>>>> inv(A)):    0
>>>> >                     ICNTL(31) (factors is discarded in the solve
>>>> phase):    0
>>>> >                     ICNTL(33) (compute determinant):
>>>>       0
>>>> >                     CNTL(1) (relative pivoting threshold):      0.01
>>>> >                     CNTL(2) (stopping criterion of refinement):
>>>> 1.49012e-08
>>>> >                     CNTL(3) (absolute pivoting threshold):      0
>>>> >                     CNTL(4) (value of static pivoting):         -1
>>>> >                     CNTL(5) (fixation for null pivots):         0
>>>> >                     RINFO(1) (local estimated flops for the
>>>> elimination after analysis):
>>>> >                       [0] 5.59214e+11
>>>> >                       [1] 5.35237e+11
>>>> >                     RINFO(2) (local estimated flops for the assembly
>>>> after factorization):
>>>> >                       [0]  4.2839e+08
>>>> >                       [1]  3.799e+08
>>>> >                     RINFO(3) (local estimated flops for the
>>>> elimination after factorization):
>>>> >                       [0]  5.59214e+11
>>>> >                       [1]  5.35237e+11
>>>> >                     INFO(15) (estimated size of (in MB) MUMPS
>>>> internal data for running numerical factorization):
>>>> >                     [0] 2621
>>>> >                     [1] 2649
>>>> >                     INFO(16) (size of (in MB) MUMPS internal data
>>>> used during numerical factorization):
>>>> >                       [0] 2621
>>>> >                       [1] 2649
>>>> >                     INFO(23) (num of pivots eliminated on this
>>>> processor after factorization):
>>>> >                       [0] 90423
>>>> >                       [1] 93903
>>>> >                     RINFOG(1) (global estimated flops for the
>>>> elimination after analysis): 1.09445e+12
>>>> >                     RINFOG(2) (global estimated flops for the
>>>> assembly after factorization): 8.0829e+08
>>>> >                     RINFOG(3) (global estimated flops for the
>>>> elimination after factorization): 1.09445e+12
>>>> >                     (RINFOG(12) RINFOG(13))*2^INFOG(34)
>>>> (determinant): (0,0)*(2^0)
>>>> >                     INFOG(3) (estimated real workspace for factors on
>>>> all processors after analysis): 403041366
>>>> >                     INFOG(4) (estimated integer workspace for factors
>>>> on all processors after analysis): 2265748
>>>> >                     INFOG(5) (estimated maximum front size in the
>>>> complete tree): 6663
>>>> >                     INFOG(6) (number of nodes in the complete tree):
>>>> 2812
>>>> >                     INFOG(7) (ordering option effectively use after
>>>> analysis): 5
>>>> >                     INFOG(8) (structural symmetry in percent of the
>>>> permuted matrix after analysis): 100
>>>> >                     INFOG(9) (total real/complex workspace to store
>>>> the matrix factors after factorization): 403041366
>>>> >                     INFOG(10) (total integer space store the matrix
>>>> factors after factorization): 2265766
>>>> >                     INFOG(11) (order of largest frontal matrix after
>>>> factorization): 6663
>>>> >                     INFOG(12) (number of off-diagonal pivots): 0
>>>> >                     INFOG(13) (number of delayed pivots after
>>>> factorization): 0
>>>> >                     INFOG(14) (number of memory compress after
>>>> factorization): 0
>>>> >                     INFOG(15) (number of steps of iterative
>>>> refinement after solution): 0
>>>> >                     INFOG(16) (estimated size (in MB) of all MUMPS
>>>> internal data for factorization after analysis: value on the most memory
>>>> consuming processor): 2649
>>>> >                     INFOG(17) (estimated size of all MUMPS internal
>>>> data for factorization after analysis: sum over all processors): 5270
>>>> >                     INFOG(18) (size of all MUMPS internal data
>>>> allocated during factorization: value on the most memory consuming
>>>> processor): 2649
>>>> >                     INFOG(19) (size of all MUMPS internal data
>>>> allocated during factorization: sum over all processors): 5270
>>>> >                     INFOG(20) (estimated number of entries in the
>>>> factors): 403041366
>>>> >                     INFOG(21) (size in MB of memory effectively used
>>>> during factorization - value on the most memory consuming processor): 2121
>>>> >                     INFOG(22) (size in MB of memory effectively used
>>>> during factorization - sum over all processors): 4174
>>>> >                     INFOG(23) (after analysis: value of ICNTL(6)
>>>> effectively used): 0
