[petsc-users] KSP changes for successive solver
Michele Rosso
mrosso at uci.edu
Wed Jul 29 12:45:39 CDT 2015
Hi Barry,
I tried what you suggested:
1) 5 levels of MG + defaults at the coarse level (PCREDUNDANT)
2) 5 levels of MG + 2 levels of MG via DMDAREPART + defaults at the
coarse level (PCREDUNDANT)
I attached ksp_view and log_summary for both cases.
The use of PCREDUNDAND halves the time for case 1 ( from ~ 20 sec per
solve to ~ 10 sec per solve ), while it seems not having much effect on
case 2.
Any thoughts on this?
Thanks,
Michele
On Sat, 2015-07-25 at 22:18 -0500, Barry Smith wrote:
> This dmdarepart business, which I am guessing is running PCMG on smaller sets of processes with a DMDDA on that smaller set of processes for a coarse problem is a fine idea but you should keep in mind the rule of thumb that that parallel iterative (and even more direct) solvers don't do well we there is roughly 10,000 or fewer degrees of freedom per processor. So you should definitely not be using SuperLU_DIST in parallel to solve a problem with 1048 degrees of freedom on 128 processes, just use PCREDUNDANT and its default (sequential) LU. That should be faster.
>
> Barry
>
> > On Jul 25, 2015, at 10:09 PM, Barry Smith <bsmith at mcs.anl.gov> wrote:
> >
> >
> > Don't use
> >
> > -mg_coarse_pc_factor_mat_solver_package superlu_dist
> > -mg_coarse_pc_type lu
> >
> > with 8000+ processes and 1 degree of freedom per process SuperLU_DIST will be terrible. Just leave the defaults for this and send the -log_summary
> >
> > Barry
> >
> >> On Jul 24, 2015, at 2:44 PM, Michele Rosso <mrosso at uci.edu> wrote:
> >>
> >> Barry,
> >>
> >> I attached ksp_view and log_summary for two different setups:
> >>
> >> 1) Plain MG on 5 levels + LU at the coarse level (files ending in mg5)
> >> 2) Plain MG on 5 levels + custom PC + LU at the coarse level (files ending in mg7)
> >>
> >> The custom PC works on a subset of processes, thus allowing to use two more levels of MG, for a total of 7.
> >> Case 1) is extremely slow ( ~ 20 sec per solve ) and converges in 21 iterations.
> >> Case 2) is way faster ( ~ 0.25 sec per solve ) and converges in 29 iterations.
> >>
> >> Thanks for your help!
> >>
> >> Michele
> >>
> >>
> >> On Fri, 2015-07-24 at 13:56 -0500, Barry Smith wrote:
> >>> The coarse problem for the PCMG (geometric multigrid) is
> >>>
> >>> Mat Object: 8192 MPI processes
> >>> type: mpiaij
> >>> rows=8192, cols=8192
> >>>
> >>> then it tries to solve it with algebraic multigrid on 8192 processes (which is completely insane). A lot of the time is spent in setting up the algebraic multigrid (not surprisingly).
> >>>
> >>> 8192 is kind of small to parallelize. Please run the same code but with the default coarse grid problem instead of PCGAMG and send us the -log_summary again
> >>>
> >>> Barry
> >>>
> >>>
> >>>> On Jul 24, 2015, at 1:35 PM, Michele Rosso <mrosso at uci.edu> wrote:
> >>>>
> >>>> Hi Mark and Barry,
> >>>>
> >>>> I am sorry for my late reply: it was a busy week!
> >>>> I run a test case for a larger problem with as many levels (i.e. 5) of MG I could and GAMG as PC at the coarse level. I attached the output of info ( after grep for "gmag"), ksp_view and log_summary.
> >>>> The solve takes about 2 seconds on 8192 cores, which is way too much. The number of iterations to convergence is 24.
> >>>> I hope there is a way to speed it up.
> >>>>
> >>>> Thanks,
> >>>> Michele
> >>>>
> >>>>
> >>>> On Fri, 2015-07-17 at 09:38 -0400, Mark Adams wrote:
> >>>>>
> >>>>>
> >>>>> On Thu, Jul 16, 2015 at 8:18 PM, Michele Rosso <mrosso at uci.edu> wrote:
> >>>>> Barry,
> >>>>>
> >>>>> thank you very much for the detailed answer. I tried what you suggested and it works.
> >>>>> So far I tried on a small system but the final goal is to use it for very large runs. How does PCGAMG compares to PCMG as far as performances and scalability are concerned?
> >>>>> Also, could you help me to tune the GAMG part ( my current setup is in the attached ksp_view.txt file )?
> >>>>>
> >>>>>
> >>>>>
> >>>>> I am going to add this to the document today but you can run with -info. This is very noisy so you might want to do the next step at run time. Then grep on GAMG. This will be about 20 lines. Send that to us and we can go from there.
> >>>>>
> >>>>>
> >>>>> Mark
> >>>>>
> >>>>>
> >>>>>
> >>>>>
> >>>>> I also tried to use superlu_dist for the LU decomposition on mg_coarse_mg_sub_
> >>>>> -mg_coarse_mg_coarse_sub_pc_type lu
> >>>>> -mg_coarse_mg_coarse_sub_pc_factor_mat_solver_package superlu_dist
> >>>>>
> >>>>> but I got an error:
> >>>>>
> >>>>> ****** Error in MC64A/AD. INFO(1) = -2
> >>>>> ****** Error in MC64A/AD. INFO(1) = -2
> >>>>> ****** Error in MC64A/AD. INFO(1) = -2
> >>>>> ****** Error in MC64A/AD. INFO(1) = -2
> >>>>> ****** Error in MC64A/AD. INFO(1) = -2
> >>>>> ****** Error in MC64A/AD. INFO(1) = -2
> >>>>> ****** Error in MC64A/AD. INFO(1) = -2
> >>>>> symbfact() error returns 0
> >>>>> symbfact() error returns 0
> >>>>> symbfact() error returns 0
> >>>>> symbfact() error returns 0
> >>>>> symbfact() error returns 0
> >>>>> symbfact() error returns 0
> >>>>> symbfact() error returns 0
> >>>>>
> >>>>>
> >>>>> Thank you,
> >>>>> Michele
> >>>>>
> >>>>>
> >>>>> On Thu, 2015-07-16 at 18:07 -0500, Barry Smith wrote:
> >>>>>>
> >>>>>>> On Jul 16, 2015, at 5:42 PM, Michele Rosso <mrosso at uci.edu> wrote:
> >>>>>>>
> >>>>>>> Barry,
> >>>>>>>
> >>>>>>> thanks for your reply. So if I want it fixed, I will have to use the master branch, correct?
> >>>>>>
> >>>>>>
> >>>>>> Yes, or edit mg.c and remove the offending lines of code (easy enough).
