[petsc-users] GAMG Indefinite
Sanjay Govindjee
s_g at berkeley.edu
Mon May 23 11:31:17 CDT 2016
Mark,
Yes, the problem is finite elasticity. I re-ran the problem with the
options table and output shown below. It converges now
based on the residual tolerance test (KSPConvergedReason == 2); note I
am using Using Petsc Release Version 3.7.0, Apr, 25, 2016.
Seems to work now with these options; wish I understood what they all meant!
-sanjay
------ Options Table ------
-ksp_chebyshev_esteig_random
-ksp_monitor
-ksp_type cg
-ksp_view
-log_view
-mg_levels_esteig_ksp_max_it 50
-mg_levels_esteig_ksp_monitor_singular_value
-mg_levels_esteig_ksp_type cg
-mg_levels_ksp_chebyshev_esteig 0,0.05,0,1.05
-mg_levels_ksp_type chebyshev
-mg_levels_pc_type sor
-options_left
-pc_gamg_agg_nsmooths 1
-pc_gamg_square_graph 1
-pc_gamg_type agg
-pc_type gamg
#End of PETSc Option Table entries
There is one unused database option. It is:
Option left: name:-ksp_chebyshev_esteig_random (no value)
---- Output -----
Residual norm = 6.4807407E-02 1.0000000E+00 t= 0.06 0.00
Residual norm = 6.4807407E-02 1.0000000E+00 t= 2.72 0.00
0 KSP Residual norm 1.560868061707e-03 % max 1.000000000000e+00
min 1.000000000000e+00 max/min 1.000000000000e+00
1 KSP Residual norm 6.096709155146e-04 % max 5.751224548776e-01
min 5.751224548776e-01 max/min 1.000000000000e+00
2 KSP Residual norm 7.011069458089e-04 % max 8.790398458008e-01
min 1.423643814416e-01 max/min 6.174577073983e+00
3 KSP Residual norm 7.860563886831e-04 % max 9.381463130007e-01
min 6.370569326093e-02 max/min 1.472625545661e+01
4 KSP Residual norm 7.281118133903e-04 % max 9.663599650986e-01
min 3.450830062982e-02 max/min 2.800369613865e+01
5 KSP Residual norm 7.399083718116e-04 % max 9.794646011330e-01
min 2.160135448201e-02 max/min 4.534274005590e+01
6 KSP Residual norm 7.629904179692e-04 % max 9.849620569978e-01
min 1.481091947823e-02 max/min 6.650242467697e+01
7 KSP Residual norm 7.698477913710e-04 % max 9.886850579079e-01
min 1.045801989510e-02 max/min 9.453845640235e+01
8 KSP Residual norm 8.217081868349e-04 % max 9.919371306726e-01
min 7.371001382474e-03 max/min 1.345729133942e+02
9 KSP Residual norm 7.524701879786e-04 % max 9.942899758738e-01
min 5.827670079091e-03 max/min 1.706153509687e+02
10 KSP Residual norm 6.944661718672e-04 % max 1.081740430310e+00
min 5.160677620664e-03 max/min 2.096120916327e+02
11 KSP Residual norm 5.551504568073e-04 % max 1.486860759049e+00
min 4.666379506027e-03 max/min 3.186326266710e+02
12 KSP Residual norm 5.259305993307e-04 % max 1.564857844056e+00
min 4.221790647720e-03 max/min 3.706621134569e+02
13 KSP Residual norm 5.156103593875e-04 % max 1.569917781391e+00
min 3.850994097592e-03 max/min 4.076655901322e+02
14 KSP Residual norm 5.312020352146e-04 % max 1.570323151514e+00
min 3.568538377912e-03 max/min 4.400465919699e+02
15 KSP Residual norm 5.305598654979e-04 % max 1.570412447356e+00
min 3.341861320427e-03 max/min 4.699214888890e+02
16 KSP Residual norm 5.058601071413e-04 % max 1.570467828098e+00
min 3.091912672470e-03 max/min 5.079276145416e+02
17 KSP Residual norm 5.485622395473e-04 % max 1.570494963661e+00
min 2.876900954621e-03 max/min 5.458981690483e+02
18 KSP Residual norm 5.368711040867e-04 % max 1.570521333658e+00
min 2.664379213208e-03 max/min 5.894511283800e+02
19 KSP Residual norm 5.198795692341e-04 % max 1.570548096173e+00
