[petsc-users] GAMG speed
Michele Rosso
mrosso at uci.edu
Tue Aug 13 19:05:50 CDT 2013
Hi Matt,
I attached the output of the commands you suggested.
The options I used are:
-log_summary -ksp_monitor -ksp_view -ksp_converged_reason -pc_type mg
-pc_mg_galerkin -pc_mg_levels 5 -options_left
and here are the lines of codes where I setup the solution process:
call DMDACreate3d( PETSC_COMM_WORLD
, &
& DMDA_BOUNDARY_PERIODIC ,
DMDA_BOUNDARY_PERIODIC, &
& DMDA_BOUNDARY_PERIODIC ,
DMDA_STENCIL_STAR, &
& N_Z , N_Y , N_X , N_B3 , N_B2 , 1_ip, 1_ip , 1_ip , &
& NNZ ,NNY , NNX, da , ierr)
! Create Global Vectors
call DMCreateGlobalVector(da,b,ierr)
call VecDuplicate(b,x,ierr)
! Set initial guess for first use of the module to 0
call VecSet(x,0.0_rp,ierr)
! Create matrix
call DMCreateMatrix(da,MATAIJ,A,ierr)
! Create solver
call KSPCreate(PETSC_COMM_WORLD,ksp,ierr)
call KSPSetDM(ksp,da,ierr)
call KSPSetDMActive(ksp,PETSC_FALSE,ierr)
call KSPSetOperators(ksp,A,A,SAME_NONZERO_PATTERN,ierr)
call KSPSetType(ksp,KSPCG,ierr)
call KSPSetNormType(ksp,KSP_NORM_UNPRECONDITIONED,ierr)
call KSPSetInitialGuessNonzero(ksp,PETSC_TRUE,ierr)
call KSPSetTolerances(ksp, tol ,PETSC_DEFAULT_DOUBLE_PRECISION,&
& PETSC_DEFAULT_DOUBLE_PRECISION,PETSC_DEFAULT_INTEGER,ierr)
! Nullspace removal
call MatNullSpaceCreate(
PETSC_COMM_WORLD,PETSC_TRUE,PETSC_NULL_INTEGER,&
& PETSC_NULL_INTEGER,nullspace,ierr)
call KSPSetNullspace(ksp,nullspace,ierr)
call MatNullSpaceDestroy(nullspace,ierr)
! To allow using option from command line
call KSPSetFromOptions(ksp,ierr)
Hope I did not omit anything useful.
Thank you for your time.
Best,
Michele
On 08/13/2013 04:26 PM, Matthew Knepley wrote:
> On Tue, Aug 13, 2013 at 6:09 PM, Michele Rosso <mrosso at uci.edu
> <mailto:mrosso at uci.edu>> wrote:
>
> Hi Karli,
>
> thank you for your hint: now it works.
> Now I would like to speed up the solution: I was counting on
> increasing the number of levels/the number of processors used, but
> now I see I cannot do that.
> Do you have any hint to achieve better speed?
> Thanks!