> >>>>>>
> >>>>>>>
> >>>>>>> On a side note, what I am trying to achieve is to be able to use how many levels of MG I want, despite the limitation imposed by the local number of grid nodes.
> >>>>>>
> >>>>>>
> >>>>>> I assume you are talking about with DMDA? There is no generic limitation for PETSc's multigrid, it is only with the way the DMDA code figures out the interpolation that causes a restriction.
> >>>>>>
> >>>>>>
> >>>>>>> So far I am using a borrowed code that implements a PC that creates a sub communicator and perform MG on it.
> >>>>>>> While reading the documentation I found out that PCMGSetLevels takes in an optional array of communicators. How does this work?
> >>>>>>
> >>>>>>
> >>>>>> It doesn't work. It was an idea that never got pursued.
> >>>>>>
> >>>>>>
> >>>>>>> Can I can simply define my matrix and rhs on the fine grid as I would do normally ( I do not use kspsetoperators and kspsetrhs ) and KSP would take care of it by using the correct communicator for each level?
> >>>>>>
> >>>>>>
> >>>>>> No.
> >>>>>>
> >>>>>> You can use the PCMG geometric multigrid with DMDA for as many levels as it works and then use PCGAMG as the coarse grid solver. PCGAMG automatically uses fewer processes for the coarse level matrices and vectors. You could do this all from the command line without writing code.
> >>>>>>
> >>>>>> For example if your code uses a DMDA and calls KSPSetDM() use for example -da_refine 3 -pc_type mg -pc_mg_galerkin -mg_coarse_pc_type gamg -ksp_view
> >>>>>>
> >>>>>>
> >>>>>>
> >>>>>> Barry
> >>>>>>
> >>>>>>
> >>>>>>
> >>>>>>>
> >>>>>>> Thanks,
> >>>>>>> Michele
> >>>>>>>
> >>>>>>>
> >>>>>>>
> >>>>>>>
> >>>>>>> On Thu, 2015-07-16 at 17:30 -0500, Barry Smith wrote:
> >>>>>>>> Michel,
> >>>>>>>>
> >>>>>>>> This is a very annoying feature that has been fixed in master
> >>>>>>>> http://www.mcs.anl.gov/petsc/developers/index.html
> >>>>>>>> I would like to have changed it in maint but Jed would have a shit-fit :-) since it changes behavior.
> >>>>>>>>
> >>>>>>>> Barry
> >>>>>>>>
> >>>>>>>>
> >>>>>>>>> On Jul 16, 2015, at 4:53 PM, Michele Rosso <mrosso at uci.edu> wrote:
> >>>>>>>>>
> >>>>>>>>> Hi,
> >>>>>>>>>
> >>>>>>>>> I am performing a series of solves inside a loop. The matrix for each solve changes but not enough to justify a rebuilt of the PC at each solve.
> >>>>>>>>> Therefore I am using KSPSetReusePreconditioner to avoid rebuilding unless necessary. The solver is CG + MG with a custom PC at the coarse level.
> >>>>>>>>> If KSP is not updated each time, everything works as it is supposed to.
> >>>>>>>>> When instead I allow the default PETSc behavior, i.e. updating PC every time the matrix changes, the coarse level KSP , initially set to PREONLY, is changed into GMRES
> >>>>>>>>> after the first solve. I am not sure where the problem lies (my PC or PETSc), so I would like to have your opinion on this.
> >>>>>>>>> I attached the ksp_view for the 2 successive solve and the options stack.
> >>>>>>>>>
> >>>>>>>>> Thanks for your help,
> >>>>>>>>> Michel
> >>>>>>>>>
> >>>>>>>>>
> >>>>>>>>>
> >>>>>>>>> <ksp_view.txt><petsc_options.txt>
> >>>>>>>>
> >>>>>>>>
> >>>>>>>>
> >>>>>>>
> >>>>>>
> >>>>>>
> >>>>>>
> >>>>>
> >>>>>
> >>>>>
> >>>>>
> >>>>
> >>>> <info.txt><ksp_view.txt><log_gamg.txt>
> >>>
> >>>
> >>>
> >>
> >> <ksp_view_mg5.txt><ksp_view_mg7.txt><log_mg5.txt><log_mg7.txt>
> >
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20150729/32cf2739/attachment-0001.html>
-------------- next part --------------
KSP Object: 8192 MPI processes
type: cg
maximum iterations=10000
tolerances: relative=1e-09, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using UNPRECONDITIONED norm type for convergence test
PC Object: 8192 MPI processes
type: mg
MG: type is MULTIPLICATIVE, levels=5 cycles=v
Cycles per PCApply=1
Using Galerkin computed coarse grid matrices
Coarse grid solver -- level -------------------------------
KSP Object: (mg_coarse_) 8192 MPI processes
type: preonly
maximum iterations=1, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using NONE norm type for convergence test
PC Object: (mg_coarse_) 8192 MPI processes
type: dmdarepart
DMDARepart: parent comm size reduction factor = 64
DMDARepart: subcomm_size = 128
KSP Object: (mg_coarse_dmdarepart_) 128 MPI processes
type: preonly
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using NONE norm type for convergence test
PC Object: (mg_coarse_dmdarepart_) 128 MPI processes
type: mg
MG: type is MULTIPLICATIVE, levels=2 cycles=v
Cycles per PCApply=1
Using Galerkin computed coarse grid matrices
Coarse grid solver -- level -------------------------------
KSP Object: (mg_coarse_dmdarepart_mg_coarse_) 128 MPI processes
type: preonly
maximum iterations=1, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using NONE norm type for convergence test
PC Object: (mg_coarse_dmdarepart_mg_coarse_) 128 MPI processes
type: redundant
Redundant preconditioner: First (color=0) of 128 PCs follows
KSP Object: (mg_coarse_dmdarepart_mg_coarse_redundant_) 1 MPI processes
type: preonly
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using NONE norm type for convergence test
PC Object: (mg_coarse_dmdarepart_mg_coarse_redundant_) 1 MPI processes
type: lu
LU: out-of-place factorization
tolerance for zero pivot 2.22045e-14
using diagonal shift on blocks to prevent zero pivot [INBLOCKS]
matrix ordering: nd
factor fill ratio given 5, needed 9.76317
Factored matrix follows:
Mat Object: 1 MPI processes
type: seqaij
rows=1024, cols=1024
package used to perform factorization: petsc
total: nonzeros=63734, allocated nonzeros=63734
total number of mallocs used during MatSetValues calls =0
not using I-node routines
linear system matrix = precond matrix:
Mat Object: 1 MPI processes
type: seqaij
rows=1024, cols=1024
total: nonzeros=6528, allocated nonzeros=6528
total number of mallocs used during MatSetValues calls =0
not using I-node routines
linear system matrix = precond matrix:
Mat Object: 128 MPI processes
type: mpiaij
rows=1024, cols=1024
total: nonzeros=6528, allocated nonzeros=6528
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
Down solver (pre-smoother) on level 1 -------------------------------
KSP Object: (mg_coarse_dmdarepart_mg_levels_1_) 128 MPI processes
