[petsc-users] Recommended solver and preconditioner to solve Poisson eqn on win7

Zhenglun (Alan) Wei zhenglun.wei at gmail.com
Fri Sep 14 18:08:37 CDT 2012


I'm sorry about that. I attached the output files here with ' 
-ksp_monitor -ksp_view -log_summary'. They are named after the grid size 
and pc-type.

cheers,
Alan
On 9/14/2012 5:51 PM, Jed Brown wrote:
> On Fri, Sep 14, 2012 at 5:49 PM, Matthew Knepley <knepley at gmail.com 
> <mailto:knepley at gmail.com>> wrote:
>
>     On Fri, Sep 14, 2012 at 5:40 PM, Zhenglun (Alan) Wei
>     <zhenglun.wei at gmail.com <mailto:zhenglun.wei at gmail.com>> wrote:
>
>         Dear folks,
>             I did some test with -pc_type gamg with
>         /src/ksp/ksp/example/tutorial/ex45.c. It is not as good as
>         default -pc_type when my mesh (Cartisian) is 100*50*50; while
>         it is a little bit better than the default one when the mesh
>         is 200*100*100. Therefore, I guess this type of pc is good for
>         larger problem. Is that ture? or is there any rule of thumb
>         for this type of preconditioner? BTW, I tested it with 8
>         processes.
>
>
>     When asking questions about convergence, always always ALWAYS send
>     the output of -ksp_monitor -ksp_view. If
>     you don't, we are just guessing blindly.
>
>
> And -log_summary because this is about performance.