>
>
> "Better speed" is not very helpful for us, and thus we cannot offer
> much help. You could
>
> 1) Send the output of -log_summary -ksp_monitor -ksp_view
>
> 2) Describe the operator succintly
>
> Matt
>
> Best,
> Michele
>>>>>>>>>>>>>>>>>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20130813/4561546f/attachment-0001.html>
-------------- next part --------------
0 KSP Residual norm 3.653385002401e-05
1 KSP Residual norm 9.460380827787e-07
2 KSP Residual norm 2.745875833479e-08
3 KSP Residual norm 4.613281252783e-10
Linear solve converged due to CONVERGED_RTOL iterations 3
KSP Object: 8 MPI processes
type: cg
maximum iterations=10000
tolerances: relative=0.0001, absolute=1e-50, divergence=10000
left preconditioning
has attached null space
using nonzero initial guess
using UNPRECONDITIONED norm type for convergence test
PC Object: 8 MPI processes
type: mg
MG: type is MULTIPLICATIVE, levels=5 cycles=v
Cycles per PCApply=1
Using Galerkin computed coarse grid matrices
Coarse grid solver -- level -------------------------------
KSP Object: (mg_coarse_) 8 MPI processes
type: preonly
maximum iterations=1, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using NONE norm type for convergence test
PC Object: (mg_coarse_) 8 MPI processes
type: redundant
Redundant preconditioner: First (color=0) of 8 PCs follows
KSP Object: (mg_coarse_redundant_) 1 MPI processes
type: preonly
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using NONE norm type for convergence test
PC Object: (mg_coarse_redundant_) 1 MPI processes
type: lu
LU: out-of-place factorization
tolerance for zero pivot 2.22045e-14
using diagonal shift on blocks to prevent zero pivot
matrix ordering: nd
factor fill ratio given 5, needed 8.69546
Factored matrix follows:
Matrix Object: 1 MPI processes
type: seqaij
rows=512, cols=512
package used to perform factorization: petsc
total: nonzeros=120206, allocated nonzeros=120206
total number of mallocs used during MatSetValues calls =0
not using I-node routines
linear system matrix = precond matrix:
Matrix Object: 1 MPI processes
type: seqaij
rows=512, cols=512
total: nonzeros=13824, allocated nonzeros=13824
total number of mallocs used during MatSetValues calls =0
not using I-node routines
linear system matrix = precond matrix:
Matrix Object: 8 MPI processes
type: mpiaij
rows=512, cols=512
total: nonzeros=13824, allocated nonzeros=13824
total number of mallocs used during MatSetValues calls =0
using I-node (on process 0) routines: found 32 nodes, limit used is 5
Down solver (pre-smoother) on level 1 -------------------------------
KSP Object: (mg_levels_1_) 8 MPI processes
type: chebyshev
Chebyshev: eigenvalue estimates: min = 0.140194, max = 1.54213
Chebyshev: estimated using: [0 0.1; 0 1.1]
KSP Object: (mg_levels_1_est_) 8 MPI processes
type: gmres
GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
GMRES: happy breakdown tolerance 1e-30
maximum iterations=10
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_1_) 8 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Matrix Object: 8 MPI processes
type: mpiaij
rows=4096, cols=4096
total: nonzeros=110592, allocated nonzeros=110592
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
maximum iterations=2
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_1_) 8 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Matrix Object: 8 MPI processes