type: richardson
Richardson: damping factor=1
maximum iterations=2
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_coarse_dmdarepart_mg_levels_1_) 128 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Mat Object: 128 MPI processes
type: mpiaij
rows=8192, cols=8192
total: nonzeros=54784, allocated nonzeros=54784
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
Up solver (post-smoother) same as down solver (pre-smoother)
linear system matrix = precond matrix:
Mat Object: 128 MPI processes
type: mpiaij
rows=8192, cols=8192
total: nonzeros=54784, allocated nonzeros=54784
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
linear system matrix = precond matrix:
Mat Object: 8192 MPI processes
type: mpiaij
rows=8192, cols=8192
total: nonzeros=54784, allocated nonzeros=54784
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
Down solver (pre-smoother) on level 1 -------------------------------
KSP Object: (mg_levels_1_) 8192 MPI processes
type: richardson
Richardson: damping factor=1
maximum iterations=2
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_1_) 8192 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Mat Object: 8192 MPI processes
type: mpiaij
rows=65536, cols=65536
total: nonzeros=448512, allocated nonzeros=448512
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
Up solver (post-smoother) same as down solver (pre-smoother)
Down solver (pre-smoother) on level 2 -------------------------------
KSP Object: (mg_levels_2_) 8192 MPI processes
type: richardson
Richardson: damping factor=1
maximum iterations=2
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_2_) 8192 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Mat Object: 8192 MPI processes
type: mpiaij
rows=524288, cols=524288
total: nonzeros=3.62906e+06, allocated nonzeros=3.62906e+06
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
Up solver (post-smoother) same as down solver (pre-smoother)
Down solver (pre-smoother) on level 3 -------------------------------
KSP Object: (mg_levels_3_) 8192 MPI processes
type: richardson
Richardson: damping factor=1
maximum iterations=2
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_3_) 8192 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Mat Object: 8192 MPI processes
type: mpiaij
rows=4194304, cols=4194304
total: nonzeros=2.91963e+07, allocated nonzeros=2.91963e+07
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
Up solver (post-smoother) same as down solver (pre-smoother)
Down solver (pre-smoother) on level 4 -------------------------------
KSP Object: (mg_levels_4_) 8192 MPI processes
type: richardson
Richardson: damping factor=1
maximum iterations=2
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_4_) 8192 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Mat Object: 8192 MPI processes
type: mpiaij
rows=33554432, cols=33554432
total: nonzeros=2.34226e+08, allocated nonzeros=2.34226e+08
total number of mallocs used during MatSetValues calls =0
has attached null space
Up solver (post-smoother) same as down solver (pre-smoother)
linear system matrix = precond matrix:
Mat Object: 8192 MPI processes
type: mpiaij
rows=33554432, cols=33554432
total: nonzeros=2.34226e+08, allocated nonzeros=2.34226e+08
total number of mallocs used during MatSetValues calls =0
has attached null space
#PETSc Option Table entries:
-finput input.txt
-ksp_initial_guess_nonzero yes
-ksp_norm_type unpreconditioned
-ksp_rtol 1e-9
-ksp_type cg
-ksp_view
-log_summary log_mg7.txt
-mg_coarse_dmdarepart_ksp_constant_null_space
-mg_coarse_dmdarepart_ksp_type preonly
-mg_coarse_dmdarepart_mg_coarse_ksp_type preonly
-mg_coarse_dmdarepart_mg_coarse_pc_type redundant
-mg_coarse_dmdarepart_mg_levels_ksp_type richardson
-mg_coarse_dmdarepart_pc_mg_galerkin
-mg_coarse_dmdarepart_pc_mg_levels 2
-mg_coarse_dmdarepart_pc_type mg
-mg_coarse_ksp_type preonly
-mg_coarse_pc_dmdarepart_factor 64
-mg_coarse_pc_type dmdarepart
-mg_levels_ksp_type richardson
-options_left
-pc_dmdarepart_log
-pc_dmdarepart_monitor
-pc_mg_galerkin
-pc_mg_levels 5
-pc_type mg
#End of PETSc Option Table entries
There are 3 unused database options. They are:
Option left: name:-finput value: input.txt
Option left: name:-mg_coarse_dmdarepart_ksp_constant_null_space (no value)
Option left: name:-pc_dmdarepart_monitor (no value)
Application 25736695 resources: utime ~29149s, stime ~48455s, Rss ~64608, inblocks ~6174814, outblocks ~18104253
-------------- next part --------------
KSP Object: 8192 MPI processes
type: cg
maximum iterations=10000
tolerances: relative=1e-09, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using UNPRECONDITIONED norm type for convergence test
PC Object: 8192 MPI processes
type: mg
MG: type is MULTIPLICATIVE, levels=5 cycles=v
Cycles per PCApply=1
Using Galerkin computed coarse grid matrices
Coarse grid solver -- level -------------------------------
KSP Object: (mg_coarse_) 8192 MPI processes
type: preonly
maximum iterations=1, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using NONE norm type for convergence test
PC Object: (mg_coarse_) 8192 MPI processes
type: redundant
Redundant preconditioner: First (color=0) of 8192 PCs follows
KSP Object: (mg_coarse_redundant_) 1 MPI processes
type: preonly
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using NONE norm type for convergence test
PC Object: (mg_coarse_redundant_) 1 MPI processes
type: lu
LU: out-of-place factorization
tolerance for zero pivot 2.22045e-14
using diagonal shift on blocks to prevent zero pivot [INBLOCKS]
matrix ordering: nd
factor fill ratio given 5, needed 23.9038
Factored matrix follows:
Mat Object: 1 MPI processes
type: seqaij
rows=8192, cols=8192
package used to perform factorization: petsc
total: nonzeros=1.30955e+06, allocated nonzeros=1.30955e+06
total number of mallocs used during MatSetValues calls =0
not using I-node routines
linear system matrix = precond matrix:
Mat Object: 1 MPI processes
type: seqaij
rows=8192, cols=8192
total: nonzeros=54784, allocated nonzeros=54784
total number of mallocs used during MatSetValues calls =0
not using I-node routines
linear system matrix = precond matrix:
Mat Object: 8192 MPI processes
type: mpiaij
rows=8192, cols=8192