>>>> >                     INFOG(24) (after analysis: value of ICNTL(12)
>>>> effectively used): 1
>>>> >                     INFOG(25) (after factorization: number of pivots
>>>> modified by static pivoting): 0
>>>> >                     INFOG(28) (after factorization: number of null
>>>> pivots encountered): 0
>>>> >                     INFOG(29) (after factorization: effective number
>>>> of entries in the factors (sum over all processors)): 403041366
>>>> >                     INFOG(30, 31) (after solution: size in Mbytes of
>>>> memory used during solution phase): 2467, 4922
>>>> >                     INFOG(32) (after analysis: type of analysis
>>>> done): 1
>>>> >                     INFOG(33) (value used for ICNTL(8)): 7
>>>> >                     INFOG(34) (exponent of the determinant if
>>>> determinant is requested): 0
>>>> >         linear system matrix = precond matrix:
>>>> >         Mat Object:        (fieldsplit_u_)         2 MPI processes
>>>> >           type: mpiaij
>>>> >           rows=184326, cols=184326, bs=3
>>>> >           total: nonzeros=3.32649e+07, allocated nonzeros=3.32649e+07
>>>> >           total number of mallocs used during MatSetValues calls =0
>>>> >             using I-node (on process 0) routines: found 26829 nodes,
>>>> limit used is 5
>>>> >     KSP solver for S = A11 - A10 inv(A00) A01
>>>> >       KSP Object:      (fieldsplit_lu_)       2 MPI processes
>>>> >         type: preonly
>>>> >         maximum iterations=10000, initial guess is zero
>>>> >         tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
>>>> >         left preconditioning
>>>> >         using NONE norm type for convergence test
>>>> >       PC Object:      (fieldsplit_lu_)       2 MPI processes
>>>> >         type: lu
>>>> >           LU: out-of-place factorization
>>>> >           tolerance for zero pivot 2.22045e-14
>>>> >           matrix ordering: natural
>>>> >           factor fill ratio given 0, needed 0
>>>> >             Factored matrix follows:
>>>> >               Mat Object:               2 MPI processes
>>>> >                 type: mpiaij
>>>> >                 rows=2583, cols=2583
>>>> >                 package used to perform factorization: mumps
>>>> >                 total: nonzeros=2.17621e+06, allocated
>>>> nonzeros=2.17621e+06
>>>> >                 total number of mallocs used during MatSetValues
>>>> calls =0
>>>> >                   MUMPS run parameters:
>>>> >                     SYM (matrix type):                   0
>>>> >                     PAR (host participation):            1
>>>> >                     ICNTL(1) (output for error):         6
>>>> >                     ICNTL(2) (output of diagnostic msg): 0
>>>> >                     ICNTL(3) (output for global info):   0
>>>> >                     ICNTL(4) (level of printing):        0
>>>> >                     ICNTL(5) (input mat struct):         0
>>>> >                     ICNTL(6) (matrix prescaling):        7
>>>> >                     ICNTL(7) (sequentia matrix ordering):7
>>>> >                     ICNTL(8) (scalling strategy):        77
>>>> >                     ICNTL(10) (max num of refinements):  0
>>>> >                     ICNTL(11) (error analysis):          0
>>>> >                     ICNTL(12) (efficiency control):
>>>>        1
>>>> >                     ICNTL(13) (efficiency control):
>>>>        0
>>>> >                     ICNTL(14) (percentage of estimated workspace
>>>> increase): 20
>>>> >                     ICNTL(18) (input mat struct):
>>>>        3
>>>> >                     ICNTL(19) (Shur complement info):
>>>>        0
>>>> >                     ICNTL(20) (rhs sparse pattern):
>>>>        0
>>>> >                     ICNTL(21) (solution struct):
>>>>       1
>>>> >                     ICNTL(22) (in-core/out-of-core facility):
>>>>        0
>>>> >                     ICNTL(23) (max size of memory can be allocated
>>>> locally):0
>>>> >                     ICNTL(24) (detection of null pivot rows):
>>>>        0
>>>> >                     ICNTL(25) (computation of a null space basis):
>>>>       0
>>>> >                     ICNTL(26) (Schur options for rhs or solution):
>>>>       0
>>>> >                     ICNTL(27) (experimental parameter):
>>>>        -24
>>>> >                     ICNTL(28) (use parallel or sequential ordering):
>>>>       1
>>>> >                     ICNTL(29) (parallel ordering):
>>>>       0
>>>> >                     ICNTL(30) (user-specified set of entries in
>>>> inv(A)):    0
>>>> >                     ICNTL(31) (factors is discarded in the solve
>>>> phase):    0