type: mpiaij
rows=4096, cols=4096
total: nonzeros=110592, allocated nonzeros=110592
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
Up solver (post-smoother) same as down solver (pre-smoother)
Down solver (pre-smoother) on level 2 -------------------------------
KSP Object: (mg_levels_2_) 8 MPI processes
type: chebyshev
Chebyshev: eigenvalue estimates: min = 0.139949, max = 1.53944
Chebyshev: estimated using: [0 0.1; 0 1.1]
KSP Object: (mg_levels_2_est_) 8 MPI processes
type: gmres
GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
GMRES: happy breakdown tolerance 1e-30
maximum iterations=10
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_2_) 8 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Matrix Object: 8 MPI processes
type: mpiaij
rows=32768, cols=32768
total: nonzeros=884736, allocated nonzeros=884736
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
maximum iterations=2
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_2_) 8 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Matrix Object: 8 MPI processes
type: mpiaij
rows=32768, cols=32768
total: nonzeros=884736, allocated nonzeros=884736
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
Up solver (post-smoother) same as down solver (pre-smoother)
Down solver (pre-smoother) on level 3 -------------------------------
KSP Object: (mg_levels_3_) 8 MPI processes
type: chebyshev
Chebyshev: eigenvalue estimates: min = 0.135788, max = 1.49366
Chebyshev: estimated using: [0 0.1; 0 1.1]
KSP Object: (mg_levels_3_est_) 8 MPI processes
type: gmres
GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
GMRES: happy breakdown tolerance 1e-30
maximum iterations=10
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_3_) 8 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Matrix Object: 8 MPI processes
type: mpiaij
rows=262144, cols=262144
total: nonzeros=7077888, allocated nonzeros=7077888
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
maximum iterations=2
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_3_) 8 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Matrix Object: 8 MPI processes
type: mpiaij
rows=262144, cols=262144
total: nonzeros=7077888, allocated nonzeros=7077888
total number of mallocs used during MatSetValues calls =0
not using I-node (on process 0) routines
Up solver (post-smoother) same as down solver (pre-smoother)
Down solver (pre-smoother) on level 4 -------------------------------
KSP Object: (mg_levels_4_) 8 MPI processes
type: chebyshev
Chebyshev: eigenvalue estimates: min = 0.138904, max = 1.52794
Chebyshev: estimated using: [0 0.1; 0 1.1]
KSP Object: (mg_levels_4_est_) 8 MPI processes
type: gmres
GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
GMRES: happy breakdown tolerance 1e-30
maximum iterations=10
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_4_) 8 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Matrix Object: 8 MPI processes
type: mpiaij
rows=2097152, cols=2097152
total: nonzeros=14680064, allocated nonzeros=14680064
total number of mallocs used during MatSetValues calls =0
maximum iterations=2
tolerances: relative=1e-05, absolute=1e-50, divergence=10000
left preconditioning
using nonzero initial guess
using NONE norm type for convergence test