total: nonzeros=54784, allocated nonzeros=54784
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
Down solver (pre-smoother) on level 1 -------------------------------
KSP Object: (mg_levels_1_) 8192 MPI processes
type: richardson
Richardson: damping factor=1
maximum iterations=2
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_1_) 8192 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Mat Object: 8192 MPI processes
type: mpiaij
rows=65536, cols=65536
total: nonzeros=448512, allocated nonzeros=448512
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
Up solver (post-smoother) same as down solver (pre-smoother)
Down solver (pre-smoother) on level 2 -------------------------------
KSP Object: (mg_levels_2_) 8192 MPI processes
type: richardson
Richardson: damping factor=1
maximum iterations=2
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_2_) 8192 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Mat Object: 8192 MPI processes
type: mpiaij
rows=524288, cols=524288
total: nonzeros=3.62906e+06, allocated nonzeros=3.62906e+06
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
Up solver (post-smoother) same as down solver (pre-smoother)
Down solver (pre-smoother) on level 3 -------------------------------
KSP Object: (mg_levels_3_) 8192 MPI processes
type: richardson
Richardson: damping factor=1
maximum iterations=2
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_3_) 8192 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Mat Object: 8192 MPI processes
type: mpiaij
rows=4194304, cols=4194304
total: nonzeros=2.91963e+07, allocated nonzeros=2.91963e+07
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
Up solver (post-smoother) same as down solver (pre-smoother)
Down solver (pre-smoother) on level 4 -------------------------------
KSP Object: (mg_levels_4_) 8192 MPI processes
type: richardson
Richardson: damping factor=1
maximum iterations=2
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_4_) 8192 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Mat Object: 8192 MPI processes
type: mpiaij
rows=33554432, cols=33554432
total: nonzeros=2.34226e+08, allocated nonzeros=2.34226e+08
total number of mallocs used during MatSetValues calls =0
has attached null space
Up solver (post-smoother) same as down solver (pre-smoother)
linear system matrix = precond matrix:
Mat Object: 8192 MPI processes
type: mpiaij
rows=33554432, cols=33554432
total: nonzeros=2.34226e+08, allocated nonzeros=2.34226e+08
total number of mallocs used during MatSetValues calls =0
has attached null space
-------------- next part --------------
************************************************************************************************************************
*** WIDEN YOUR WINDOW TO 120 CHARACTERS. Use 'enscript -r -fCourier9' to print this document ***
************************************************************************************************************************
---------------------------------------------- PETSc Performance Summary: ----------------------------------------------
/u/sciteam/mrosso/mrosso-repo/build/bin/test_droplet_box.exe on a gnu-opt-32idx named p
þÿÿ with 8192 processors, by mrosso Tue Jul 28 16:20:21 2015
Using Petsc Development GIT revision: v3.6-233-g4936542 GIT Date: 2015-07-17 10:15:47 -0500
Max Max/Min Avg Total
Time (sec): 7.498e+00 1.01676 7.375e+00
Objects: 1.385e+03 1.30537 1.066e+03
Flops: 9.815e+07 1.30922 7.642e+07 6.260e+11
Flops/sec: 1.331e+07 1.30928 1.036e+07 8.488e+10
MPI Messages: 3.595e+04 5.80931 1.225e+04 1.003e+08
MPI Message Lengths: 9.104e+06 2.00024 7.063e+02 7.086e+10
MPI Reductions: 1.427e+03 1.09349
Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
e.g., VecAXPY() for real vectors of length N --> 2N flops
and VecAXPY() for complex vectors of length N --> 8N flops
Summary of Stages: ----- Time ------ ----- Flops ----- --- Messages --- -- Message Lengths -- -- Reductions --
Avg %Total Avg %Total counts %Total Avg %Total counts %Total
0: Main Stage: 7.0526e+00 95.6% 6.2314e+11 99.5% 9.376e+07 93.5% 7.044e+02 99.7% 1.260e+03 88.3%
1: PCRprt_SetUpMat: 2.7279e-02 0.4% 6.5418e+05 0.0% 6.123e+05 0.6% 5.817e-02 0.0% 4.425e+01 3.1%
2: PCRprt_Apply: 2.9504e-01 4.0% 2.8632e+09 0.5% 5.947e+06 5.9% 1.880e+00 0.3% 1.156e+00 0.1%
------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
Count: number of times phase was executed
Time and Flops: Max - maximum over all processors
Ratio - ratio of maximum to minimum over all processors
Mess: number of messages sent
Avg. len: average message length (bytes)
Reduct: number of global reductions
Global: entire computation
Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
%T - percent time in this phase %F - percent flops in this phase
%M - percent messages in this phase %L - percent message lengths in this phase
%R - percent reductions in this phase
Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------
Event Count Time (sec) Flops --- Global --- --- Stage --- Total
Max Ratio Max Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------
--- Event Stage 0: Main Stage
VecTDot 232 1.0 3.9837e-02 2.6 1.90e+06 1.0 0.0e+00 0.0e+00 2.3e+02 0 2 0 0 16 0 2 0 0 18 390775
VecNorm 123 1.0 1.7174e-02 1.9 1.01e+06 1.0 0.0e+00 0.0e+00 1.2e+02 0 1 0 0 9 0 1 0 0 10 480626
VecScale 1048 1.0 1.5078e-0218.8 1.92e+05 1.8 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 99231
VecCopy 121 1.0 1.2872e-03 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecSet 1647 1.0 1.6298e-03 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecAXPY 696 1.0 6.7093e-03 1.4 5.70e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 7 0 0 0 0 7 0 0 0 6961607
VecAYPX 927 1.0 4.6690e-03 1.4 2.90e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 4 0 0 0 0 4 0 0 0 5084883
VecAssemblyBegin 4 1.0 1.3000e-02 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 1.2e+01 0 0 0 0 1 0 0 0 0 1 0
VecAssemblyEnd 4 1.0 1.4210e-0429.8 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecScatterBegin 2907 1.0 2.7453e-02 2.1 0.00e+00 0.0 9.2e+07 7.6e+02 0.0e+00 0 0 92 99 0 0 0 98 99 0 0
VecScatterEnd 2907 1.0 1.8748e-01 3.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 2 0 0 0 0 2 0 0 0 0 0
