[petsc-users] GAMG Indefinite

Sanjay Govindjee s_g at berkeley.edu
Mon May 23 11:31:17 CDT 2016


Mark,
   Yes, the problem is finite elasticity.  I re-ran the problem with the 
options table and output shown below.  It converges now
based on the residual tolerance test (KSPConvergedReason == 2); note I 
am using Using Petsc Release Version 3.7.0, Apr, 25, 2016.
Seems to work now with these options; wish I understood what they all meant!
-sanjay

------ Options Table ------

-ksp_chebyshev_esteig_random
-ksp_monitor
-ksp_type cg
-ksp_view
-log_view
-mg_levels_esteig_ksp_max_it 50
-mg_levels_esteig_ksp_monitor_singular_value
-mg_levels_esteig_ksp_type cg
-mg_levels_ksp_chebyshev_esteig 0,0.05,0,1.05
-mg_levels_ksp_type chebyshev
-mg_levels_pc_type sor
-options_left
-pc_gamg_agg_nsmooths 1
-pc_gamg_square_graph 1
-pc_gamg_type agg
-pc_type gamg
#End of PETSc Option Table entries
There is one unused database option. It is:
Option left: name:-ksp_chebyshev_esteig_random (no value)


---- Output -----


    Residual norm =     6.4807407E-02    1.0000000E+00      t= 0.06     0.00
    Residual norm =     6.4807407E-02    1.0000000E+00      t= 2.72     0.00
       0 KSP Residual norm 1.560868061707e-03 % max 1.000000000000e+00 
min 1.000000000000e+00 max/min 1.000000000000e+00
       1 KSP Residual norm 6.096709155146e-04 % max 5.751224548776e-01 
min 5.751224548776e-01 max/min 1.000000000000e+00
       2 KSP Residual norm 7.011069458089e-04 % max 8.790398458008e-01 
min 1.423643814416e-01 max/min 6.174577073983e+00
       3 KSP Residual norm 7.860563886831e-04 % max 9.381463130007e-01 
min 6.370569326093e-02 max/min 1.472625545661e+01
       4 KSP Residual norm 7.281118133903e-04 % max 9.663599650986e-01 
min 3.450830062982e-02 max/min 2.800369613865e+01
       5 KSP Residual norm 7.399083718116e-04 % max 9.794646011330e-01 
min 2.160135448201e-02 max/min 4.534274005590e+01
       6 KSP Residual norm 7.629904179692e-04 % max 9.849620569978e-01 
min 1.481091947823e-02 max/min 6.650242467697e+01
       7 KSP Residual norm 7.698477913710e-04 % max 9.886850579079e-01 
min 1.045801989510e-02 max/min 9.453845640235e+01
       8 KSP Residual norm 8.217081868349e-04 % max 9.919371306726e-01 
min 7.371001382474e-03 max/min 1.345729133942e+02
       9 KSP Residual norm 7.524701879786e-04 % max 9.942899758738e-01 
min 5.827670079091e-03 max/min 1.706153509687e+02
      10 KSP Residual norm 6.944661718672e-04 % max 1.081740430310e+00 
min 5.160677620664e-03 max/min 2.096120916327e+02
      11 KSP Residual norm 5.551504568073e-04 % max 1.486860759049e+00 
min 4.666379506027e-03 max/min 3.186326266710e+02
      12 KSP Residual norm 5.259305993307e-04 % max 1.564857844056e+00 
min 4.221790647720e-03 max/min 3.706621134569e+02
      13 KSP Residual norm 5.156103593875e-04 % max 1.569917781391e+00 
min 3.850994097592e-03 max/min 4.076655901322e+02
      14 KSP Residual norm 5.312020352146e-04 % max 1.570323151514e+00 
min 3.568538377912e-03 max/min 4.400465919699e+02
      15 KSP Residual norm 5.305598654979e-04 % max 1.570412447356e+00 
min 3.341861320427e-03 max/min 4.699214888890e+02
      16 KSP Residual norm 5.058601071413e-04 % max 1.570467828098e+00 
min 3.091912672470e-03 max/min 5.079276145416e+02
      17 KSP Residual norm 5.485622395473e-04 % max 1.570494963661e+00 
min 2.876900954621e-03 max/min 5.458981690483e+02