PC Object: (mg_levels_4_) 8 MPI processes
type: sor
SOR: type = local_symmetric, iterations = 1, local iterations = 1, omega = 1
linear system matrix = precond matrix:
Matrix Object: 8 MPI processes
type: mpiaij
rows=2097152, cols=2097152
total: nonzeros=14680064, allocated nonzeros=14680064
total number of mallocs used during MatSetValues calls =0
Up solver (post-smoother) same as down solver (pre-smoother)
linear system matrix = precond matrix:
Matrix Object: 8 MPI processes
type: mpiaij
rows=2097152, cols=2097152
total: nonzeros=14680064, allocated nonzeros=14680064
total number of mallocs used during MatSetValues calls =0
************************************************************************************************************************
*** WIDEN YOUR WINDOW TO 120 CHARACTERS. Use 'enscript -r -fCourier9' to print this document ***
************************************************************************************************************************
---------------------------------------------- PETSc Performance Summary: ----------------------------------------------
./hit on a arch-cray-xt5-pkgs-opt named nid14554 with 8 processors, by Unknown Tue Aug 13 19:53:41 2013
Using Petsc Release Version 3.4.2, Jul, 02, 2013
Max Max/Min Avg Total
Time (sec): 6.402e+00 1.00011 6.402e+00
Objects: 2.970e+02 1.00000 2.970e+02
Flops: 6.953e+08 1.00000 6.953e+08 5.562e+09
Flops/sec: 1.086e+08 1.00011 1.086e+08 8.688e+08
MPI Messages: 1.170e+03 1.00000 1.170e+03 9.360e+03
MPI Message Lengths: 1.565e+07 1.00000 1.338e+04 1.252e+08
MPI Reductions: 6.260e+02 1.00000
Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
e.g., VecAXPY() for real vectors of length N --> 2N flops
and VecAXPY() for complex vectors of length N --> 8N flops
Summary of Stages: ----- Time ------ ----- Flops ----- --- Messages --- -- Message Lengths -- -- Reductions --
Avg %Total Avg %Total counts %Total Avg %Total counts %Total
0: Main Stage: 6.4021e+00 100.0% 5.5620e+09 100.0% 9.360e+03 100.0% 1.338e+04 100.0% 6.250e+02 99.8%
------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
Count: number of times phase was executed
Time and Flops: Max - maximum over all processors
Ratio - ratio of maximum to minimum over all processors
Mess: number of messages sent
Avg. len: average message length (bytes)
Reduct: number of global reductions
Global: entire computation
Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
%T - percent time in this phase %f - percent flops in this phase
%M - percent messages in this phase %L - percent message lengths in this phase
%R - percent reductions in this phase
Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------
Event Count Time (sec) Flops --- Global --- --- Stage --- Total
Max Ratio Max Ratio Max Ratio Mess Avg len Reduct %T %f %M %L %R %T %f %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------
--- Event Stage 0: Main Stage
VecMDot 40 1.0 9.1712e-02 1.0 3.29e+07 1.0 0.0e+00 0.0e+00 4.0e+01 1 5 0 0 6 1 5 0 0 6 2874
VecTDot 10 1.0 2.3873e-02 1.1 5.24e+06 1.0 0.0e+00 0.0e+00 1.0e+01 0 1 0 0 2 0 1 0 0 2 1757
VecNorm 52 1.0 2.3764e-02 1.3 1.08e+07 1.0 0.0e+00 0.0e+00 5.2e+01 0 2 0 0 8 0 2 0 0 8 3630
VecScale 124 1.0 2.6341e-02 1.4 9.29e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 1 0 0 0 0 1 0 0 0 2820