>>>> >                     ICNTL(33) (compute determinant):
>>>>       0
>>>> >                     CNTL(1) (relative pivoting threshold):      0.01
>>>> >                     CNTL(2) (stopping criterion of refinement):
>>>> 1.49012e-08
>>>> >                     CNTL(3) (absolute pivoting threshold):      0
>>>> >                     CNTL(4) (value of static pivoting):         -1
>>>> >                     CNTL(5) (fixation for null pivots):         0
>>>> >                     RINFO(1) (local estimated flops for the
>>>> elimination after analysis):
>>>> >                       [0] 5.12794e+08
>>>> >                       [1] 5.02142e+08
>>>> >                     RINFO(2) (local estimated flops for the assembly
>>>> after factorization):
>>>> >                       [0]  815031
>>>> >                       [1]  745263
>>>> >                     RINFO(3) (local estimated flops for the
>>>> elimination after factorization):
>>>> >                       [0]  5.12794e+08
>>>> >                       [1]  5.02142e+08
>>>> >                     INFO(15) (estimated size of (in MB) MUMPS
>>>> internal data for running numerical factorization):
>>>> >                     [0] 34
>>>> >                     [1] 34
>>>> >                     INFO(16) (size of (in MB) MUMPS internal data
>>>> used during numerical factorization):
>>>> >                       [0] 34
>>>> >                       [1] 34
>>>> >                     INFO(23) (num of pivots eliminated on this
>>>> processor after factorization):
>>>> >                       [0] 1158
>>>> >                       [1] 1425
>>>> >                     RINFOG(1) (global estimated flops for the
>>>> elimination after analysis): 1.01494e+09
>>>> >                     RINFOG(2) (global estimated flops for the
>>>> assembly after factorization): 1.56029e+06
>>>> >                     RINFOG(3) (global estimated flops for the
>>>> elimination after factorization): 1.01494e+09
>>>> >                     (RINFOG(12) RINFOG(13))*2^INFOG(34)
>>>> (determinant): (0,0)*(2^0)
>>>> >                     INFOG(3) (estimated real workspace for factors on
>>>> all processors after analysis): 2176209
>>>> >                     INFOG(4) (estimated integer workspace for factors
>>>> on all processors after analysis): 14427
>>>> >                     INFOG(5) (estimated maximum front size in the
>>>> complete tree): 699
>>>> >                     INFOG(6) (number of nodes in the complete tree):
>>>> 15
>>>> >                     INFOG(7) (ordering option effectively use after
>>>> analysis): 2
>>>> >                     INFOG(8) (structural symmetry in percent of the
>>>> permuted matrix after analysis): 100
>>>> >                     INFOG(9) (total real/complex workspace to store
>>>> the matrix factors after factorization): 2176209
>>>> >                     INFOG(10) (total integer space store the matrix
>>>> factors after factorization): 14427
>>>> >                     INFOG(11) (order of largest frontal matrix after
>>>> factorization): 699
>>>> >                     INFOG(12) (number of off-diagonal pivots): 0
>>>> >                     INFOG(13) (number of delayed pivots after
>>>> factorization): 0
>>>> >                     INFOG(14) (number of memory compress after
>>>> factorization): 0
>>>> >                     INFOG(15) (number of steps of iterative
>>>> refinement after solution): 0
>>>> >                     INFOG(16) (estimated size (in MB) of all MUMPS
>>>> internal data for factorization after analysis: value on the most memory
>>>> consuming processor): 34
>>>> >                     INFOG(17) (estimated size of all MUMPS internal
>>>> data for factorization after analysis: sum over all processors): 68
>>>> >                     INFOG(18) (size of all MUMPS internal data
>>>> allocated during factorization: value on the most memory consuming
>>>> processor): 34
>>>> >                     INFOG(19) (size of all MUMPS internal data
>>>> allocated during factorization: sum over all processors): 68
>>>> >                     INFOG(20) (estimated number of entries in the
>>>> factors): 2176209
>>>> >                     INFOG(21) (size in MB of memory effectively used
>>>> during factorization - value on the most memory consuming processor): 30
>>>> >                     INFOG(22) (size in MB of memory effectively used
>>>> during factorization - sum over all processors): 59
>>>> >                     INFOG(23) (after analysis: value of ICNTL(6)
>>>> effectively used): 0
>>>> >                     INFOG(24) (after analysis: value of ICNTL(12)
>>>> effectively used): 1
>>>> >                     INFOG(25) (after factorization: number of pivots