      18 KSP Residual norm 5.368711040867e-04 % max 1.570521333658e+00 
min 2.664379213208e-03 max/min 5.894511283800e+02
      19 KSP Residual norm 5.198795692341e-04 % max 1.570548096173e+00 
min 2.476198885896e-03 max/min 6.342576539867e+02
      20 KSP Residual norm 5.958949153283e-04 % max 1.570562153443e+00 
min 2.291602609346e-03 max/min 6.853553696602e+02
      21 KSP Residual norm 6.378632372927e-04 % max 1.570571141557e+00 
min 2.073298632606e-03 max/min 7.575228753145e+02
      22 KSP Residual norm 5.831338029614e-04 % max 1.570577774384e+00 
min 1.893683789633e-03 max/min 8.293769968259e+02
      23 KSP Residual norm 4.875913917209e-04 % max 1.570583697638e+00 
min 1.759110933887e-03 max/min 8.928281141244e+02
      24 KSP Residual norm 4.107781613610e-04 % max 1.570587819069e+00 
min 1.672892328012e-03 max/min 9.388457300985e+02
      25 KSP Residual norm 3.715001142988e-04 % max 1.570590462451e+00 
min 1.617963853373e-03 max/min 9.707203650914e+02
      26 KSP Residual norm 2.991751132378e-04 % max 1.570593709995e+00 
min 1.573420350354e-03 max/min 9.982035059109e+02
      27 KSP Residual norm 2.208369736689e-04 % max 1.570597161312e+00 
min 1.545543181679e-03 max/min 1.016210468870e+03
      28 KSP Residual norm 1.811301040805e-04 % max 1.570599147395e+00 
min 1.529650294818e-03 max/min 1.026770074647e+03
      29 KSP Residual norm 1.466232980955e-04 % max 1.570599898730e+00 
min 1.518818086503e-03 max/min 1.034093491964e+03
      30 KSP Residual norm 1.206956326419e-04 % max 1.570600148946e+00 
min 1.512437955816e-03 max/min 1.038455920063e+03
      31 KSP Residual norm 8.815660316339e-05 % max 1.570600276978e+00 
min 1.508452842477e-03 max/min 1.041199454667e+03
      32 KSP Residual norm 8.077031357734e-05 % max 1.570600325445e+00 
min 1.505888596198e-03 max/min 1.042972454543e+03
      33 KSP Residual norm 8.820553812137e-05 % max 1.570600343673e+00 
min 1.503328090889e-03 max/min 1.044748882956e+03
      34 KSP Residual norm 9.117950808819e-05 % max 1.570600352355e+00 
min 1.499931693668e-03 max/min 1.047114584608e+03
      35 KSP Residual norm 1.017388214943e-04 % max 1.570600354842e+00 
min 1.495477205174e-03 max/min 1.050233563847e+03
      36 KSP Residual norm 8.890686455242e-05 % max 1.570600355527e+00 
min 1.491021415006e-03 max/min 1.053372097624e+03
      37 KSP Residual norm 6.145275695828e-05 % max 1.570600355891e+00 
min 1.487712171225e-03 max/min 1.055715202355e+03
      38 KSP Residual norm 4.601453163034e-05 % max 1.570600356004e+00 
min 1.486196684310e-03 max/min 1.056791723858e+03
      39 KSP Residual norm 3.537992820781e-05 % max 1.570600356044e+00 
min 1.485426023422e-03 max/min 1.057340002989e+03
      40 KSP Residual norm 2.801997681470e-05 % max 1.570600356064e+00 
min 1.484937369198e-03 max/min 1.057687946066e+03
      41 KSP Residual norm 2.422931135206e-05 % max 1.570600356072e+00 
min 1.484576829299e-03 max/min 1.057944813010e+03
      42 KSP Residual norm 2.099844940173e-05 % max 1.570600356076e+00 
min 1.484295103277e-03 max/min 1.058145615794e+03
      43 KSP Residual norm 1.692165408662e-05 % max 1.570600356077e+00 
min 1.484073208085e-03 max/min 1.058303827278e+03
      44 KSP Residual norm 1.303434704073e-05 % max 1.570600356078e+00 
min 1.483945099557e-03 max/min 1.058395190325e+03
      45 KSP Residual norm 1.116085143372e-05 % max 1.570600356078e+00 