min 2.476198885896e-03 max/min 6.342576539867e+02
20 KSP Residual norm 5.958949153283e-04 % max 1.570562153443e+00
min 2.291602609346e-03 max/min 6.853553696602e+02
21 KSP Residual norm 6.378632372927e-04 % max 1.570571141557e+00
min 2.073298632606e-03 max/min 7.575228753145e+02
22 KSP Residual norm 5.831338029614e-04 % max 1.570577774384e+00
min 1.893683789633e-03 max/min 8.293769968259e+02
23 KSP Residual norm 4.875913917209e-04 % max 1.570583697638e+00
min 1.759110933887e-03 max/min 8.928281141244e+02
24 KSP Residual norm 4.107781613610e-04 % max 1.570587819069e+00
min 1.672892328012e-03 max/min 9.388457300985e+02
25 KSP Residual norm 3.715001142988e-04 % max 1.570590462451e+00
min 1.617963853373e-03 max/min 9.707203650914e+02
26 KSP Residual norm 2.991751132378e-04 % max 1.570593709995e+00
min 1.573420350354e-03 max/min 9.982035059109e+02
27 KSP Residual norm 2.208369736689e-04 % max 1.570597161312e+00
min 1.545543181679e-03 max/min 1.016210468870e+03
28 KSP Residual norm 1.811301040805e-04 % max 1.570599147395e+00
min 1.529650294818e-03 max/min 1.026770074647e+03
29 KSP Residual norm 1.466232980955e-04 % max 1.570599898730e+00
min 1.518818086503e-03 max/min 1.034093491964e+03
30 KSP Residual norm 1.206956326419e-04 % max 1.570600148946e+00
min 1.512437955816e-03 max/min 1.038455920063e+03
31 KSP Residual norm 8.815660316339e-05 % max 1.570600276978e+00
min 1.508452842477e-03 max/min 1.041199454667e+03
32 KSP Residual norm 8.077031357734e-05 % max 1.570600325445e+00
min 1.505888596198e-03 max/min 1.042972454543e+03
33 KSP Residual norm 8.820553812137e-05 % max 1.570600343673e+00
min 1.503328090889e-03 max/min 1.044748882956e+03
34 KSP Residual norm 9.117950808819e-05 % max 1.570600352355e+00
min 1.499931693668e-03 max/min 1.047114584608e+03
35 KSP Residual norm 1.017388214943e-04 % max 1.570600354842e+00
min 1.495477205174e-03 max/min 1.050233563847e+03
36 KSP Residual norm 8.890686455242e-05 % max 1.570600355527e+00
min 1.491021415006e-03 max/min 1.053372097624e+03
37 KSP Residual norm 6.145275695828e-05 % max 1.570600355891e+00
min 1.487712171225e-03 max/min 1.055715202355e+03
38 KSP Residual norm 4.601453163034e-05 % max 1.570600356004e+00
min 1.486196684310e-03 max/min 1.056791723858e+03
39 KSP Residual norm 3.537992820781e-05 % max 1.570600356044e+00
min 1.485426023422e-03 max/min 1.057340002989e+03
40 KSP Residual norm 2.801997681470e-05 % max 1.570600356064e+00
min 1.484937369198e-03 max/min 1.057687946066e+03
41 KSP Residual norm 2.422931135206e-05 % max 1.570600356072e+00
min 1.484576829299e-03 max/min 1.057944813010e+03
42 KSP Residual norm 2.099844940173e-05 % max 1.570600356076e+00
min 1.484295103277e-03 max/min 1.058145615794e+03
43 KSP Residual norm 1.692165408662e-05 % max 1.570600356077e+00
min 1.484073208085e-03 max/min 1.058303827278e+03
44 KSP Residual norm 1.303434704073e-05 % max 1.570600356078e+00
min 1.483945099557e-03 max/min 1.058395190325e+03
45 KSP Residual norm 1.116085143372e-05 % max 1.570600356078e+00
min 1.483862236504e-03 max/min 1.058454294098e+03
46 KSP Residual norm 1.042314767557e-05 % max 1.570600356078e+00
min 1.483776389632e-03 max/min 1.058515533104e+03
47 KSP Residual norm 8.547779619028e-06 % max 1.570600356078e+00
min 1.483710767635e-03 max/min 1.058562349440e+03
48 KSP Residual norm 5.686341715603e-06 % max 1.570600356078e+00
min 1.483675385024e-03 max/min 1.058587593979e+03