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20120914/a3a6a133/attachment-0001.html>
-------------- next part --------------
  0 KSP Residual norm 1.669256249193e+02 
  1 KSP Residual norm 3.874064408589e+01 
  2 KSP Residual norm 1.954600014030e+01 
  3 KSP Residual norm 1.244345922145e+01 
  4 KSP Residual norm 9.064420170785e+00 
  5 KSP Residual norm 7.275278824753e+00 
  6 KSP Residual norm 5.782414175300e+00 
  7 KSP Residual norm 4.677087789418e+00 
  8 KSP Residual norm 3.946201128884e+00 
  9 KSP Residual norm 3.420632944675e+00 
 10 KSP Residual norm 2.955422198070e+00 
 11 KSP Residual norm 2.592490394060e+00 
 12 KSP Residual norm 2.303387891861e+00 
 13 KSP Residual norm 2.056577525302e+00 
 14 KSP Residual norm 1.857163034085e+00 
 15 KSP Residual norm 1.677130693211e+00 
 16 KSP Residual norm 1.512895894610e+00 
 17 KSP Residual norm 1.372371861084e+00 
 18 KSP Residual norm 1.253935781302e+00 
 19 KSP Residual norm 1.147442107353e+00 
 20 KSP Residual norm 1.053519715486e+00 
 21 KSP Residual norm 9.698850093905e-01 
 22 KSP Residual norm 8.845629782375e-01 
 23 KSP Residual norm 7.865775890900e-01 
 24 KSP Residual norm 6.898777348204e-01 
 25 KSP Residual norm 6.049168916000e-01 
 26 KSP Residual norm 5.207655781898e-01 
 27 KSP Residual norm 4.358566752368e-01 
 28 KSP Residual norm 3.606652037110e-01 
 29 KSP Residual norm 2.945720874157e-01 
 30 KSP Residual norm 2.381008300123e-01 
 31 KSP Residual norm 2.101595975863e-01 
 32 KSP Residual norm 1.766392142763e-01 
 33 KSP Residual norm 1.458305208202e-01 
 34 KSP Residual norm 1.202168443895e-01 
 35 KSP Residual norm 9.934133007087e-02 
 36 KSP Residual norm 8.352384804046e-02 
 37 KSP Residual norm 7.134843832394e-02 
 38 KSP Residual norm 6.342135745158e-02 
 39 KSP Residual norm 5.838796270013e-02 
 40 KSP Residual norm 5.467571802684e-02 
 41 KSP Residual norm 5.125401049798e-02 
 42 KSP Residual norm 4.794972060697e-02 
 43 KSP Residual norm 4.492615630663e-02 
 44 KSP Residual norm 4.196741113595e-02 
 45 KSP Residual norm 3.892472635334e-02 
 46 KSP Residual norm 3.550920516488e-02 
 47 KSP Residual norm 3.195558023701e-02 
 48 KSP Residual norm 2.868405521348e-02 
 49 KSP Residual norm 2.587274813660e-02 
 50 KSP Residual norm 2.328392008646e-02 
 51 KSP Residual norm 2.107487668110e-02 
 52 KSP Residual norm 1.893796101150e-02 
 53 KSP Residual norm 1.648168199594e-02 
 54 KSP Residual norm 1.390814960805e-02 
 55 KSP Residual norm 1.135250892417e-02 
 56 KSP Residual norm 8.795176079893e-03 
 57 KSP Residual norm 6.603350000225e-03 
 58 KSP Residual norm 4.793743880387e-03 
 59 KSP Residual norm 3.160719306137e-03 
 60 KSP Residual norm 1.977784164249e-03 
 61 KSP Residual norm 1.468666200316e-03 
 62 KSP Residual norm 1.083389354485e-03 
 63 KSP Residual norm 8.520500282120e-04 
 64 KSP Residual norm 6.518964823622e-04 
 65 KSP Residual norm 5.138109780444e-04 
 66 KSP Residual norm 4.115277543760e-04 
 67 KSP Residual norm 3.361506034186e-04 
 68 KSP Residual norm 2.797128704246e-04 
 69 KSP Residual norm 2.415674178545e-04 
 70 KSP Residual norm 2.159180377331e-04 
 71 KSP Residual norm 1.977197186285e-04 
 72 KSP Residual norm 1.827136280528e-04 
 73 KSP Residual norm 1.669270522643e-04 
 74 KSP Residual norm 1.506437271409e-04 
 75 KSP Residual norm 1.353521734114e-04 
 76 KSP Residual norm 1.204344753199e-04 
 77 KSP Residual norm 1.070648089746e-04 
 78 KSP Residual norm 9.624021696680e-05 
 79 KSP Residual norm 8.762931970435e-05 
 80 KSP Residual norm 8.027844190242e-05 
 81 KSP Residual norm 7.405766359992e-05 
 82 KSP Residual norm 6.789476644149e-05 
 83 KSP Residual norm 6.150052082511e-05 
 84 KSP Residual norm 5.461716716910e-05 
 85 KSP Residual norm 4.773931323050e-05 
 86 KSP Residual norm 4.134556977071e-05 
 87 KSP Residual norm 3.578449180759e-05 
 88 KSP Residual norm 3.150018194966e-05 
 89 KSP Residual norm 2.810040239809e-05 
 90 KSP Residual norm 2.557532547531e-05 
 91 KSP Residual norm 2.381861052813e-05 
 92 KSP Residual norm 2.205833402284e-05 
 93 KSP Residual norm 2.030591797591e-05 
 94 KSP Residual norm 1.832395951111e-05 
 95 KSP Residual norm 1.628084367638e-05 
KSP Object: 8 MPI processes
  type: gmres
    GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
    GMRES: happy breakdown tolerance 1e-30
  maximum iterations=10000
  tolerances:  relative=1e-07, absolute=1e-50, divergence=10000
  left preconditioning
  using nonzero initial guess
  using PRECONDITIONED norm type for convergence test
PC Object: 8 MPI processes
  type: bjacobi
    block Jacobi: number of blocks = 8
    Local solve is same for all blocks, in the following KSP and PC objects:
  KSP Object:  (sub_)   1 MPI processes
    type: preonly
    maximum iterations=10000, initial guess is zero
    tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
    left preconditioning
    using NONE norm type for convergence test
  PC Object:  (sub_)   1 MPI processes
    type: ilu
      ILU: out-of-place factorization
      0 levels of fill
      tolerance for zero pivot 2.22045e-14
      using diagonal shift to prevent zero pivot
      matrix ordering: natural
      factor fill ratio given 1, needed 1
        Factored matrix follows:
          Matrix Object:           1 MPI processes
            type: seqaij
            rows=31250, cols=31250
            package used to perform factorization: petsc
            total: nonzeros=212500, allocated nonzeros=212500
            total number of mallocs used during MatSetValues calls =0
              not using I-node routines
    linear system matrix = precond matrix:
    Matrix Object:     1 MPI processes
      type: seqaij
      rows=31250, cols=31250
      total: nonzeros=212500, allocated nonzeros=212500
      total number of mallocs used during MatSetValues calls =0
        not using I-node routines
  linear system matrix = precond matrix:
  Matrix Object:   8 MPI processes
    type: mpiaij
    rows=250000, cols=250000
    total: nonzeros=1725000, allocated nonzeros=1725000
    total number of mallocs used during MatSetValues calls =0
Residual norm 4.4807e-07
************************************************************************************************************************
***             WIDEN YOUR WINDOW TO 120 CHARACTERS.  Use 'enscript -r -fCourier9' to print this document            ***
************************************************************************************************************************