>>>> modified by static pivoting): 0
>>>> >                     INFOG(28) (after factorization: number of null
>>>> pivots encountered): 0
>>>> >                     INFOG(29) (after factorization: effective number
>>>> of entries in the factors (sum over all processors)): 2176209
>>>> >                     INFOG(30, 31) (after solution: size in Mbytes of
>>>> memory used during solution phase): 16, 32
>>>> >                     INFOG(32) (after analysis: type of analysis
>>>> done): 1
>>>> >                     INFOG(33) (value used for ICNTL(8)): 7
>>>> >                     INFOG(34) (exponent of the determinant if
>>>> determinant is requested): 0
>>>> >         linear system matrix followed by preconditioner matrix:
>>>> >         Mat Object:        (fieldsplit_lu_)         2 MPI processes
>>>> >           type: schurcomplement
>>>> >           rows=2583, cols=2583
>>>> >             Schur complement A11 - A10 inv(A00) A01
>>>> >             A11
>>>> >               Mat Object:              (fieldsplit_lu_)
>>>>  2 MPI processes
>>>> >                 type: mpiaij
>>>> >                 rows=2583, cols=2583, bs=3
>>>> >                 total: nonzeros=117369, allocated nonzeros=117369
>>>> >                 total number of mallocs used during MatSetValues
>>>> calls =0
>>>> >                   not using I-node (on process 0) routines
>>>> >             A10
>>>> >               Mat Object:               2 MPI processes
>>>> >                 type: mpiaij
>>>> >                 rows=2583, cols=184326, rbs=3, cbs = 1
>>>> >                 total: nonzeros=292770, allocated nonzeros=292770
>>>> >                 total number of mallocs used during MatSetValues
>>>> calls =0
>>>> >                   not using I-node (on process 0) routines
>>>> >             KSP of A00
>>>> >               KSP Object:              (fieldsplit_u_)
>>>>  2 MPI processes
>>>> >                 type: preonly
>>>> >                 maximum iterations=10000, initial guess is zero
>>>> >                 tolerances:  relative=1e-05, absolute=1e-50,
>>>> divergence=10000
>>>> >                 left preconditioning
>>>> >                 using NONE norm type for convergence test
>>>> >               PC Object:              (fieldsplit_u_)               2
>>>> MPI processes
>>>> >                 type: lu
>>>> >                   LU: out-of-place factorization
>>>> >                   tolerance for zero pivot 2.22045e-14
>>>> >                   matrix ordering: natural
>>>> >                   factor fill ratio given 0, needed 0
>>>> >                     Factored matrix follows:
>>>> >                       Mat Object:                       2 MPI
>>>> processes
>>>> >                         type: mpiaij
>>>> >                         rows=184326, cols=184326
>>>> >                         package used to perform factorization: mumps
>>>> >                         total: nonzeros=4.03041e+08, allocated
>>>> nonzeros=4.03041e+08
>>>> >                         total number of mallocs used during
>>>> MatSetValues calls =0
>>>> >                           MUMPS run parameters:
>>>> >                             SYM (matrix type):                   0
>>>> >                             PAR (host participation):            1
>>>> >                             ICNTL(1) (output for error):         6
>>>> >                             ICNTL(2) (output of diagnostic msg): 0
>>>> >                             ICNTL(3) (output for global info):   0
>>>> >                             ICNTL(4) (level of printing):        0
>>>> >                             ICNTL(5) (input mat struct):         0
>>>> >                             ICNTL(6) (matrix prescaling):        7
>>>> >                             ICNTL(7) (sequentia matrix ordering):7
>>>> >                             ICNTL(8) (scalling strategy):        77
>>>> >                             ICNTL(10) (max num of refinements):  0
>>>> >                             ICNTL(11) (error analysis):          0
>>>> >                             ICNTL(12) (efficiency control):
>>>>                1
>>>> >                             ICNTL(13) (efficiency control):
>>>>                0
>>>> >                             ICNTL(14) (percentage of estimated
>>>> workspace increase): 20
>>>> >                             ICNTL(18) (input mat struct):
>>>>                3
>>>> >                             ICNTL(19) (Shur complement info):
>>>>                0
>>>> >                             ICNTL(20) (rhs sparse pattern):
>>>>                0
>>>> >                             ICNTL(21) (solution struct):
>>>>               1