49 KSP Residual norm 3.605023485024e-06 % max 1.570600356078e+00
min 1.483660745235e-03 max/min 1.058598039425e+03
50 KSP Residual norm 2.272532759782e-06 % max 1.570600356078e+00
min 1.483654995309e-03 max/min 1.058602142037e+03
0 KSP Residual norm 5.279802306740e-03 % max 1.000000000000e+00
min 1.000000000000e+00 max/min 1.000000000000e+00
1 KSP Residual norm 3.528673026246e-03 % max 3.090782483684e-01
min 3.090782483684e-01 max/min 1.000000000000e+00
2 KSP Residual norm 3.205752762808e-03 % max 8.446523416360e-01
min 9.580457075356e-02 max/min 8.816409645096e+00
3 KSP Residual norm 2.374523626799e-03 % max 9.504624619604e-01
min 6.564631404306e-02 max/min 1.447853509851e+01
4 KSP Residual norm 1.924918345847e-03 % max 9.848656903443e-01
min 4.952831543265e-02 max/min 1.988490183325e+01
5 KSP Residual norm 6.808260964410e-04 % max 9.938458367029e-01
min 4.251109574134e-02 max/min 2.337850434978e+01
6 KSP Residual norm 3.315021446270e-04 % max 9.967726858804e-01
min 4.166488358467e-02 max/min 2.392356824554e+01
7 KSP Residual norm 1.314681668602e-04 % max 9.982316137592e-01
min 4.143867906023e-02 max/min 2.408936858987e+01
8 KSP Residual norm 4.301436610738e-05 % max 9.989590393061e-01
min 4.138618158843e-02 max/min 2.413750196238e+01
9 KSP Residual norm 8.016910487452e-06 % max 9.994371206849e-01
min 4.138180175046e-02 max/min 2.415160960636e+01
10 KSP Residual norm 6.525723903099e-07 % max 9.997527609942e-01
min 4.138161245544e-02 max/min 2.415934763467e+01
11 KSP Residual norm 8.205412727192e-08 % max 9.998804196297e-01
min 4.138161047930e-02 max/min 2.416243370059e+01
12 KSP Residual norm 1.645897401565e-08 % max 9.999250934790e-01
min 4.138161045086e-02 max/min 2.416351327521e+01
13 KSP Residual norm 2.636218490435e-09 % max 9.999479210248e-01
min 4.138161044973e-02 max/min 2.416406491090e+01
14 KSP Residual norm 2.614816263321e-10 % max 9.999674891694e-01
min 4.138161044968e-02 max/min 2.416453778147e+01
15 KSP Residual norm 2.309894761749e-11 % max 9.999797578219e-01
min 4.138161044968e-02 max/min 2.416483425742e+01
16 KSP Residual norm 2.261461487058e-12 % max 9.999874664751e-01
min 4.138161044968e-02 max/min 2.416502053952e+01
17 KSP Residual norm 2.659598917594e-13 % max 9.999898150784e-01
min 4.138161044968e-02 max/min 2.416507729428e+01
18 KSP Residual norm 1.822011884274e-14 % max 9.999918194957e-01
min 4.138161044968e-02 max/min 2.416512573167e+01
19 KSP Residual norm 1.042398553176e-15 % max 9.999933278733e-01
min 4.138161044968e-02 max/min 2.416516218210e+01
0 KSP Residual norm 8.439161590194e-02
1 KSP Residual norm 7.614890998257e-03
2 KSP Residual norm 1.514029318872e-03
3 KSP Residual norm 3.781832295258e-04
4 KSP Residual norm 3.799411703870e-05
5 KSP Residual norm 4.799680240826e-06
6 KSP Residual norm 9.360965396987e-07
7 KSP Residual norm 1.250237476907e-07
8 KSP Residual norm 2.036465606099e-08
9 KSP Residual norm 3.993471620298e-09
10 KSP Residual norm 5.041262213944e-10
KSP Object: 2 MPI processes
type: cg
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-08, absolute=1e-16, divergence=1e+16
left preconditioning
using PRECONDITIONED norm type for convergence test
PC Object: 2 MPI processes
type: gamg
MG: type is MULTIPLICATIVE, levels=3 cycles=v
Cycles per PCApply=1
Using Galerkin computed coarse grid matrices
GAMG specific options
Threshold for dropping small values from graph 0.