---------------------------------------------- PETSc Performance Summary: ----------------------------------------------

./ex45 on a arch-linux2-c-debug named compute-5-2.local with 8 processors, by zlwei Fri Sep 14 18:03:35 2012
Using Petsc Development HG revision: 98bf11863c3be31b7c2af504314a500bc64d88c9  HG Date: Wed Aug 29 13:51:08 2012 -0500

                         Max       Max/Min        Avg      Total 
Time (sec):           3.476e+00      1.00009   3.476e+00
Objects:              7.400e+01      1.00000   7.400e+01
Flops:                2.712e+08      1.00003   2.712e+08  2.170e+09
Flops/sec:            7.803e+07      1.00009   7.802e+07  6.242e+08
Memory:               1.770e+07      1.00000              1.416e+08
MPI Messages:         3.160e+02      1.01935   3.108e+02  2.486e+03
MPI Message Lengths:  2.500e+06      1.00001   8.045e+03  2.000e+07
MPI Reductions:       2.078e+03      1.00096

Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
                            e.g., VecAXPY() for real vectors of length N --> 2N flops
                            and VecAXPY() for complex vectors of length N --> 8N flops

Summary of Stages:   ----- Time ------  ----- Flops -----  --- Messages ---  -- Message Lengths --  -- Reductions --
                        Avg     %Total     Avg     %Total   counts   %Total     Avg         %Total   counts   %Total 
 0:      Main Stage: 3.4761e+00 100.0%  2.1698e+09 100.0%  2.486e+03 100.0%  8.045e+03      100.0%  2.075e+03  99.9% 

------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
   Count: number of times phase was executed
   Time and Flops: Max - maximum over all processors
                   Ratio - ratio of maximum to minimum over all processors
   Mess: number of messages sent
   Avg. len: average message length
   Reduct: number of global reductions
   Global: entire computation
   Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
      %T - percent time in this phase         %f - percent flops in this phase
      %M - percent messages in this phase     %L - percent message lengths in this phase
      %R - percent reductions in this phase
   Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------


      ##########################################################
      #                                                        #
      #                          WARNING!!!                    #
      #                                                        #
      #   This code was compiled with a debugging option,      #
      #   To get timing results run ./configure                #
      #   using --with-debugging=no, the performance will      #
      #   be generally two or three times faster.              #
      #                                                        #
      ##########################################################


Event                Count      Time (sec)     Flops                             --- Global ---  --- Stage ---   Total
                   Max Ratio  Max     Ratio   Max  Ratio  Mess   Avg len Reduct  %T %f %M %L %R  %T %f %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------