min 1.483862236504e-03 max/min 1.058454294098e+03
      46 KSP Residual norm 1.042314767557e-05 % max 1.570600356078e+00 
min 1.483776389632e-03 max/min 1.058515533104e+03
      47 KSP Residual norm 8.547779619028e-06 % max 1.570600356078e+00 
min 1.483710767635e-03 max/min 1.058562349440e+03
      48 KSP Residual norm 5.686341715603e-06 % max 1.570600356078e+00 
min 1.483675385024e-03 max/min 1.058587593979e+03
      49 KSP Residual norm 3.605023485024e-06 % max 1.570600356078e+00 
min 1.483660745235e-03 max/min 1.058598039425e+03
      50 KSP Residual norm 2.272532759782e-06 % max 1.570600356078e+00 
min 1.483654995309e-03 max/min 1.058602142037e+03
         0 KSP Residual norm 5.279802306740e-03 % max 1.000000000000e+00 
min 1.000000000000e+00 max/min 1.000000000000e+00
         1 KSP Residual norm 3.528673026246e-03 % max 3.090782483684e-01 
min 3.090782483684e-01 max/min 1.000000000000e+00
         2 KSP Residual norm 3.205752762808e-03 % max 8.446523416360e-01 
min 9.580457075356e-02 max/min 8.816409645096e+00
         3 KSP Residual norm 2.374523626799e-03 % max 9.504624619604e-01 
min 6.564631404306e-02 max/min 1.447853509851e+01
         4 KSP Residual norm 1.924918345847e-03 % max 9.848656903443e-01 
min 4.952831543265e-02 max/min 1.988490183325e+01
         5 KSP Residual norm 6.808260964410e-04 % max 9.938458367029e-01 
min 4.251109574134e-02 max/min 2.337850434978e+01
         6 KSP Residual norm 3.315021446270e-04 % max 9.967726858804e-01 
min 4.166488358467e-02 max/min 2.392356824554e+01
         7 KSP Residual norm 1.314681668602e-04 % max 9.982316137592e-01 
min 4.143867906023e-02 max/min 2.408936858987e+01
         8 KSP Residual norm 4.301436610738e-05 % max 9.989590393061e-01 
min 4.138618158843e-02 max/min 2.413750196238e+01
         9 KSP Residual norm 8.016910487452e-06 % max 9.994371206849e-01 
min 4.138180175046e-02 max/min 2.415160960636e+01
        10 KSP Residual norm 6.525723903099e-07 % max 9.997527609942e-01 
min 4.138161245544e-02 max/min 2.415934763467e+01
        11 KSP Residual norm 8.205412727192e-08 % max 9.998804196297e-01 
min 4.138161047930e-02 max/min 2.416243370059e+01
        12 KSP Residual norm 1.645897401565e-08 % max 9.999250934790e-01 
min 4.138161045086e-02 max/min 2.416351327521e+01
        13 KSP Residual norm 2.636218490435e-09 % max 9.999479210248e-01 
min 4.138161044973e-02 max/min 2.416406491090e+01
        14 KSP Residual norm 2.614816263321e-10 % max 9.999674891694e-01 
min 4.138161044968e-02 max/min 2.416453778147e+01
        15 KSP Residual norm 2.309894761749e-11 % max 9.999797578219e-01 
min 4.138161044968e-02 max/min 2.416483425742e+01
        16 KSP Residual norm 2.261461487058e-12 % max 9.999874664751e-01 
min 4.138161044968e-02 max/min 2.416502053952e+01
        17 KSP Residual norm 2.659598917594e-13 % max 9.999898150784e-01 
min 4.138161044968e-02 max/min 2.416507729428e+01
        18 KSP Residual norm 1.822011884274e-14 % max 9.999918194957e-01 
min 4.138161044968e-02 max/min 2.416512573167e+01
        19 KSP Residual norm 1.042398553176e-15 % max 9.999933278733e-01 
min 4.138161044968e-02 max/min 2.416516218210e+01
   0 KSP Residual norm 8.439161590194e-02
   1 KSP Residual norm 7.614890998257e-03
   2 KSP Residual norm 1.514029318872e-03
   3 KSP Residual norm 3.781832295258e-04
   4 KSP Residual norm 3.799411703870e-05