VecCopy 27 1.0 1.7691e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecSet 109 1.0 1.7006e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecAXPY 178 1.0 1.1252e-01 1.2 3.04e+07 1.0 0.0e+00 0.0e+00 0.0e+00 2 4 0 0 0 2 4 0 0 0 2162
VecAYPX 164 1.0 1.0078e-01 1.1 1.68e+07 1.0 0.0e+00 0.0e+00 0.0e+00 1 2 0 0 0 1 2 0 0 0 1334
VecMAXPY 44 1.0 1.1766e-01 1.0 3.89e+07 1.0 0.0e+00 0.0e+00 0.0e+00 2 6 0 0 0 2 6 0 0 0 2647
VecScatterBegin 228 1.0 5.5004e-02 1.1 0.00e+00 0.0 7.4e+03 1.4e+04 0.0e+00 1 0 79 82 0 1 0 79 82 0 0
VecScatterEnd 228 1.0 4.0928e-02 1.8 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
VecNormalize 44 1.0 1.8650e-02 1.3 9.88e+06 1.0 0.0e+00 0.0e+00 4.4e+01 0 1 0 0 7 0 1 0 0 7 4240
MatMult 170 1.0 9.7667e-01 1.0 2.41e+08 1.0 6.0e+03 1.6e+04 0.0e+00 15 35 65 77 0 15 35 65 77 0 1977
MatMultAdd 20 1.0 5.1495e-02 1.1 1.01e+07 1.0 4.8e+02 2.8e+03 0.0e+00 1 1 5 1 0 1 1 5 1 0 1570
MatMultTranspose 24 1.0 6.8663e-02 1.2 1.21e+07 1.0 5.8e+02 2.8e+03 0.0e+00 1 2 6 1 0 1 2 6 1 0 1413
MatSolve 5 1.0 3.2754e-03 1.0 1.20e+06 1.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 2930
MatSOR 164 1.0 1.7211e+00 1.0 2.26e+08 1.0 0.0e+00 0.0e+00 0.0e+00 27 32 0 0 0 27 32 0 0 0 1050
MatLUFactorSym 1 1.0 3.0711e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatLUFactorNum 1 1.0 2.4564e-02 1.0 1.95e+07 1.0 0.0e+00 0.0e+00 0.0e+00 0 3 0 0 0 0 3 0 0 0 6355
MatAssemblyBegin 20 1.0 8.0438e-03 1.5 0.00e+00 0.0 0.0e+00 0.0e+00 2.2e+01 0 0 0 0 4 0 0 0 0 4 0
MatAssemblyEnd 20 1.0 1.3442e-01 1.0 0.00e+00 0.0 5.6e+02 2.1e+03 7.2e+01 2 0 6 1 12 2 0 6 1 12 0
MatGetRowIJ 1 1.0 1.1206e-04 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatGetOrdering 1 1.0 4.0507e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 2.0e+00 0 0 0 0 0 0 0 0 0 0 0
MatView 24 1.2 1.7951e-03 2.4 0.00e+00 0.0 0.0e+00 0.0e+00 2.0e+01 0 0 0 0 3 0 0 0 0 3 0
MatPtAP 4 1.0 6.4214e-01 1.0 4.06e+07 1.0 1.1e+03 1.7e+04 1.0e+02 10 6 12 16 16 10 6 12 16 16 506
MatPtAPSymbolic 4 1.0 3.7196e-01 1.0 0.00e+00 0.0 7.2e+02 2.0e+04 6.0e+01 6 0 8 12 10 6 0 8 12 10 0
MatPtAPNumeric 4 1.0 2.7023e-01 1.0 4.06e+07 1.0 4.2e+02 1.2e+04 4.0e+01 4 6 4 4 6 4 6 4 4 6 1201
MatGetRedundant 1 1.0 8.0895e-04 1.1 0.00e+00 0.0 1.7e+02 7.1e+03 4.0e+00 0 0 2 1 1 0 0 2 1 1 0
MatGetLocalMat 4 1.0 4.0415e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 8.0e+00 1 0 0 0 1 1 0 0 0 1 0
MatGetBrAoCol 4 1.0 1.7636e-02 1.0 0.00e+00 0.0 4.3e+02 2.7e+04 8.0e+00 0 0 5 9 1 0 0 5 9 1 0
MatGetSymTrans 8 1.0 1.3187e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0
KSPGMRESOrthog 40 1.0 1.8928e-01 1.0 6.59e+07 1.0 0.0e+00 0.0e+00 4.0e+01 3 9 0 0 6 3 9 0 0 6 2785
KSPSetUp 11 1.0 3.2629e-02 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 7.2e+01 0 0 0 0 12 0 0 0 0 12 0
KSPSolve 2 1.0 3.3489e+00 1.0 6.33e+08 1.0 7.3e+03 1.4e+04 2.3e+02 52 91 78 79 36 52 91 78 79 36 1512
PCSetUp 1 1.0 8.6804e-01 1.0 6.21e+07 1.0 1.9e+03 1.1e+04 3.2e+02 14 9 21 17 52 14 9 21 17 52 572
PCApply 5 1.0 3.1772e+00 1.0 5.96e+08 1.0 7.1e+03 1.3e+04 2.0e+02 49 86 76 72 33 49 86 76 72 33 1501
------------------------------------------------------------------------------------------------------------------------
Memory usage is given in bytes:
Object Type Creations Destructions Memory Descendants' Mem.
Reports information only for process 0.