--- Event Stage 0: Main Stage

KSPGMRESOrthog        95 1.0 1.0751e+00 1.0 1.76e+08 1.0 0.0e+00 0.0e+00 1.5e+03 30 65  0  0 72  30 65  0  0 73  1312
KSPSetUp               2 1.0 7.6380e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 1.0e+01  0  0  0  0  0   0  0  0  0  0     0
KSPSolve               1 1.0 3.4126e+00 1.0 2.71e+08 1.0 2.4e+03 8.2e+03 2.0e+03 98100 97 98 98  98100 97 98 98   635
VecMDot               95 1.0 4.9396e-01 1.1 8.81e+07 1.0 0.0e+00 0.0e+00 9.5e+01 14 32  0  0  5  14 32  0  0  5  1427
VecNorm              100 1.0 3.0509e-02 1.1 6.25e+06 1.0 0.0e+00 0.0e+00 1.0e+02  1  2  0  0  5   1  2  0  0  5  1639
VecScale              99 1.0 1.4340e-02 1.3 3.09e+06 1.0 0.0e+00 0.0e+00 0.0e+00  0  1  0  0  0   0  1  0  0  0  1726
VecCopy                4 1.0 2.5320e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet               105 1.0 2.6484e-02 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  1  0  0  0  0   1  0  0  0  0     0
VecAXPY                8 1.0 2.3842e-03 1.0 5.00e+05 1.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0  1678
VecMAXPY              99 1.0 4.3568e-01 1.0 9.41e+07 1.0 0.0e+00 0.0e+00 0.0e+00 12 35  0  0  0  12 35  0  0  0  1727
VecScatterBegin       99 1.0 1.7329e-02 1.4 0.00e+00 0.0 2.4e+03 8.3e+03 0.0e+00  0  0 96 99  0   0  0 96 99  0     0
VecScatterEnd         99 1.0 1.8952e-02 1.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecNormalize          99 1.0 4.7056e-02 1.1 9.28e+06 1.0 0.0e+00 0.0e+00 9.9e+01  1  3  0  0  5   1  3  0  0  5  1578
MatMult               99 1.0 5.4279e-01 1.0 3.96e+07 1.0 2.4e+03 8.3e+03 0.0e+00 15 15 96 99  0  15 15 96 99  0   584
MatSolve              99 1.0 3.6140e-01 1.0 3.90e+07 1.0 0.0e+00 0.0e+00 0.0e+00 10 14  0  0  0  10 14  0  0  0   863
MatLUFactorNum         1 1.0 1.4360e-02 1.0 6.12e+05 1.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0   339
MatILUFactorSym        1 1.0 1.3215e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 1.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatAssemblyBegin       2 1.0 5.4438e-03 3.9 0.00e+00 0.0 0.0e+00 0.0e+00 4.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatAssemblyEnd         2 1.0 1.1969e-02 1.0 0.00e+00 0.0 4.8e+01 2.1e+03 2.3e+01  0  0  2  1  1   0  0  2  1  1     0
MatGetRowIJ            1 1.0 7.1526e-06 1.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatGetOrdering         1 1.0 4.9279e-03 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 2.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatView                3 3.0 5.5695e-04 2.8 0.00e+00 0.0 0.0e+00 0.0e+00 1.0e+00  0  0  0  0  0   0  0  0  0  0     0
PCSetUp                2 1.0 3.4658e-02 1.0 6.12e+05 1.0 0.0e+00 0.0e+00 8.0e+00  1  0  0  0  0   1  0  0  0  0   140
PCSetUpOnBlocks        1 1.0 3.3920e-02 1.0 6.12e+05 1.0 0.0e+00 0.0e+00 4.0e+00  1  0  0  0  0   1  0  0  0  0   143
PCApply               99 1.0 5.7720e-01 1.0 3.90e+07 1.0 0.0e+00 0.0e+00 2.0e+02 16 14  0  0 10  16 14  0  0 10   540
------------------------------------------------------------------------------------------------------------------------