   5 KSP Residual norm 4.799680240826e-06
   6 KSP Residual norm 9.360965396987e-07
   7 KSP Residual norm 1.250237476907e-07
   8 KSP Residual norm 2.036465606099e-08
   9 KSP Residual norm 3.993471620298e-09
  10 KSP Residual norm 5.041262213944e-10
KSP Object: 2 MPI processes
   type: cg
   maximum iterations=10000, initial guess is zero
   tolerances:  relative=1e-08, absolute=1e-16, divergence=1e+16
   left preconditioning
   using PRECONDITIONED norm type for convergence test
PC Object: 2 MPI processes
   type: gamg
     MG: type is MULTIPLICATIVE, levels=3 cycles=v
       Cycles per PCApply=1
       Using Galerkin computed coarse grid matrices
       GAMG specific options
         Threshold for dropping small values from graph 0.
         AGG specific options
           Symmetric graph false
   Coarse grid solver -- level -------------------------------
     KSP Object:    (mg_coarse_)     2 MPI processes
       type: preonly
       maximum iterations=10000, initial guess is zero
       tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
       left preconditioning
       using NONE norm type for convergence test
     PC Object:    (mg_coarse_)     2 MPI processes
       type: bjacobi
         block Jacobi: number of blocks = 2
         Local solve is same for all blocks, in the following KSP and PC 
objects:
       KSP Object:      (mg_coarse_sub_)       1 MPI processes
         type: preonly
         maximum iterations=1, initial guess is zero
         tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
         left preconditioning
         using NONE norm type for convergence test
       PC Object:      (mg_coarse_sub_)       1 MPI processes
         type: lu
           LU: out-of-place factorization
           tolerance for zero pivot 2.22045e-14
           using diagonal shift on blocks to prevent zero pivot [INBLOCKS]
           matrix ordering: nd
           factor fill ratio given 5., needed 1.
             Factored matrix follows:
               Mat Object:               1 MPI processes
                 type: seqaij
                 rows=9, cols=9, bs=3
                 package used to perform factorization: petsc
                 total: nonzeros=81, allocated nonzeros=81
                 total number of mallocs used during MatSetValues calls =0
                   using I-node routines: found 2 nodes, limit used is 5
         linear system matrix = precond matrix:
         Mat Object:         1 MPI processes
           type: seqaij
           rows=9, cols=9, bs=3
           total: nonzeros=81, allocated nonzeros=81
           total number of mallocs used during MatSetValues calls =0
             using I-node routines: found 2 nodes, limit used is 5
       linear system matrix = precond matrix:
       Mat Object:       2 MPI processes
         type: mpiaij
         rows=9, cols=9, bs=3
         total: nonzeros=81, allocated nonzeros=81
         total number of mallocs used during MatSetValues calls =0
           using I-node (on process 0) routines: found 2 nodes, limit 
used is 5
   Down solver (pre-smoother) on level 1 -------------------------------
     KSP Object:    (mg_levels_1_)     2 MPI processes
       type: chebyshev
         Chebyshev: eigenvalue estimates:  min = 0.0499997, max = 1.04999
         Chebyshev: eigenvalues estimated using cg with translations [0. 