--- Event Stage 0: Main Stage
Container 1 1 564 0
Vector 139 139 71560728 0
Vector Scatter 21 21 22092 0
Matrix 37 37 75834272 0
Matrix Null Space 1 1 596 0
Distributed Mesh 5 5 2740736 0
Bipartite Graph 10 10 7920 0
Index Set 50 50 1546832 0
IS L to G Mapping 5 5 1361108 0
Krylov Solver 11 11 129320 0
DMKSP interface 3 3 1944 0
Preconditioner 11 11 9840 0
Viewer 3 2 1456 0
========================================================================================================================
Average time to get PetscTime(): 9.53674e-08
Average time for MPI_Barrier(): 2.43187e-06
Average time for zero size MPI_Send(): 2.5034e-06
#PETSc Option Table entries:
-ksp_converged_reason
-ksp_monitor
-ksp_view
-log_summary
-options_left
-pc_mg_galerkin
-pc_mg_levels 5
-pc_type mg
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 4
Configure run at: Wed Jul 31 22:48:06 2013
Configure options: --known-level1-dcache-size=65536 --known-level1-dcache-linesize=64 --known-level1-dcache-assoc=2 --known-memcmp-ok=1 --known-sizeof-char=1 --known-sizeof-void-p=8 --known-sizeof-short=2 --known-sizeof-int=4 --known-sizeof-long=8 --known-sizeof-long-long=8 --known-sizeof-float=4 --known-sizeof-double=8 --known-sizeof-size_t=8 --known-bits-per-byte=8 --known-sizeof-MPI_Comm=4 --known-sizeof-MPI_Fint=4 --known-mpi-long-double=0 --known-mpi-c-double-complex=0 --with-cc=cc --with-cxx=CC --with-fc=ftn --with-clib-autodetect=0 --with-cxxlib-autodetect=0 --with-fortranlib-autodetect=0 --with-debugging=0 --COPTFLAGS="-fastsse -Mipa=fast -mp" --CXXOPTFLAGS="-fastsse -Mipa=fast -mp" --FOPTFLAGS="-fastsse -Mipa=fast -mp" --with-blas-lapack-lib="-L/opt/acml/4.4.0/pgi64/lib -lacml -lacml_mv" --with-shared-libraries=0 --with-x=0 --with-batch --known-mpi-shared-libraries=0 PETSC_ARCH=arch-cray-xt5-pkgs-opt
-----------------------------------------
Libraries compiled on Wed Jul 31 22:48:06 2013 on krakenpf1
Machine characteristics: Linux-2.6.27.48-0.12.1_1.0301.5943-cray_ss_s-x86_64-with-SuSE-11-x86_64
Using PETSc directory: /nics/c/home/mrosso/LIBS/petsc-3.4.2
Using PETSc arch: arch-cray-xt5-pkgs-opt
-----------------------------------------
Using C compiler: cc -fastsse -Mipa=fast -mp ${COPTFLAGS} ${CFLAGS}
Using Fortran compiler: ftn -fastsse -Mipa=fast -mp ${FOPTFLAGS} ${FFLAGS}
-----------------------------------------
Using include paths: -I/nics/c/home/mrosso/LIBS/petsc-3.4.2/arch-cray-xt5-pkgs-opt/include -I/nics/c/home/mrosso/LIBS/petsc-3.4.2/include -I/nics/c/home/mrosso/LIBS/petsc-3.4.2/include -I/nics/c/home/mrosso/LIBS/petsc-3.4.2/arch-cray-xt5-pkgs-opt/include -I/opt/cray/portals/2.2.0-1.0301.26633.6.9.ss/include -I/opt/cray/pmi/2.1.4-1.0000.8596.15.1.ss/include -I/opt/cray/mpt/5.3.5/xt/seastar/mpich2-pgi/109/include -I/opt/acml/4.4.0/pgi64/include -I/opt/xt-libsci/11.0.04/pgi/109/istanbul/include -I/opt/fftw/3.3.0.0/x86_64/include -I/usr/include/alps
-----------------------------------------
Using C linker: cc
Using Fortran linker: ftn
Using libraries: -Wl,-rpath,/nics/c/home/mrosso/LIBS/petsc-3.4.2/arch-cray-xt5-pkgs-opt/lib -L/nics/c/home/mrosso/LIBS/petsc-3.4.2/arch-cray-xt5-pkgs-opt/lib -lpetsc -L/opt/acml/4.4.0/pgi64/lib -lacml -lacml_mv -lpthread -ldl
-----------------------------------------
#PETSc Option Table entries:
-ksp_converged_reason
-ksp_monitor
-ksp_view
-log_summary
-options_left
-pc_mg_galerkin
-pc_mg_levels 5
-pc_type mg
#End of PETSc Option Table entries
There are no unused options.
More information about the petsc-users
mailing list