Memory usage is given in bytes:

Object Type          Creations   Destructions     Memory  Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

           Container     1              1          548     0
       Krylov Solver     2              2        19360     0
              Vector    43             43      9339072     0
      Vector Scatter     3              3         3108     0
              Matrix     4              4      6660212     0
    Distributed Mesh     2              2       285240     0
     Bipartite Graph     4              4         2736     0
           Index Set    10             10       282424     0
   IS L to G Mapping     1              1       138468     0
      Preconditioner     2              2         1784     0
              Viewer     2              1          712     0
========================================================================================================================
Average time to get PetscTime(): 6.91414e-07
Average time for MPI_Barrier(): 0.000108814
Average time for zero size MPI_Send(): 2.01166e-05
#PETSc Option Table entries:
-ksp_monitor
-ksp_rtol 1.0e-7
-ksp_view
-log_summary
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 4
Configure run at: Wed Aug 29 14:54:25 2012
Configure options: --prefix=/work/zlwei/PETSc --with-cc=gcc --with-fc=gfortran --download-f-blas-lapack --download-mpich
-----------------------------------------
Libraries compiled on Wed Aug 29 14:54:25 2012 on firefox.bioinfo.ittc.ku.edu 
Machine characteristics: Linux-2.6.18-92.1.13.el5-x86_64-with-redhat-5.2-Final
Using PETSc directory: /nfs/work/zlwei/PETSc/petsc-dev
Using PETSc arch: arch-linux2-c-debug
-----------------------------------------

Using C compiler: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpicc  -Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -g3 -fno-inline -O0  ${COPTFLAGS} ${CFLAGS}
Using Fortran compiler: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpif90   -Wall -Wno-unused-variable -g  ${FOPTFLAGS} ${FFLAGS} 
-----------------------------------------

Using include paths: -I/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/include -I/nfs/work/zlwei/PETSc/petsc-dev/include -I/nfs/work/zlwei/PETSc/petsc-dev/include -I/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/include
-----------------------------------------