0.05; 0. 1.05]
         KSP Object:        (mg_levels_1_esteig_)         2 MPI processes
           type: cg
           maximum iterations=50, initial guess is zero
           tolerances:  relative=1e-12, absolute=1e-50, divergence=10000.
           left preconditioning
           using PRECONDITIONED norm type for convergence test
       maximum iterations=2
       tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
       left preconditioning
       using nonzero initial guess
       using NONE norm type for convergence test
     PC Object:    (mg_levels_1_)     2 MPI processes
       type: sor
         SOR: type = local_symmetric, iterations = 1, local iterations = 
1, omega = 1.
       linear system matrix = precond matrix:
       Mat Object:       2 MPI processes
         type: mpiaij
         rows=54, cols=54, bs=3
         total: nonzeros=1764, allocated nonzeros=1764
         total number of mallocs used during MatSetValues calls =0
           using I-node (on process 0) routines: found 18 nodes, limit 
used is 5
   Up solver (post-smoother) same as down solver (pre-smoother)
   Down solver (pre-smoother) on level 2 -------------------------------
     KSP Object:    (mg_levels_2_)     2 MPI processes
       type: chebyshev
         Chebyshev: eigenvalue estimates:  min = 0.07853, max = 1.64913
         Chebyshev: eigenvalues estimated using cg with translations [0. 
0.05; 0. 1.05]
         KSP Object:        (mg_levels_2_esteig_)         2 MPI processes
           type: cg
           maximum iterations=50, initial guess is zero
           tolerances:  relative=1e-12, absolute=1e-50, divergence=10000.
           left preconditioning
           using PRECONDITIONED norm type for convergence test
       maximum iterations=2
       tolerances:  relative=1e-05, absolute=1e-50, divergence=10000.
       left preconditioning
       using nonzero initial guess
       using NONE norm type for convergence test
     PC Object:    (mg_levels_2_)     2 MPI processes
       type: sor
         SOR: type = local_symmetric, iterations = 1, local iterations = 
1, omega = 1.
       linear system matrix = precond matrix:
       Mat Object:       2 MPI processes
         type: mpiaij
         rows=882, cols=882, bs=2
         total: nonzeros=26244, allocated nonzeros=26244
         total number of mallocs used during MatSetValues calls =0
           using I-node (on process 0) routines: found 189 nodes, limit 
used is 5
   Up solver (post-smoother) same as down solver (pre-smoother)
   linear system matrix = precond matrix:
   Mat Object:   2 MPI processes
     type: mpiaij
     rows=882, cols=882, bs=2
     total: nonzeros=26244, allocated nonzeros=26244
     total number of mallocs used during MatSetValues calls =0
       using I-node (on process 0) routines: found 189 nodes, limit used 
is 5
CONVERGENCE:  Satisfied residual tolerance Iterations =           10


On 5/22/16 3:02 PM, Mark Adams wrote:
> I thought you would have this also, so add it (I assume this is 3D 
> elasticity):
>
> -pc_gamg_square_graph 1
> -mg_levels_ksp_type chebyshev
> -mg_levels_pc_type sor
>
> Plus what I just mentioned:
>
> -mg_levels_esteig_ksp_type cg
> -mg_levels_ksp_chebyshev_esteig 0,0.05,0,1.05
>