>>>> >                             ICNTL(22) (in-core/out-of-core
>>>> facility):               0
>>>> >                             ICNTL(23) (max size of memory can be
>>>> allocated locally):0
>>>> >                             ICNTL(24) (detection of null pivot
>>>> rows):               0
>>>> >                             ICNTL(25) (computation of a null space
>>>> basis):          0
>>>> >                             ICNTL(26) (Schur options for rhs or
>>>> solution):          0
>>>> >                             ICNTL(27) (experimental parameter):
>>>>                -24
>>>> >                             ICNTL(28) (use parallel or sequential
>>>> ordering):        1
>>>> >                             ICNTL(29) (parallel ordering):
>>>>               0
>>>> >                             ICNTL(30) (user-specified set of entries
>>>> in inv(A)):    0
>>>> >                             ICNTL(31) (factors is discarded in the
>>>> solve phase):    0
>>>> >                             ICNTL(33) (compute determinant):
>>>>               0
>>>> >                             CNTL(1) (relative pivoting threshold):
>>>>   0.01
>>>> >                             CNTL(2) (stopping criterion of
>>>> refinement): 1.49012e-08
>>>> >                             CNTL(3) (absolute pivoting threshold):
>>>>   0
>>>> >                             CNTL(4) (value of static pivoting):
>>>>    -1
>>>> >                             CNTL(5) (fixation for null pivots):
>>>>    0
>>>> >                             RINFO(1) (local estimated flops for the
>>>> elimination after analysis):
>>>> >                               [0] 5.59214e+11
>>>> >                               [1] 5.35237e+11
>>>> >                             RINFO(2) (local estimated flops for the
>>>> assembly after factorization):
>>>> >                               [0]  4.2839e+08
>>>> >                               [1]  3.799e+08
>>>> >                             RINFO(3) (local estimated flops for the
>>>> elimination after factorization):
>>>> >                               [0]  5.59214e+11
>>>> >                               [1]  5.35237e+11
>>>> >                             INFO(15) (estimated size of (in MB) MUMPS
>>>> internal data for running numerical factorization):
>>>> >                             [0] 2621
>>>> >                             [1] 2649
>>>> >                             INFO(16) (size of (in MB) MUMPS internal
>>>> data used during numerical factorization):
>>>> >                               [0] 2621
>>>> >                               [1] 2649
>>>> >                             INFO(23) (num of pivots eliminated on
>>>> this processor after factorization):
>>>> >                               [0] 90423
>>>> >                               [1] 93903
>>>> >                             RINFOG(1) (global estimated flops for the
>>>> elimination after analysis): 1.09445e+12
>>>> >                             RINFOG(2) (global estimated flops for the
>>>> assembly after factorization): 8.0829e+08
>>>> >                             RINFOG(3) (global estimated flops for the
>>>> elimination after factorization): 1.09445e+12
>>>> >                             (RINFOG(12) RINFOG(13))*2^INFOG(34)
>>>> (determinant): (0,0)*(2^0)
>>>> >                             INFOG(3) (estimated real workspace for
>>>> factors on all processors after analysis): 403041366
>>>> >                             INFOG(4) (estimated integer workspace for
>>>> factors on all processors after analysis): 2265748
>>>> >                             INFOG(5) (estimated maximum front size in
>>>> the complete tree): 6663
>>>> >                             INFOG(6) (number of nodes in the complete
>>>> tree): 2812
>>>> >                             INFOG(7) (ordering option effectively use
>>>> after analysis): 5
>>>> >                             INFOG(8) (structural symmetry in percent
>>>> of the permuted matrix after analysis): 100
>>>> >                             INFOG(9) (total real/complex workspace to
>>>> store the matrix factors after factorization): 403041366
>>>> >                             INFOG(10) (total integer space store the
>>>> matrix factors after factorization): 2265766
>>>> >                             INFOG(11) (order of largest frontal
>>>> matrix after factorization): 6663
>>>> >                             INFOG(12) (number of off-diagonal
>>>> pivots): 0
>>>> >                             INFOG(13) (number of delayed pivots after
>>>> factorization): 0
>>>> >                             INFOG(14) (number of memory compress
>>>> after factorization): 0
>>>> >                             INFOG(15) (number of steps of iterative