Using C linker: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpicc
Using Fortran linker: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpif90
Using libraries: -Wl,-rpath,/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -L/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -lpetsc -lX11 -lpthread -Wl,-rpath,/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -L/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -lflapack -lfblas -lm -L/usr/lib/gcc/x86_64-redhat-linux/4.1.2 -lmpichf90 -lgfortran -lm -lm -ldl -lmpich -lopa -lmpl -lrt -lgcc_s -ldl 
-----------------------------------------
-------------- next part --------------
  0 KSP Residual norm 1.875294504732e+02 
  1 KSP Residual norm 6.461816762057e+01 
  2 KSP Residual norm 3.470907566660e+01 
  3 KSP Residual norm 2.099089429528e+01 
  4 KSP Residual norm 1.437522110067e+01 
  5 KSP Residual norm 9.245678477105e+00 
  6 KSP Residual norm 5.901095748255e+00 
  7 KSP Residual norm 3.667568893250e+00 
  8 KSP Residual norm 2.100454200874e+00 
  9 KSP Residual norm 1.151109746641e+00 
 10 KSP Residual norm 6.512533958321e-01 
 11 KSP Residual norm 3.268299134386e-01 
 12 KSP Residual norm 1.338085587322e-01 
 13 KSP Residual norm 6.206661527722e-02 
 14 KSP Residual norm 3.045503185174e-02 
 15 KSP Residual norm 1.336637007228e-02 
 16 KSP Residual norm 5.597304881397e-03 
 17 KSP Residual norm 2.926115919013e-03 
 18 KSP Residual norm 1.931646953591e-03 
 19 KSP Residual norm 1.181176745071e-03 
 20 KSP Residual norm 6.854711612750e-04 
 21 KSP Residual norm 3.242234399228e-04 
 22 KSP Residual norm 1.402658814864e-04 
 23 KSP Residual norm 6.074816600231e-05 
 24 KSP Residual norm 3.055482416759e-05 
 25 KSP Residual norm 1.566477423228e-05 
KSP Object: 8 MPI processes
  type: gmres
    GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
    GMRES: happy breakdown tolerance 1e-30
  maximum iterations=10000
  tolerances:  relative=1e-07, absolute=1e-50, divergence=10000
  left preconditioning
  using nonzero initial guess
  using PRECONDITIONED norm type for convergence test
PC Object: 8 MPI processes
  type: gamg
    MG: type is MULTIPLICATIVE, levels=5 cycles=v
      Cycles per PCApply=1
      Using Galerkin computed coarse grid matrices
  Coarse grid solver -- level -------------------------------
    KSP Object:    (mg_coarse_)     8 MPI processes
      type: gmres
        GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
        GMRES: happy breakdown tolerance 1e-30
      maximum iterations=1, initial guess is zero
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using NONE norm type for convergence test
    PC Object:    (mg_coarse_)     8 MPI processes
      type: bjacobi
        block Jacobi: number of blocks = 8
        Local solve info for each block is in the following KSP and PC objects:
      [0] number of local blocks = 1, first local block number = 0
                  KSP Object:      KSP Object:        (mg_coarse_sub_)        KSP Object:        (mg_coarse_sub_)         1 MPI processes
          type: preonly
  [0] local block number 0
        (mg_coarse_sub_)         1 MPI processes
          type: preonly
         1 MPI processes
                maximum iterations=10000, initial guess is zero
                KSP Object:        (mg_coarse_sub_)         1 MPI processes
              KSP Object:        (mg_coarse_sub_)         1 MPI processes
          type: preonly
        KSP Object:        (mg_coarse_sub_)         1 MPI processes
          type: preonly
          maximum iterations=10000, initial guess is zero
                maximum iterations=10000, initial guess is zero
          type: preonly
          maximum iterations=10000, initial guess is zero
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using NONE norm type for convergence test
        PC Object:        (mg_coarse_sub_)            type: preonly
          maximum iterations=10000, initial guess is zero
                  maximum iterations=10000, initial guess is zero
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
    tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using NONE norm type for convergence test
  tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using NONE norm type for convergence test
        PC Object:  tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using NONE norm type for convergence test
        PC Object: 1 MPI processes
          type: lu
            LU: out-of-place factorization
  tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using NONE norm type for convergence test
        PC Object:                  left preconditioning
          using NONE norm type for convergence test
        PC Object:        (mg_coarse_sub_)                (mg_coarse_sub_)         1 MPI processes
          type: lu
            LU: out-of-place factorization
        (mg_coarse_sub_)         1 MPI processes
          type: lu
            LU: out-of-place factorization
            tolerance for zero pivot 2.22045e-14
            matrix ordering: nd
            factor fill ratio given 5, needed 0
              Factored matrix follows:
(mg_coarse_sub_)         1 MPI processes
          type: lu
         1 MPI processes
          type: lu
            LU: out-of-place factorization
        PC Object:        (mg_coarse_sub_)         1 MPI processes
          type: lu
            LU: out-of-place factorization
            tolerance for zero pivot 2.22045e-14
            matrix ordering: nd
            tolerance for zero pivot 2.22045e-14