> Just for diagnostics add:
>
> -mg_levels_esteig_ksp_max_it 50
> -mg_levels_esteig_ksp_monitor_singular_value
> -ksp_view
>
>
>
> On Sun, May 22, 2016 at 5:38 PM, Sanjay Govindjee <s_g at berkeley.edu 
> <mailto:s_g at berkeley.edu>> wrote:
>
>     Mark,
>       Can you give me the full option line that you want me to use?  I
>     currently have:
>
>     -ksp_type cg -ksp_monitor -ksp_chebyshev_esteig_random -log_view
>     -pc_type gamg -pc_gamg_type agg -pc_gamg_agg_nsmooths 1 -options_left
>
>     -sanjay
>
>
>     On 5/22/16 2:29 PM, Mark Adams wrote:
>>     Humm, maybe we have version mixup:
>>
>>     src/ksp/ksp/impls/cheby/cheby.c:    ierr =
>>     PetscOptionsBool("-ksp_chebyshev_esteig_random","Use random right
>>     hand side for
>>     estimate","KSPChebyshevEstEigSetUseRandom",cheb->userandom,&cheb->userandom
>>
>>     Also, you should use CG. These other options are the defaults but
>>     CG is not:
>>
>>     -mg_levels_esteig_ksp_type cg
>>     -mg_levels_esteig_ksp_max_it 10
>>     -mg_levels_ksp_chebyshev_esteig 0,0.05,0,1.05
>>
>>     Anyway. you can also run with -info, which will be very noisy,
>>     but just grep for GAMG and send me that.
>>
>>     Mark
>>
>>
>>
>>     On Sat, May 21, 2016 at 6:03 PM, Sanjay Govindjee
>>     <s_g at berkeley.edu <mailto:s_g at berkeley.edu>> wrote:
>>
>>         Mark,
>>           I added the option you mentioned but it seems not to use
>>         it; -options_left reports:
>>
>>         #PETSc Option Table entries:
>>         -ksp_chebyshev_esteig_random
>>         -ksp_monitor
>>         -ksp_type cg
>>         -log_view
>>         -options_left
>>         -pc_gamg_agg_nsmooths 1
>>         -pc_gamg_type agg
>>         -pc_type gamg
>>         #End of PETSc Option Table entries
>>         There is one unused database option. It is:
>>         Option left: name:-ksp_chebyshev_esteig_random (no value)
>>
>>
>>
>>         On 5/21/16 12:36 PM, Mark Adams wrote:
>>>         Barry, this is probably the Chebyshev problem.
>>>
>>>         Sanjay, this is fixed but has not yet been moved to the
>>>         master branch.  You can fix this now with with
>>>         -ksp_chebyshev_esteig_random. This should recover v3.5
>>>         semantics.
>>>
>>>         Mark
>>>
>>>         On Thu, May 19, 2016 at 2:42 PM, Barry Smith
>>>         <bsmith at mcs.anl.gov <mailto:bsmith at mcs.anl.gov>> wrote:
>>>
>>>
>>>                We see this occasionally, there is nothing in the
>>>             definition of GAMG that guarantees a positive definite
>>>             preconditioner even if the operator was positive
>>>             definite so we don't think this is a bug in the code.
>>>             We've found using a slightly stronger smoother, like one
>>>             more smoothing step seems to remove the problem.
>>>
>>>                Barry
>>>
>>>             > On May 19, 2016, at 1:07 PM, Sanjay Govindjee
>>>             <s_g at berkeley.edu <mailto:s_g at berkeley.edu>> wrote:
>>>             >
>>>             > I am trying to solve a very ordinary nonlinear
>>>             elasticity problem
>>>             > using -ksp_type cg -pc_type gamg in PETSc 3.7.0, which
>>>             worked fine
>>>             > in PETSc 3.5.3.