AGG specific options
Symmetric graph false
Coarse grid solver -- level -------------------------------
KSP Object: (mg_coarse_) 2 MPI processes
type: preonly
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000.
left preconditioning
using NONE norm type for convergence test
PC Object: (mg_coarse_) 2 MPI processes
type: bjacobi
block Jacobi: number of blocks = 2
Local solve is same for all blocks, in the following KSP and PC
objects:
KSP Object: (mg_coarse_sub_) 1 MPI processes
type: preonly
maximum iterations=1, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000.
left preconditioning
using NONE norm type for convergence test
PC Object: (mg_coarse_sub_) 1 MPI processes
type: lu
LU: out-of-place factorization
tolerance for zero pivot 2.22045e-14
using diagonal shift on blocks to prevent zero pivot [INBLOCKS]
matrix ordering: nd
factor fill ratio given 5., needed 1.
Factored matrix follows:
Mat Object: 1 MPI processes
type: seqaij
rows=9, cols=9, bs=3
package used to perform factorization: petsc
total: nonzeros=81, allocated nonzeros=81
total number of mallocs used during MatSetValues calls =0
using I-node routines: found 2 nodes, limit used is 5
linear system matrix = precond matrix:
Mat Object: 1 MPI processes
type: seqaij
rows=9, cols=9, bs=3
total: nonzeros=81, allocated nonzeros=81
total number of mallocs used during MatSetValues calls =0
using I-node routines: found 2 nodes, limit used is 5
linear system matrix = precond matrix:
Mat Object: 2 MPI processes
type: mpiaij
rows=9, cols=9, bs=3
total: nonzeros=81, allocated nonzeros=81
total number of mallocs used during MatSetValues calls =0
using I-node (on process 0) routines: found 2 nodes, limit
used is 5
Down solver (pre-smoother) on level 1 -------------------------------
KSP Object: (mg_levels_1_) 2 MPI processes
type: chebyshev
Chebyshev: eigenvalue estimates: min = 0.0499997, max = 1.04999
Chebyshev: eigenvalues estimated using cg with translations [0.
0.05; 0. 1.05]
KSP Object: (mg_levels_1_esteig_) 2 MPI processes
type: cg
maximum iterations=50, initial guess is zero
tolerances: relative=1e-12, absolute=1e-50, divergence=10000.
left preconditioning
using PRECONDITIONED norm type for convergence test
maximum iterations=2
tolerances: relative=1e-05, absolute=1e-50, divergence=10000.
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_1_) 2 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations =
1, omega = 1.
linear system matrix = precond matrix:
Mat Object: 2 MPI processes
type: mpiaij
rows=54, cols=54, bs=3
total: nonzeros=1764, allocated nonzeros=1764
total number of mallocs used during MatSetValues calls =0
using I-node (on process 0) routines: found 18 nodes, limit
used is 5
Up solver (post-smoother) same as down solver (pre-smoother)
Down solver (pre-smoother) on level 2 -------------------------------
KSP Object: (mg_levels_2_) 2 MPI processes
type: chebyshev
Chebyshev: eigenvalue estimates: min = 0.07853, max = 1.64913
Chebyshev: eigenvalues estimated using cg with translations [0.
0.05; 0. 1.05]
KSP Object: (mg_levels_2_esteig_) 2 MPI processes
type: cg
maximum iterations=50, initial guess is zero
tolerances: relative=1e-12, absolute=1e-50, divergence=10000.
left preconditioning
using PRECONDITIONED norm type for convergence test
maximum iterations=2
tolerances: relative=1e-05, absolute=1e-50, divergence=10000.