MatMult 931 1.0 2.3768e-01 2.6 3.19e+07 1.0 4.3e+07 1.4e+03 0.0e+00 2 42 43 84 0 2 42 46 84 0 1096892
MatMultAdd 464 1.0 4.9362e-03 1.2 1.09e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 1 0 0 0 0 1 0 0 0 1801895
MatMultTranspose 468 1.0 1.6587e-02 2.6 1.10e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 1 0 0 0 0 1 0 0 0 540858
MatSOR 1160 1.0 1.8799e-01 1.6 3.03e+07 1.0 4.9e+07 2.2e+02 0.0e+00 2 40 48 15 0 2 40 52 15 0 1319153
MatResidual 464 1.0 7.4724e-02 2.5 7.60e+06 1.0 2.2e+07 6.8e+02 0.0e+00 1 10 22 21 0 1 10 23 21 0 830522
MatAssemblyBegin 26 1.0 3.0778e-02 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 3.6e+01 0 0 0 0 3 0 0 0 0 3 0
MatAssemblyEnd 26 1.0 3.6265e-02 1.0 0.00e+00 0.0 4.8e+05 1.3e+02 8.0e+01 0 0 0 0 6 0 0 1 0 6 0
MatView 55 1.8 3.3602e-01 9.8 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+01 4 0 0 0 2 5 0 0 0 2 0
MatPtAP 8 1.0 4.7572e-02 1.0 2.06e+05 1.0 1.1e+06 3.5e+02 7.6e+01 1 0 1 1 5 1 0 1 1 6 35313
MatPtAPSymbolic 4 1.0 2.7729e-02 1.1 0.00e+00 0.0 5.6e+05 4.5e+02 2.8e+01 0 0 1 0 2 0 0 1 0 2 0
MatPtAPNumeric 8 1.0 2.1160e-02 1.1 2.06e+05 1.0 5.6e+05 2.6e+02 4.8e+01 0 0 1 0 3 0 0 1 0 4 79392
MatGetLocalMat 8 1.0 6.5184e-04 1.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatGetBrAoCol 8 1.0 1.9581e-03 2.4 0.00e+00 0.0 7.5e+05 5.1e+02 0.0e+00 0 0 1 1 0 0 0 1 1 0 0
MatGetSymTrans 8 1.0 1.2302e-04 2.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
KSPSetUp 14 1.0 6.8645e-03 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 1.4e+01 0 0 0 0 1 0 0 0 0 1 0
KSPSolve 4 1.0 1.0214e+00 1.0 9.81e+07 1.3 1.0e+08 7.1e+02 1.2e+03 14100100100 86 14100107100 97 612784
PCSetUp 4 1.0 1.7279e-01 1.0 2.76e+05 1.0 2.2e+06 1.9e+02 2.8e+02 2 0 2 1 20 2 0 2 1 22 13054
PCApply 116 1.0 7.6665e-01 1.0 8.58e+07 1.4 9.2e+07 6.4e+02 4.7e+02 10 84 92 83 33 11 84 99 83 37 684611
--- Event Stage 1: PCRprt_SetUpMat
VecSet 3 1.5 1.3113e-05 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatAssemblyBegin 10 1.2 5.4898e-03 2.0 0.00e+00 0.0 0.0e+00 0.0e+00 4.1e+00 0 0 0 0 0 11 0 0 0 9 0
MatAssemblyEnd 10 1.2 9.6285e-03 1.1 0.00e+00 0.0 1.9e+05 4.2e+00 1.6e+01 0 0 0 0 1 33 0 31 13 36 0
MatGetRow 192 0.0 4.2677e-05 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatGetSubMatrice 2 1.0 1.0698e-02 2.3 0.00e+00 0.0 8.1e+04 2.3e+01 6.0e+00 0 0 0 0 0 22 0 13 32 14 0
MatZeroEntries 1 0.0 3.0994e-06 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatPtAP 2 1.0 2.0634e-02 1.0 8.40e+01 2.6 5.3e+05 7.4e+00 3.4e+01 0 0 1 0 2 75100 87 67 77 32
MatPtAPSymbolic 2 1.0 8.6851e-03 1.1 0.00e+00 0.0 3.3e+05 7.0e+00 1.4e+01 0 0 0 0 1 31 0 54 40 32 0
MatPtAPNumeric 2 1.0 1.2376e-02 1.0 8.40e+01 2.6 2.0e+05 7.9e+00 2.0e+01 0 0 0 0 1 44100 33 28 45 53
MatGetLocalMat 2 1.0 6.1274e-05 1.7 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatGetBrAoCol 2 1.0 4.8995e-04 3.7 0.00e+00 0.0 2.8e+05 5.3e+00 0.0e+00 0 0 0 0 0 1 0 46 26 0 0
MatGetSymTrans 4 1.0 2.0742e-05 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
--- Event Stage 2: PCRprt_Apply
VecScale 348 0.0 2.3985e-04 0.0 3.34e+04 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 14114
VecSet 1167 3.4 5.2118e-04 9.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecAYPX 116 0.0 7.3195e-05 0.0 7.42e+03 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 12983
VecScatterBegin 1393 3.0 3.2119e-02112.6 0.00e+00 0.0 5.9e+06 3.2e+01 0.0e+00 0 0 6 0 0 0 0 99 99 0 0
VecScatterEnd 1393 3.0 3.2946e-01 2.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 4 0 0 0 0 99 0 0 0 0 0
MatMult 232 2.0 4.5841e-02336.1 9.67e+04834.0 1.0e+06 1.6e+01 0.0e+00 0 0 1 0 0 1 0 17 9 0 298
MatMultAdd 116 0.0 2.9373e-04 0.0 1.48e+04 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 6470
MatMultTranspose 233 2.0 3.0067e-0290.1 1.52e+0465.6 9.4e+05 8.0e+00 0.0e+00 0 0 1 0 0 1 0 16 4 0 127
MatSolve 116 0.0 2.3469e-02 0.0 1.47e+07 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 66 0 0 0 79995
MatSOR 232 0.0 4.8394e-02 0.0 5.50e+05 0.0 2.1e+05 1.3e+02 0.0e+00 0 0 0 0 0 0 2 4 14 0 1398
MatLUFactorSym 1 0.0 2.5880e-03 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatLUFactorNum 2 0.0 1.0722e-02 0.0 7.01e+06 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 31 0 0 0 83692
MatCopy 1 0.0 3.0041e-05 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatConvert 1 0.0 7.4148e-05 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatResidual 116 0.0 4.5305e-02 0.0 1.04e+05 0.0 7.1e+04 1.3e+02 0.0e+00 0 0 0 0 0 0 0 1 5 0 281
MatAssemblyBegin 6 0.0 4.5967e-04 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 9.4e-02 0 0 0 0 0 0 0 0 0 8 0
MatAssemblyEnd 6 0.0 9.6583e-04 0.0 0.00e+00 0.0 1.2e+03 1.0e+01 2.5e-01 0 0 0 0 0 0 0 0 0 22 0
MatGetRowIJ 1 0.0 9.5844e-05 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatGetSubMatrice 2 0.0 2.3339e-03 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 9.4e-02 0 0 0 0 0 0 0 0 0 8 0
MatGetOrdering 1 0.0 8.8000e-04 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatPtAP 2 0.0 1.5650e-03 0.0 2.82e+03 0.0 3.6e+03 6.7e+01 3.0e-01 0 0 0 0 0 0 0 0 0 26 217
MatPtAPSymbolic 1 0.0 6.5613e-04 0.0 0.00e+00 0.0 1.8e+03 8.5e+01 1.1e-01 0 0 0 0 0 0 0 0 0 9 0
MatPtAPNumeric 2 0.0 9.1791e-04 0.0 2.82e+03 0.0 1.8e+03 4.9e+01 1.9e-01 0 0 0 0 0 0 0 0 0 16 370
MatRedundantMat 2 0.0 2.4142e-03 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 9.4e-02 0 0 0 0 0 0 0 0 0 8 0
MatGetLocalMat 2 0.0 3.7909e-05 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatGetBrAoCol 2 0.0 2.0623e-04 0.0 0.00e+00 0.0 2.4e+03 9.6e+01 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatGetSymTrans 2 0.0 4.0531e-06 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
KSPSetUp 8 0.0 1.2207e-04 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 3.1e-02 0 0 0 0 0 0 0 0 0 3 0
KSPSolve 116 0.0 2.6315e-01 0.0 2.24e+07 0.0 2.2e+06 7.2e+01 1.2e+00 0 0 2 0 0 1100 37 84100 10866
PCSetUp 2 0.0 4.0980e-02 0.0 7.01e+06 0.0 3.8e+04 5.0e+01 1.2e+00 0 0 0 0 0 0 31 1 1100 21909
PCApply 116 0.0 2.2205e-01 0.0 1.54e+07 0.0 2.2e+06 7.2e+01 0.0e+00 0 0 2 0 0 1 69 36 83 0 8834
------------------------------------------------------------------------------------------------------------------------
Memory usage is given in bytes:
Object Type Creations Destructions Memory Descendants' Mem.