            matrix ordering: nd
            factor fill ratio given 5, needed 0
            tolerance for zero pivot 2.22045e-14
            matrix ordering: nd
              LU: out-of-place factorization
            tolerance for zero pivot 2.22045e-14
            tolerance for zero pivot 2.22045e-14
            matrix ordering: nd
                    Factored matrix follows:
  factor fill ratio given 5, needed 0
              Factored matrix follows:
                        Matrix Object:                 1 MPI processes
                  type: seqaij
                  rows=0, cols=0
            matrix ordering: nd
            factor fill ratio given 5, needed 0
              Factored matrix follows:
      factor fill ratio given 5, needed 0
              Factored matrix follows:
            factor fill ratio given 5, needed 0
              Factored matrix follows:
                Matrix Object:                                Matrix Object:                 1 MPI processes
                  type: seqaij
        Matrix Object:                 1 MPI processes
                                  package used to perform factorization: petsc
                      Matrix Object:                 1 MPI processes
                Matrix Object:                 1 MPI processes
     1 MPI processes
                  type: seqaij
                  rows=0, cols=0
                  rows=0, cols=0
      type: seqaij
                  rows=0, cols=0
            total: nonzeros=1, allocated nonzeros=1
                  total number of mallocs used during MatSetValues calls =0
                  type: seqaij
                  rows=0, cols=0
              type: seqaij
                  rows=0, cols=0
              package used to perform factorization: petsc
                  total: nonzeros=1, allocated nonzeros=1
                        package used to perform factorization: petsc
                  total: nonzeros=1, allocated nonzeros=1
                        not using I-node routines
                  package used to perform factorization: petsc
                  total: nonzeros=1, allocated nonzeros=1
                  total number of mallocs used during MatSetValues calls =0
            total number of mallocs used during MatSetValues calls =0
              total number of mallocs used during MatSetValues calls =0
          linear system matrix = precond matrix:
                  package used to perform factorization: petsc
                  total: nonzeros=1, allocated nonzeros=1
                  total number of mallocs used during MatSetValues calls =0
                  package used to perform factorization: petsc
                  total: nonzeros=1, allocated nonzeros=1
                  total number of mallocs used during MatSetValues calls =0
                    not using I-node routines
                    not using I-node routines
          Matrix Object:           1 MPI processes
                              not using I-node routines
  type: seqaij
                        not using I-node routines
                    not using I-node routines
          linear system matrix = precond matrix:
          linear system matrix = precond matrix:
        rows=0, cols=0
            total: nonzeros=0, allocated nonzeros=0
                    linear system matrix = precond matrix:
          Matrix Object:          Matrix Object:           1 MPI processes
          Matrix Object:           1 MPI processes
            total number of mallocs used during MatSetValues calls =0
                  linear system matrix = precond matrix:
          Matrix Object:           1 MPI processes
          linear system matrix = precond matrix:
          Matrix Object:           1 MPI processes
           1 MPI processes
            type: seqaij
            rows=0, cols=0
            type: seqaij
            rows=0, cols=0
            total: nonzeros=0, allocated nonzeros=0
  type: seqaij
            rows=0, cols=0
            total: nonzeros=0, allocated nonzeros=0
                  not using I-node routines
            type: seqaij
            rows=0, cols=0
            total: nonzeros=0, allocated nonzeros=0
                    type: seqaij
            rows=0, cols=0
            total: nonzeros=0, allocated nonzeros=0
                total: nonzeros=0, allocated nonzeros=0
            total number of mallocs used during MatSetValues calls =0
              not using I-node routines
            total number of mallocs used during MatSetValues calls =0
              not using I-node routines
total number of mallocs used during MatSetValues calls =0
              not using I-node routines
    total number of mallocs used during MatSetValues calls =0
              not using I-node routines
        total number of mallocs used during MatSetValues calls =0
              not using I-node routines
              KSP Object:  KSP Object:          (mg_coarse_sub_)               1 MPI processes
(mg_coarse_sub_)          type: preonly
            maximum iterations=10000, initial guess is zero
               1 MPI processes
  tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
            left preconditioning
              using NONE norm type for convergence test
    type: preonly
        PC Object:          maximum iterations=10000, initial guess is zero
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
            left preconditioning
          using NONE norm type for convergence test
        PC Object:        (mg_coarse_sub_)      (mg_coarse_sub_)         1 MPI processes