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_2_) 2 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations =
1, omega = 1.
linear system matrix = precond matrix:
Mat Object: 2 MPI processes
type: mpiaij
rows=882, cols=882, bs=2
total: nonzeros=26244, allocated nonzeros=26244
total number of mallocs used during MatSetValues calls =0
using I-node (on process 0) routines: found 189 nodes, limit
used is 5
Up solver (post-smoother) same as down solver (pre-smoother)
linear system matrix = precond matrix:
Mat Object: 2 MPI processes
type: mpiaij
rows=882, cols=882, bs=2
total: nonzeros=26244, allocated nonzeros=26244
total number of mallocs used during MatSetValues calls =0
using I-node (on process 0) routines: found 189 nodes, limit used
is 5
CONVERGENCE: Satisfied residual tolerance Iterations = 10
On 5/22/16 3:02 PM, Mark Adams wrote:
> I thought you would have this also, so add it (I assume this is 3D
> elasticity):
>
> -pc_gamg_square_graph 1
> -mg_levels_ksp_type chebyshev
> -mg_levels_pc_type sor
>
> Plus what I just mentioned:
>
> -mg_levels_esteig_ksp_type cg
> -mg_levels_ksp_chebyshev_esteig 0,0.05,0,1.05
>
> Just for diagnostics add:
>
> -mg_levels_esteig_ksp_max_it 50
> -mg_levels_esteig_ksp_monitor_singular_value
> -ksp_view
>
>
>
> On Sun, May 22, 2016 at 5:38 PM, Sanjay Govindjee <s_g at berkeley.edu
> <mailto:s_g at berkeley.edu>> wrote:
>
> Mark,
> Can you give me the full option line that you want me to use? I
> currently have:
>
> -ksp_type cg -ksp_monitor -ksp_chebyshev_esteig_random -log_view
> -pc_type gamg -pc_gamg_type agg -pc_gamg_agg_nsmooths 1 -options_left
>
> -sanjay
>
>
> On 5/22/16 2:29 PM, Mark Adams wrote:
>> Humm, maybe we have version mixup:
>>
>> src/ksp/ksp/impls/cheby/cheby.c: ierr =
>> PetscOptionsBool("-ksp_chebyshev_esteig_random","Use random right
>> hand side for
>> estimate","KSPChebyshevEstEigSetUseRandom",cheb->userandom,&cheb->userandom
>>
>> Also, you should use CG. These other options are the defaults but
>> CG is not:
>>
>> -mg_levels_esteig_ksp_type cg
>> -mg_levels_esteig_ksp_max_it 10
>> -mg_levels_ksp_chebyshev_esteig 0,0.05,0,1.05
>>
>> Anyway. you can also run with -info, which will be very noisy,
>> but just grep for GAMG and send me that.
>>
>> Mark
>>
>>
>>
>> On Sat, May 21, 2016 at 6:03 PM, Sanjay Govindjee
>> <s_g at berkeley.edu <mailto:s_g at berkeley.edu>> wrote:
>>
>> Mark,
>> I added the option you mentioned but it seems not to use
>> it; -options_left reports:
>>
>> #PETSc Option Table entries:
>> -ksp_chebyshev_esteig_random
>> -ksp_monitor
>> -ksp_type cg
>> -log_view
>> -options_left
>> -pc_gamg_agg_nsmooths 1
>> -pc_gamg_type agg
>> -pc_type gamg
>> #End of PETSc Option Table entries
>> There is one unused database option. It is:
>> Option left: name:-ksp_chebyshev_esteig_random (no value)
>>
>>
>>
>> On 5/21/16 12:36 PM, Mark Adams wrote:
>>> Barry, this is probably the Chebyshev problem.
>>>
>>> Sanjay, this is fixed but has not yet been moved to the
>>> master branch. You can fix this now with with
>>> -ksp_chebyshev_esteig_random. This should recover v3.5
>>> semantics.