Reports information only for process 0.
--- Event Stage 0: Main Stage
Vector 778 791 2774488 0
Vector Scatter 18 23 29872 0
Matrix 38 52 1988092 0
Matrix Null Space 1 1 584 0
Distributed Mesh 7 7 34664 0
Star Forest Bipartite Graph 14 14 11760 0
Discrete System 7 7 5880 0
Index Set 36 41 67040 0
IS L to G Mapping 7 7 8480 0
Krylov Solver 11 11 13376 0
DMKSP interface 4 5 3200 0
Preconditioner 11 11 10864 0
Viewer 13 11 8272 0
--- Event Stage 1: PCRprt_SetUpMat
Vector 6 5 7840 0
Vector Scatter 3 2 2128 0
Matrix 15 12 43656 0
Index Set 10 10 7896 0
--- Event Stage 2: PCRprt_Apply
Vector 369 357 686800 0
Vector Scatter 5 0 0 0
Matrix 11 0 0 0
Distributed Mesh 1 0 0 0
Star Forest Bipartite Graph 2 0 0 0
Discrete System 1 0 0 0
Index Set 15 10 16000 0
IS L to G Mapping 1 0 0 0
DMKSP interface 1 0 0 0
========================================================================================================================
Average time to get PetscTime(): 1.19209e-07
Average time for MPI_Barrier(): 5.19753e-05
Average time for zero size MPI_Send(): 2.16846e-05
#PETSc Option Table entries:
-finput input.txt
-ksp_initial_guess_nonzero yes
-ksp_norm_type unpreconditioned
-ksp_rtol 1e-9
-ksp_type cg
-ksp_view
-log_summary log_mg7.txt
-mg_coarse_dmdarepart_ksp_constant_null_space
-mg_coarse_dmdarepart_ksp_type preonly
-mg_coarse_dmdarepart_mg_coarse_ksp_type preonly
-mg_coarse_dmdarepart_mg_coarse_pc_type redundant
-mg_coarse_dmdarepart_mg_levels_ksp_type richardson
-mg_coarse_dmdarepart_pc_mg_galerkin
-mg_coarse_dmdarepart_pc_mg_levels 2
-mg_coarse_dmdarepart_pc_type mg
-mg_coarse_ksp_type preonly
-mg_coarse_pc_dmdarepart_factor 64
-mg_coarse_pc_type dmdarepart
-mg_levels_ksp_type richardson
-options_left
-pc_dmdarepart_log
-pc_dmdarepart_monitor
-pc_mg_galerkin
-pc_mg_levels 5
-pc_type mg
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 4
Configure options: --known-level1-dcache-size=16384 --known-level1-dcache-linesize=64 --known-level1-dcache-assoc=4 --known-sizeof-char=1 --known-sizeof-void-p=8 --known-sizeof-short=2 --known-sizeof-int=4 --known-sizeof-long=8 --known-sizeof-long-long=8 --known-sizeof-float=4 --known-sizeof-double=8 --known-sizeof-size_t=8 --known-bits-per-byte=8 --known-memcmp-ok=1 --known-sizeof-MPI_Comm=4 --known-sizeof-MPI_Fint=4 --known-mpi-long-double=1 --known-mpi-int64_t=1 --known-mpi-c-double-complex=1 --known-sdot-returns-double=0 --known-snrm2-returns-double=0 --with-batch="1 " --known-mpi-shared="0 " --known-mpi-shared-libraries=0 --known-memcmp-ok --with-blas-lapack-lib=/opt/acml/5.3.1/gfortran64/lib/libacml.a --COPTFLAGS="-Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -O3 -march=native -mtune=native" --FOPTFLAGS="-Wall -Wno-unused-variable -ffree-line-length-0 -Wno-unused-dummy-argument -O3 -march=native -mtune=native" --CXXOPTFLAGS="-Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -O3 -march=native -mtune=native" --with-x="0 " --with-debugging=0 --with-clib-autodetect="0 " --with-cxxlib-autodetect="0 " --with-fortranlib-autodetect="0 " --with-shared-libraries="0 " --with-mpi-compilers="1 " --with-cc="cc " --with-cxx="CC " --with-fc="ftn " --download-hypre=1 --download-blacs="1 " --download-scalapack="1 " --download-superlu_dist="1 " --download-metis="1 " --download-parmetis="1 " PETSC_ARCH=gnu-opt-32idx
-----------------------------------------
Libraries compiled on Sat Jul 18 19:48:51 2015 on h2ologin1
Machine characteristics: Linux-3.0.101-0.46-default-x86_64-with-SuSE-11-x86_64
Using PETSc directory: /u/sciteam/mrosso/LIBS/petsc
Using PETSc arch: gnu-opt-32idx
-----------------------------------------
Using C compiler: cc -Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -O3 -march=native -mtune=native ${COPTFLAGS} ${CFLAGS}
Using Fortran compiler: ftn -Wall -Wno-unused-variable -ffree-line-length-0 -Wno-unused-dummy-argument -O3 -march=native -mtune=native ${FOPTFLAGS} ${FFLAGS}
-----------------------------------------
Using include paths: -I/u/sciteam/mrosso/LIBS/petsc/gnu-opt-32idx/include -I/u/sciteam/mrosso/LIBS/petsc/include -I/u/sciteam/mrosso/LIBS/petsc/include -I/u/sciteam/mrosso/LIBS/petsc/gnu-opt-32idx/include
-----------------------------------------
Using C linker: cc
Using Fortran linker: ftn
Using libraries: -Wl,-rpath,/u/sciteam/mrosso/LIBS/petsc/gnu-opt-32idx/lib -L/u/sciteam/mrosso/LIBS/petsc/gnu-opt-32idx/lib -lpetsc -Wl,-rpath,/u/sciteam/mrosso/LIBS/petsc/gnu-opt-32idx/lib -L/u/sciteam/mrosso/LIBS/petsc/gnu-opt-32idx/lib -lsuperlu_dist_4.0 -lHYPRE -lscalapack -Wl,-rpath,/opt/acml/5.3.1/gfortran64/lib -L/opt/acml/5.3.1/gfortran64/lib -lacml -lparmetis -lmetis -lssl -lcrypto -ldl
-----------------------------------------
-------------- next part --------------
************************************************************************************************************************
*** WIDEN YOUR WINDOW TO 120 CHARACTERS. Use 'enscript -r -fCourier9' to print this document ***
************************************************************************************************************************
---------------------------------------------- PETSc Performance Summary: ----------------------------------------------
/u/sciteam/mrosso/mrosso-repo/build/bin/test_droplet_box.exe on a gnu-opt-32idx named p
þÿÿ with 8192 processors, by mrosso Tue Jul 28 15:28:29 2015
Using Petsc Development GIT revision: v3.6-233-g4936542 GIT Date: 2015-07-17 10:15:47 -0500
Max Max/Min Avg Total
Time (sec): 5.098e+02 1.00007 5.098e+02