>>>> refinement after solution): 0
>>>> >                             INFOG(16) (estimated size (in MB) of all
>>>> MUMPS internal data for factorization after analysis: value on the most
>>>> memory consuming processor): 2649
>>>> >                             INFOG(17) (estimated size of all MUMPS
>>>> internal data for factorization after analysis: sum over all processors):
>>>> 5270
>>>> >                             INFOG(18) (size of all MUMPS internal
>>>> data allocated during factorization: value on the most memory consuming
>>>> processor): 2649
>>>> >                             INFOG(19) (size of all MUMPS internal
>>>> data allocated during factorization: sum over all processors): 5270
>>>> >                             INFOG(20) (estimated number of entries in
>>>> the factors): 403041366
>>>> >                             INFOG(21) (size in MB of memory
>>>> effectively used during factorization - value on the most memory consuming
>>>> processor): 2121
>>>> >                             INFOG(22) (size in MB of memory
>>>> effectively used during factorization - sum over all processors): 4174
>>>> >                             INFOG(23) (after analysis: value of
>>>> ICNTL(6) effectively used): 0
>>>> >                             INFOG(24) (after analysis: value of
>>>> ICNTL(12) effectively used): 1
>>>> >                             INFOG(25) (after factorization: number of
>>>> pivots modified by static pivoting): 0
>>>> >                             INFOG(28) (after factorization: number of
>>>> null pivots encountered): 0
>>>> >                             INFOG(29) (after factorization: effective
>>>> number of entries in the factors (sum over all processors)): 403041366
>>>> >                             INFOG(30, 31) (after solution: size in
>>>> Mbytes of memory used during solution phase): 2467, 4922
>>>> >                             INFOG(32) (after analysis: type of
>>>> analysis done): 1
>>>> >                             INFOG(33) (value used for ICNTL(8)): 7
>>>> >                             INFOG(34) (exponent of the determinant if
>>>> determinant is requested): 0
>>>> >                 linear system matrix = precond matrix:
>>>> >                 Mat Object:                (fieldsplit_u_)
>>>>      2 MPI processes
>>>> >                   type: mpiaij
>>>> >                   rows=184326, cols=184326, bs=3
>>>> >                   total: nonzeros=3.32649e+07, allocated
>>>> nonzeros=3.32649e+07
>>>> >                   total number of mallocs used during MatSetValues
>>>> calls =0
>>>> >                     using I-node (on process 0) routines: found 26829
>>>> nodes, limit used is 5
>>>> >             A01
>>>> >               Mat Object:               2 MPI processes
>>>> >                 type: mpiaij
>>>> >                 rows=184326, cols=2583, rbs=3, cbs = 1
>>>> >                 total: nonzeros=292770, allocated nonzeros=292770
>>>> >                 total number of mallocs used during MatSetValues
>>>> calls =0
>>>> >                   using I-node (on process 0) routines: found 16098
>>>> nodes, limit used is 5
>>>> >         Mat Object:         2 MPI processes
>>>> >           type: mpiaij
>>>> >           rows=2583, cols=2583, rbs=3, cbs = 1
>>>> >           total: nonzeros=1.25158e+06, allocated nonzeros=1.25158e+06
>>>> >           total number of mallocs used during MatSetValues calls =0
>>>> >             not using I-node (on process 0) routines
>>>> >   linear system matrix = precond matrix:
>>>> >   Mat Object:   2 MPI processes
>>>> >     type: mpiaij
>>>> >     rows=186909, cols=186909
>>>> >     total: nonzeros=3.39678e+07, allocated nonzeros=3.39678e+07
>>>> >     total number of mallocs used during MatSetValues calls =0
>>>> >       using I-node (on process 0) routines: found 26829 nodes, limit
>>>> used is 5
>>>> > KSPSolve completed
>>>> >
>>>> >
>>>> > Giang
>>>> >
>>>> > On Sun, Apr 17, 2016 at 1:15 AM, Matthew Knepley <knepley at gmail.com>
>>>> wrote:
>>>> > On Sat, Apr 16, 2016 at 6:54 PM, Hoang Giang Bui <hgbk2008 at gmail.com>
>>>> wrote:
>>>> > Hello
>>>> >
>>>> > I'm solving an indefinite problem arising from mesh tying/contact
>>>> using Lagrange multiplier, the matrix has the form
>>>> >
>>>> > K = [A P^T
>>>> >        P   0]
>>>> >
>>>> > I used the FIELDSPLIT preconditioner with one field is the main
>>>> variable (displacement) and the other field for dual variable (Lagrange
>>>> multiplier). The block size for each field is 3. According to the manual, I
>>>> first chose the preconditioner based on Schur complement to treat this
>>>> problem.