>>>
>>> Mark
>>>
>>> On Thu, May 19, 2016 at 2:42 PM, Barry Smith
>>> <bsmith at mcs.anl.gov <mailto:bsmith at mcs.anl.gov>> wrote:
>>>
>>>
>>> We see this occasionally, there is nothing in the
>>> definition of GAMG that guarantees a positive definite
>>> preconditioner even if the operator was positive
>>> definite so we don't think this is a bug in the code.
>>> We've found using a slightly stronger smoother, like one
>>> more smoothing step seems to remove the problem.
>>>
>>> Barry
>>>
>>> > On May 19, 2016, at 1:07 PM, Sanjay Govindjee
>>> <s_g at berkeley.edu <mailto:s_g at berkeley.edu>> wrote:
>>> >
>>> > I am trying to solve a very ordinary nonlinear
>>> elasticity problem
>>> > using -ksp_type cg -pc_type gamg in PETSc 3.7.0, which
>>> worked fine
>>> > in PETSc 3.5.3.
>>> >
>>> > The problem I am seeing is on my first Newton
>>> iteration, the Ax=b
>>> > solve returns with and Indefinite Preconditioner error
>>> (KSPGetConvergedReason == -8):
>>> > (log_view.txt output also attached)
>>> >
>>> > 0 KSP Residual norm 8.411630828687e-02
>>> > 1 KSP Residual norm 2.852209578900e-02
>>> > NO CONVERGENCE REASON: Indefinite Preconditioner
>>> > NO CONVERGENCE REASON: Indefinite Preconditioner
>>> >
>>> > On the next and subsequent Newton iterations, I see
>>> perfectly normal
>>> > behavior and the problem converges quadratically. The
>>> results look fine.
>>> >
>>> > I tried the same problem with -pc_type jacobi as well
>>> as super-lu, and mumps
>>> > and they all work without complaint.
>>> >
>>> > My run line for GAMG is:
>>> > -ksp_type cg -ksp_monitor -log_view -pc_type gamg
>>> -pc_gamg_type agg -pc_gamg_agg_nsmooths 1 -options_left
>>> >
>>> > The code flow looks like:
>>> >
>>> > ! If no matrix allocation yet
>>> > if(Kmat.eq.0) then
>>> > call MatCreate(PETSC_COMM_WORLD,Kmat,ierr)
>>> > call
>>> MatSetSizes(Kmat,numpeq,numpeq,PETSC_DETERMINE,PETSC_DETERMINE,ierr)
>>> > call MatSetBlockSize(Kmat,nsbk,ierr)
>>> > call MatSetFromOptions(Kmat, ierr)
>>> > call MatSetType(Kmat,MATAIJ,ierr)
>>> > call
>>> MatMPIAIJSetPreallocation(Kmat,PETSC_NULL_INTEGER,mr(np(246)),PETSC_NULL_INTEGER,mr(np(247)),ierr)
>>> > call
>>> MatSeqAIJSetPreallocation(Kmat,PETSC_NULL_INTEGER,mr(np(246)),ierr)
>>> > endif
>>> >
>>> > call MatZeroEntries(Kmat,ierr)
>>> >
>>> > ! Code to set values in matrix
>>> >
>>> > call MatAssemblyBegin(Kmat, MAT_FINAL_ASSEMBLY, ierr)
>>> > call MatAssemblyEnd(Kmat, MAT_FINAL_ASSEMBLY, ierr)
>>> > call
>>> MatSetOption(Kmat,MAT_NEW_NONZERO_LOCATIONS,PETSC_TRUE,ierr)
>>> >
>>> > ! If no rhs allocation yet
>>> > if(rhs.eq.0) then
>>> > call VecCreate (PETSC_COMM_WORLD, rhs, ierr)
>>> > call VecSetSizes (rhs, numpeq, PETSC_DECIDE, ierr)
>>> > call VecSetFromOptions(rhs, ierr)
>>> > endif
>>> >
>>> > ! Code to set values in RHS
>>> >
>>> > call VecAssemblyBegin(rhs, ierr)
>>> > call VecAssemblyEnd(rhs, ierr)
>>> >
>>> > if(kspsol_exists) then
>>> > call KSPDestroy(kspsol,ierr)
>>> > endif
>>> >
>>> > call KSPCreate(PETSC_COMM_WORLD, kspsol ,ierr)
>>> > call KSPSetOperators(kspsol, Kmat, Kmat, ierr)
>>> > call KSPSetFromOptions(kspsol,ierr)
>>> > call KSPGetPC(kspsol, pc , ierr)
>>> >
>>> > call PCSetCoordinates(pc,ndm,numpn,hr(np(43)),ierr)
>>> >
>>> > call KSPSolve(kspsol, rhs, sol, ierr)
>>> > call KSPGetConvergedReason(kspsol,reason,ierr)
>>> >
>>> > ! update solution, go back to the top
>>> >
>>> > reason is coming back as -8 on my first Ax=b solve and
>>> 2 or 3 after that
>>> > (with gamg). With the other solvers it is coming back
>>> as 2 or 3 for
>>> > iterative options and 4 if I use one of the direct
>>> solvers.