>>>             >
>>>             > The problem I am seeing is on my first Newton
>>>             iteration, the Ax=b
>>>             > solve returns with and Indefinite Preconditioner error
>>>             (KSPGetConvergedReason == -8):
>>>             > (log_view.txt output also attached)
>>>             >
>>>             >   0 KSP Residual norm 8.411630828687e-02
>>>             >   1 KSP Residual norm 2.852209578900e-02
>>>             >   NO CONVERGENCE REASON:  Indefinite Preconditioner
>>>             >   NO CONVERGENCE REASON:  Indefinite Preconditioner
>>>             >
>>>             > On the next and subsequent Newton iterations, I see
>>>             perfectly normal
>>>             > behavior and the problem converges quadratically.  The
>>>             results look fine.
>>>             >
>>>             > I tried the same problem with -pc_type jacobi as well
>>>             as super-lu, and mumps
>>>             > and they all work without complaint.
>>>             >
>>>             > My run line for GAMG is:
>>>             > -ksp_type cg -ksp_monitor -log_view -pc_type gamg
>>>             -pc_gamg_type agg -pc_gamg_agg_nsmooths 1 -options_left
>>>             >
>>>             > The code flow looks like:
>>>             >
>>>             > ! If no matrix allocation yet
>>>             > if(Kmat.eq.0) then
>>>             >   call MatCreate(PETSC_COMM_WORLD,Kmat,ierr)
>>>             >   call
>>>             MatSetSizes(Kmat,numpeq,numpeq,PETSC_DETERMINE,PETSC_DETERMINE,ierr)
>>>             >   call MatSetBlockSize(Kmat,nsbk,ierr)
>>>             >   call MatSetFromOptions(Kmat, ierr)
>>>             >   call MatSetType(Kmat,MATAIJ,ierr)
>>>             >   call
>>>             MatMPIAIJSetPreallocation(Kmat,PETSC_NULL_INTEGER,mr(np(246)),PETSC_NULL_INTEGER,mr(np(247)),ierr)
>>>             >   call
>>>             MatSeqAIJSetPreallocation(Kmat,PETSC_NULL_INTEGER,mr(np(246)),ierr)
>>>             > endif
>>>             >
>>>             > call MatZeroEntries(Kmat,ierr)
>>>             >
>>>             > ! Code to set values in matrix
>>>             >
>>>             > call MatAssemblyBegin(Kmat, MAT_FINAL_ASSEMBLY, ierr)
>>>             > call MatAssemblyEnd(Kmat, MAT_FINAL_ASSEMBLY, ierr)
>>>             > call
>>>             MatSetOption(Kmat,MAT_NEW_NONZERO_LOCATIONS,PETSC_TRUE,ierr)
>>>             >
>>>             > ! If no rhs allocation yet
>>>             > if(rhs.eq.0) then
>>>             >   call VecCreate     (PETSC_COMM_WORLD, rhs, ierr)
>>>             >   call VecSetSizes     (rhs, numpeq, PETSC_DECIDE, ierr)
>>>             >   call VecSetFromOptions(rhs, ierr)
>>>             > endif
>>>             >
>>>             > ! Code to set values in RHS
>>>             >
>>>             > call VecAssemblyBegin(rhs, ierr)
>>>             > call VecAssemblyEnd(rhs, ierr)
>>>             >
>>>             > if(kspsol_exists) then
>>>             >   call KSPDestroy(kspsol,ierr)
>>>             > endif
>>>             >
>>>             > call KSPCreate(PETSC_COMM_WORLD, kspsol   ,ierr)
>>>             > call KSPSetOperators(kspsol, Kmat, Kmat, ierr)
>>>             > call KSPSetFromOptions(kspsol,ierr)
>>>             > call KSPGetPC(kspsol, pc ,   ierr)
>>>             >
>>>             > call PCSetCoordinates(pc,ndm,numpn,hr(np(43)),ierr)
>>>             >
>>>             > call KSPSolve(kspsol, rhs, sol, ierr)
>>>             > call KSPGetConvergedReason(kspsol,reason,ierr)
>>>             >
>>>             > ! update solution, go back to the top
>>>             >
>>>             > reason is coming back as -8 on my first Ax=b solve and
>>>             2 or 3 after that
>>>             > (with gamg).  With the other solvers it is coming back
>>>             as 2 or 3 for
>>>             > iterative options and 4 if I use one of the direct
>>>             solvers.