>>>> >
>>>> >
>>>> > For any solver question, please send us the output of
>>>> >
>>>> >   -ksp_view -ksp_monitor_true_residual -ksp_converged_reason
>>>> >
>>>> >
>>>> > However, I will comment below
>>>> >
>>>> > The parameters used for the solve is
>>>> > -ksp_type gmres
>>>> >
>>>> > You need 'fgmres' here with the options you have below.
>>>> >
>>>> > -ksp_max_it 300
>>>> > -ksp_gmres_restart 300
>>>> > -ksp_gmres_modifiedgramschmidt
>>>> > -pc_fieldsplit_type schur
>>>> > -pc_fieldsplit_schur_fact_type diag
>>>> > -pc_fieldsplit_schur_precondition selfp
>>>> >
>>>> >
>>>> >
>>>> > It could be taking time in the MatMatMult() here if that matrix is
>>>> dense. Is there any reason to
>>>> > believe that is a good preconditioner for your problem?
>>>> >
>>>> >
>>>> > -pc_fieldsplit_detect_saddle_point
>>>> > -fieldsplit_u_pc_type hypre
>>>> >
>>>> > I would just use MUMPS here to start, especially if it works on the
>>>> whole problem. Same with the one below.
>>>> >
>>>> >    Matt
>>>> >
>>>> > -fieldsplit_u_pc_hypre_type boomeramg
>>>> > -fieldsplit_u_pc_hypre_boomeramg_coarsen_type PMIS
>>>> > -fieldsplit_lu_pc_type hypre
>>>> > -fieldsplit_lu_pc_hypre_type boomeramg
>>>> > -fieldsplit_lu_pc_hypre_boomeramg_coarsen_type PMIS
>>>> >
>>>> > For the test case, a small problem is solved on 2 processes. Due to
>>>> the decomposition, the contact only happens in 1 proc, so the size of
>>>> Lagrange multiplier dofs on proc 0 is 0.
>>>> >
>>>> > 0: mIndexU.size(): 80490
>>>> > 0: mIndexLU.size(): 0
>>>> > 1: mIndexU.size(): 103836
>>>> > 1: mIndexLU.size(): 2583
>>>> >
>>>> > However, with this setup the solver takes very long at KSPSolve
>>>> before going to iteration, and the first iteration seems forever so I have
>>>> to stop the calculation. I guessed that the solver takes time to compute
>>>> the Schur complement, but according to the manual only the diagonal of A is
>>>> used to approximate the Schur complement, so it should not take long to
>>>> compute this.
>>>> >
>>>> > Note that I ran the same problem with direct solver (MUMPS) and it's
>>>> able to produce the valid results. The parameter for the solve is pretty
>>>> standard
>>>> > -ksp_type preonly
>>>> > -pc_type lu
>>>> > -pc_factor_mat_solver_package mumps
>>>> >
>>>> > Hence the matrix/rhs must not have any problem here. Do you have any
>>>> idea or suggestion for this case?
>>>> >
>>>> >
>>>> > Giang
>>>> >
>>>> >
>>>> >
>>>> > --
>>>> > What most experimenters take for granted before they begin their
>>>> experiments is infinitely more interesting than any results to which their
>>>> experiments lead.
>>>> > -- Norbert Wiener
>>>> >
>>>> >
>>>> >
>>>> >
>>>> > --
>>>> > What most experimenters take for granted before they begin their
>>>> experiments is infinitely more interesting than any results to which their
>>>> experiments lead.
>>>> > -- Norbert Wiener
>>>> >
>>>>
>>>>
>>>
>>
>>
>> --
>> What most experimenters take for granted before they begin their
>> experiments is infinitely more interesting than any results to which their
>> experiments lead.
>> -- Norbert Wiener
>>
>
>


-- 
What most experimenters take for granted before they begin their
experiments is infinitely more interesting than any results to which their
experiments lead.
-- Norbert Wiener
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20160915/6af4734f/attachment-0001.html>


More information about the petsc-users mailing list