>>> >
>>> > Any ideas on what is causing the Indefinite PC on the
>>> first iteration with GAMG?
>>> >
>>> > Thanks in advance,
>>> > -sanjay
>>> >
>>> > --
>>> > -----------------------------------------------
>>> > Sanjay Govindjee, PhD, PE
>>> > Professor of Civil Engineering
>>> >
>>> > 779 Davis Hall
>>> > University of California
>>> > Berkeley, CA 94720-1710
>>> >
>>> > Voice: +1 510 642 6060 <tel:%2B1%20510%20642%206060>
>>> > FAX: +1 510 643 5264 <tel:%2B1%20510%20643%205264>
>>> >
>>> > s_g at berkeley.edu <mailto:s_g at berkeley.edu>
>>> > http://www.ce.berkeley.edu/~sanjay
>>> <http://www.ce.berkeley.edu/%7Esanjay>
>>> >
>>> > -----------------------------------------------
>>> >
>>> > Books:
>>> >
>>> > Engineering Mechanics of Deformable
>>> > Solids: A Presentation with Exercises
>>> >
>>> >
>>> http://www.oup.com/us/catalog/general/subject/Physics/MaterialsScience/?view=usa&ci=9780199651641
>>> > http://ukcatalogue.oup.com/product/9780199651641.do
>>> > http://amzn.com/0199651647
>>> >
>>> >
>>> > Engineering Mechanics 3 (Dynamics) 2nd Edition
>>> >
>>> > http://www.springer.com/978-3-642-53711-0
>>> > http://amzn.com/3642537111
>>> >
>>> >
>>> > Engineering Mechanics 3, Supplementary Problems: Dynamics
>>> >
>>> > http://www.amzn.com/B00SOXN8JU
>>> >
>>> >
>>> > -----------------------------------------------
>>> >
>>> > <log_view.txt>
>>>
>>>
>>
>> --
>> -----------------------------------------------
>> Sanjay Govindjee, PhD, PE
>> Professor of Civil Engineering
>>
>> 779 Davis Hall
>> University of California
>> Berkeley, CA 94720-1710
>>
>> Voice:+1 510 642 6060 <tel:%2B1%20510%20642%206060>
>> FAX:+1 510 643 5264 <tel:%2B1%20510%20643%205264>
>> s_g at berkeley.edu <mailto:s_g at berkeley.edu>
>> http://www.ce.berkeley.edu/~sanjay
>> <http://www.ce.berkeley.edu/%7Esanjay>
>> -----------------------------------------------
>>
>> Books:
>>
>> Engineering Mechanics of Deformable
>> Solids: A Presentation with Exercises
>> http://www.oup.com/us/catalog/general/subject/Physics/MaterialsScience/?view=usa&ci=9780199651641
>> http://ukcatalogue.oup.com/product/9780199651641.do
>> http://amzn.com/0199651647
>>
>> Engineering Mechanics 3 (Dynamics) 2nd Edition
>> http://www.springer.com/978-3-642-53711-0
>> http://amzn.com/3642537111
>>
>> Engineering Mechanics 3, Supplementary Problems: Dynamics
>> http://www.amzn.com/B00SOXN8JU
>>
>> -----------------------------------------------
>>
>>
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20160523/94ed2c06/attachment-0001.html>
More information about the petsc-users
mailing list