>>>             >
>>>             > Any ideas on what is causing the Indefinite PC on the
>>>             first iteration with GAMG?
>>>             >
>>>             > Thanks in advance,
>>>             > -sanjay
>>>             >
>>>             > --
>>>             > -----------------------------------------------
>>>             > Sanjay Govindjee, PhD, PE
>>>             > Professor of Civil Engineering
>>>             >
>>>             > 779 Davis Hall
>>>             > University of California
>>>             > Berkeley, CA 94720-1710
>>>             >
>>>             > Voice: +1 510 642 6060 <tel:%2B1%20510%20642%206060>
>>>             > FAX: +1 510 643 5264 <tel:%2B1%20510%20643%205264>
>>>             >
>>>             > s_g at berkeley.edu <mailto:s_g at berkeley.edu>
>>>             > http://www.ce.berkeley.edu/~sanjay
>>>             <http://www.ce.berkeley.edu/%7Esanjay>
>>>             >
>>>             > -----------------------------------------------
>>>             >
>>>             > Books:
>>>             >
>>>             > Engineering Mechanics of Deformable
>>>             > Solids: A Presentation with Exercises
>>>             >
>>>             >
>>>             http://www.oup.com/us/catalog/general/subject/Physics/MaterialsScience/?view=usa&ci=9780199651641
>>>             > http://ukcatalogue.oup.com/product/9780199651641.do
>>>             > http://amzn.com/0199651647
>>>             >
>>>             >
>>>             > Engineering Mechanics 3 (Dynamics) 2nd Edition
>>>             >
>>>             > http://www.springer.com/978-3-642-53711-0
>>>             > http://amzn.com/3642537111
>>>             >
>>>             >
>>>             > Engineering Mechanics 3, Supplementary Problems: Dynamics
>>>             >
>>>             > http://www.amzn.com/B00SOXN8JU
>>>             >
>>>             >
>>>             > -----------------------------------------------
>>>             >
>>>             > <log_view.txt>
>>>
>>>
>>
>>         -- 
>>         -----------------------------------------------
>>         Sanjay Govindjee, PhD, PE
>>         Professor of Civil Engineering
>>
>>         779 Davis Hall
>>         University of California
>>         Berkeley, CA 94720-1710
>>
>>         Voice:+1 510 642 6060 <tel:%2B1%20510%20642%206060>
>>         FAX:+1 510 643 5264 <tel:%2B1%20510%20643%205264>
>>         s_g at berkeley.edu <mailto:s_g at berkeley.edu>
>>         http://www.ce.berkeley.edu/~sanjay
>>         <http://www.ce.berkeley.edu/%7Esanjay>
>>         -----------------------------------------------
>>
>>         Books:
>>
>>         Engineering Mechanics of Deformable
>>         Solids: A Presentation with Exercises
>>         http://www.oup.com/us/catalog/general/subject/Physics/MaterialsScience/?view=usa&ci=9780199651641
>>         http://ukcatalogue.oup.com/product/9780199651641.do
>>         http://amzn.com/0199651647
>>
>>         Engineering Mechanics 3 (Dynamics) 2nd Edition
>>         http://www.springer.com/978-3-642-53711-0
>>         http://amzn.com/3642537111
>>
>>         Engineering Mechanics 3, Supplementary Problems: Dynamics
>>         http://www.amzn.com/B00SOXN8JU
>>
>>         -----------------------------------------------
>>
>>
>
>

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20160523/94ed2c06/attachment-0001.html>


More information about the petsc-users mailing list