Objects: 7.400e+02 1.00000 7.400e+02
Flops: 5.499e+08 1.00167 5.498e+08 4.504e+12
Flops/sec: 1.079e+06 1.00174 1.078e+06 8.834e+09
MPI Messages: 7.381e+05 1.00619 7.376e+05 6.043e+09
MPI Message Lengths: 1.267e+07 1.36946 1.669e+01 1.008e+11
MPI Reductions: 1.009e+03 1.00000
Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
e.g., VecAXPY() for real vectors of length N --> 2N flops
and VecAXPY() for complex vectors of length N --> 8N flops
Summary of Stages: ----- Time ------ ----- Flops ----- --- Messages --- -- Message Lengths -- -- Reductions --
Avg %Total Avg %Total counts %Total Avg %Total counts %Total
0: Main Stage: 5.0982e+02 100.0% 4.5037e+12 100.0% 6.043e+09 100.0% 1.669e+01 100.0% 1.008e+03 99.9%
------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
Count: number of times phase was executed
Time and Flops: Max - maximum over all processors
Ratio - ratio of maximum to minimum over all processors
Mess: number of messages sent
Avg. len: average message length (bytes)
Reduct: number of global reductions
Global: entire computation
Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
%T - percent time in this phase %F - percent flops in this phase
%M - percent messages in this phase %L - percent message lengths in this phase
%R - percent reductions in this phase
Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------
Event Count Time (sec) Flops --- Global --- --- Stage --- Total
Max Ratio Max Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------
--- Event Stage 0: Main Stage
VecTDot 174 1.0 1.5646e-01 1.5 1.43e+06 1.0 0.0e+00 0.0e+00 1.7e+02 0 0 0 0 17 0 0 0 0 17 74621
VecNorm 94 1.0 5.5188e-02 2.5 7.70e+05 1.0 0.0e+00 0.0e+00 9.4e+01 0 0 0 0 9 0 0 0 0 9 114305
VecScale 787 1.0 1.4017e-03 1.9 1.48e+05 1.8 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 824521
VecCopy 92 1.0 1.0190e-03 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecSet 1329 1.0 3.7305e-03 1.6 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecAXPY 522 1.0 5.5845e-03 1.3 4.28e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 1 0 0 0 0 1 0 0 0 6272892
VecAYPX 695 1.0 3.0615e-02 9.2 2.17e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 580237
VecAssemblyBegin 4 1.0 1.3102e-02 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 1.2e+01 0 0 0 0 1 0 0 0 0 1 0
VecAssemblyEnd 4 1.0 1.8620e-0432.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecScatterBegin 2356 1.0 1.6390e+01 4.7 0.00e+00 0.0 5.9e+09 1.7e+01 0.0e+00 2 0 98 99 0 2 0 98 99 0 0
VecScatterEnd 2356 1.0 4.1647e+02 1.6 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 69 0 0 0 0 69 0 0 0 0 0
MatMult 699 1.0 5.2895e+01643.0 2.40e+07 1.0 3.3e+07 1.4e+03 0.0e+00 1 4 1 44 0 1 4 1 44 0 3703
MatMultAdd 348 1.0 5.8870e-03 1.5 8.14e+05 1.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 1133153
MatMultTranspose 352 1.0 6.3620e-03 1.3 8.24e+05 1.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 1060614
MatSolve 87 1.0 3.9927e-01 1.3 2.27e+08 1.0 0.0e+00 0.0e+00 0.0e+00 0 41 0 0 0 0 41 0 0 0 4660544
MatSOR 870 1.0 1.1567e+02523.3 2.27e+07 1.0 3.6e+07 2.2e+02 0.0e+00 7 4 1 8 0 7 4 1 8 0 1608
MatLUFactorSym 1 1.0 5.9881e-02 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatLUFactorNum 1 1.0 5.9217e-01 1.1 2.66e+08 1.0 0.0e+00 0.0e+00 0.0e+00 0 48 0 0 0 0 48 0 0 0 3673552
MatConvert 1 1.0 1.0331e-03 2.6 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatResidual 348 1.0 3.3047e-0113.8 5.70e+06 1.0 1.6e+07 6.8e+02 0.0e+00 0 1 0 11 0 0 1 0 11 0 140845
MatAssemblyBegin 22 1.0 2.4983e-02 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 2.6e+01 0 0 0 0 3 0 0 0 0 3 0
MatAssemblyEnd 22 1.0 3.3268e-02 1.1 0.00e+00 0.0 4.7e+05 1.4e+02 7.2e+01 0 0 0 0 7 0 0 0 0 7 0
MatGetRowIJ 1 1.0 5.8293e-04 1.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatGetSubMatrice 1 1.0 2.2252e-02 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 4.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatGetOrdering 1 1.0 9.7980e-03 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatView 40 1.3 3.3014e-01 3.5 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+01 0 0 0 0 3 0 0 0 0 3 0
MatPtAP 4 1.0 4.4705e-02 1.0 1.03e+05 1.0 9.3e+05 2.9e+02 6.8e+01 0 0 0 0 7 0 0 0 0 7 18789
MatPtAPSymbolic 4 1.0 2.9025e-02 1.0 0.00e+00 0.0 5.6e+05 4.5e+02 2.8e+01 0 0 0 0 3 0 0 0 0 3 0
MatPtAPNumeric 4 1.0 1.6840e-02 1.1 1.03e+05 1.0 3.7e+05 4.4e+01 4.0e+01 0 0 0 0 4 0 0 0 0 4 49879
MatRedundantMat 1 1.0 2.3107e-02 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 4.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatGetLocalMat 4 1.0 6.1631e-04 1.7 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatGetBrAoCol 4 1.0 1.4648e-03 2.8 0.00e+00 0.0 5.6e+05 4.5e+02 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatGetSymTrans 8 1.0 1.4162e-04 2.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
KSPSetUp 10 1.0 4.6747e-03 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 1.4e+01 0 0 0 0 1 0 0 0 0 1 0
KSPSolve 4 1.0 5.0087e+02 1.0 5.50e+08 1.0 6.0e+09 1.7e+01 9.2e+02 98100100100 91 98100100100 92 8992
PCSetUp 4 1.0 6.8538e+01 1.0 2.66e+08 1.0 1.4e+08 1.0e+01 2.1e+02 13 48 2 1 21 13 48 2 1 21 31760
PCApply 87 1.0 4.3206e+02 1.0 2.75e+08 1.0 5.9e+09 1.5e+01 3.5e+02 85 50 98 90 34 85 50 98 90 35 5213
------------------------------------------------------------------------------------------------------------------------
Memory usage is given in bytes:
Object Type Creations Destructions Memory Descendants' Mem.
Reports information only for process 0.
--- Event Stage 0: Main Stage
Vector 597 597 2364880 0
Vector Scatter 16 15 20656 0
Matrix 38 38 18267636 0
Matrix Null Space 1 1 584 0
Distributed Mesh 5 4 19808 0
Star Forest Bipartite Graph 10 8 6720 0
Discrete System 5 4 3360 0
Index Set 37 37 186396 0
IS L to G Mapping 5 4 6020 0
Krylov Solver 7 7 8608 0
DMKSP interface 4 4 2560 0
Preconditioner 7 7 6792 0
Viewer 8 6 4512 0
========================================================================================================================
Average time to get PetscTime(): 2.14577e-07
Average time for MPI_Barrier(): 7.26223e-05
Average time for zero size MPI_Send(): 1.60854e-06
#PETSc Option Table entries:
-finput input.txt
-ksp_initial_guess_nonzero yes
-ksp_norm_type unpreconditioned
-ksp_rtol 1e-9
-ksp_type cg
-ksp_view
-log_summary log_mg_defaults.txt
-mg_coarse_ksp_type preonly
-mg_levels_ksp_type richardson
-pc_dmdarepart_log
-pc_mg_galerkin
-pc_mg_levels 5
-pc_type mg
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 4
Configure options: --known-level1-dcache-size=16384 --known-level1-dcache-linesize=64 --known-level1-dcache-assoc=4 --known-sizeof-char=1 --known-sizeof-void-p=8 --known-sizeof-short=2 --known-sizeof-int=4 --known-sizeof-long=8 --known-sizeof-long-long=8 --known-sizeof-float=4 --known-sizeof-double=8 --known-sizeof-size_t=8 --known-bits-per-byte=8 --known-memcmp-ok=1 --known-sizeof-MPI_Comm=4 --known-sizeof-MPI_Fint=4 --known-mpi-long-double=1 --known-mpi-int64_t=1 --known-mpi-c-double-complex=1 --known-sdot-returns-double=0 --known-snrm2-returns-double=0 --with-batch="1 " --known-mpi-shared="0 " --known-mpi-shared-libraries=0 --known-memcmp-ok --with-blas-lapack-lib=/opt/acml/5.3.1/gfortran64/lib/libacml.a --COPTFLAGS="-Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -O3 -march=native -mtune=native" --FOPTFLAGS="-Wall -Wno-unused-variable -ffree-line-length-0 -Wno-unused-dummy-argument -O3 -march=native -mtune=native" --CXXOPTFLAGS="-Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -O3 -march=native -mtune=native" --with-x="0 " --with-debugging=0 --with-clib-autodetect="0 " --with-cxxlib-autodetect="0 " --with-fortranlib-autodetect="0 " --with-shared-libraries="0 " --with-mpi-compilers="1 " --with-cc="cc " --with-cxx="CC " --with-fc="ftn " --download-hypre=1 --download-blacs="1 " --download-scalapack="1 " --download-superlu_dist="1 " --download-metis="1 " --download-parmetis="1 " PETSC_ARCH=gnu-opt-32idx
-----------------------------------------
Libraries compiled on Sat Jul 18 19:48:51 2015 on h2ologin1
Machine characteristics: Linux-3.0.101-0.46-default-x86_64-with-SuSE-11-x86_64
Using PETSc directory: /u/sciteam/mrosso/LIBS/petsc
Using PETSc arch: gnu-opt-32idx
-----------------------------------------
Using C compiler: cc -Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -O3 -march=native -mtune=native ${COPTFLAGS} ${CFLAGS}
Using Fortran compiler: ftn -Wall -Wno-unused-variable -ffree-line-length-0 -Wno-unused-dummy-argument -O3 -march=native -mtune=native ${FOPTFLAGS} ${FFLAGS}
-----------------------------------------
Using include paths: -I/u/sciteam/mrosso/LIBS/petsc/gnu-opt-32idx/include -I/u/sciteam/mrosso/LIBS/petsc/include -I/u/sciteam/mrosso/LIBS/petsc/include -I/u/sciteam/mrosso/LIBS/petsc/gnu-opt-32idx/include
-----------------------------------------
Using C linker: cc
Using Fortran linker: ftn
Using libraries: -Wl,-rpath,/u/sciteam/mrosso/LIBS/petsc/gnu-opt-32idx/lib -L/u/sciteam/mrosso/LIBS/petsc/gnu-opt-32idx/lib -lpetsc -Wl,-rpath,/u/sciteam/mrosso/LIBS/petsc/gnu-opt-32idx/lib -L/u/sciteam/mrosso/LIBS/petsc/gnu-opt-32idx/lib -lsuperlu_dist_4.0 -lHYPRE -lscalapack -Wl,-rpath,/opt/acml/5.3.1/gfortran64/lib -L/opt/acml/5.3.1/gfortran64/lib -lacml -lparmetis -lmetis -lssl -lcrypto -ldl
-----------------------------------------
More information about the petsc-users
mailing list