          type: lu
            LU: out-of-place factorization
            tolerance for zero pivot 2.22045e-14
            matrix ordering: nd
            factor fill ratio given 5, needed 2.23871
              Factored matrix follows:
                 1 MPI processes
          Matrix Object:                 1 MPI processes
                  type: seqaij
                  rows=179, cols=179
                  package used to perform factorization: petsc
        type: lu
                  total: nonzeros=3817, allocated nonzeros=3817
                  total number of mallocs used during MatSetValues calls =0
                    not using I-node routines
          linear system matrix = precond matrix:
            LU: out-of-place factorization
          Matrix Object:           1 MPI processes
            type: seqaij
            rows=179, cols=179
            total: nonzeros=1705, allocated nonzeros=1705
            total number of mallocs used during MatSetValues calls =0
              not using I-node routines
        - - - - - - - - - - - - - - - - - -
            tolerance for zero pivot 2.22045e-14
            matrix ordering: nd
            factor fill ratio given 5, needed 0
              Factored matrix follows:
                Matrix Object:                 1 MPI processes
                  type: seqaij
                  rows=0, cols=0
                  package used to perform factorization: petsc
                  total: nonzeros=1, allocated nonzeros=1
                  total number of mallocs used during MatSetValues calls =0
                    not using I-node routines
          linear system matrix = precond matrix:
          Matrix Object:           1 MPI processes
            type: seqaij
            rows=0, cols=0
            total: nonzeros=0, allocated nonzeros=0
            total number of mallocs used during MatSetValues calls =0
              not using I-node routines
      [1] number of local blocks = 1, first local block number = 1
        [1] local block number 0
        - - - - - - - - - - - - - - - - - -
      [2] number of local blocks = 1, first local block number = 2
        [2] local block number 0
        - - - - - - - - - - - - - - - - - -
      [3] number of local blocks = 1, first local block number = 3
        [3] local block number 0
        - - - - - - - - - - - - - - - - - -
      [4] number of local blocks = 1, first local block number = 4
        [4] local block number 0
        - - - - - - - - - - - - - - - - - -
      [5] number of local blocks = 1, first local block number = 5
        [5] local block number 0
        - - - - - - - - - - - - - - - - - -
      [6] number of local blocks = 1, first local block number = 6
        [6] local block number 0
        - - - - - - - - - - - - - - - - - -
      [7] number of local blocks = 1, first local block number = 7
        [7] local block number 0
        - - - - - - - - - - - - - - - - - -
      linear system matrix = precond matrix:
      Matrix Object:       8 MPI processes
        type: mpiaij
        rows=179, cols=179
        total: nonzeros=1705, allocated nonzeros=1705
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Down solver (pre-smoother) on level 1 -------------------------------
    KSP Object:    (mg_levels_1_)     8 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.0707274, max = 1.48527
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_1_)     8 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       8 MPI processes
        type: mpiaij
        rows=958, cols=958
        total: nonzeros=7836, allocated nonzeros=7836
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 2 -------------------------------
    KSP Object:    (mg_levels_2_)     8 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.0708876, max = 1.48864
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_2_)     8 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       8 MPI processes
        type: mpiaij
        rows=4973, cols=4973
        total: nonzeros=43735, allocated nonzeros=43735
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 3 -------------------------------
    KSP Object:    (mg_levels_3_)     8 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.0762465, max = 1.60118
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_3_)     8 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       8 MPI processes
        type: mpiaij
        rows=33833, cols=33833
        total: nonzeros=355743, allocated nonzeros=355743
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 4 -------------------------------
    KSP Object:    (mg_levels_4_)     8 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.0975151, max = 2.04782
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_4_)     8 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       8 MPI processes
        type: mpiaij
        rows=250000, cols=250000
        total: nonzeros=1725000, allocated nonzeros=1725000
        total number of mallocs used during MatSetValues calls =0
  Up solver (post-smoother) same as down solver (pre-smoother)
  linear system matrix = precond matrix:
  Matrix Object:   8 MPI processes
    type: mpiaij
    rows=250000, cols=250000
    total: nonzeros=1725000, allocated nonzeros=1725000
    total number of mallocs used during MatSetValues calls =0
Residual norm 6.64872e-07
************************************************************************************************************************
***             WIDEN YOUR WINDOW TO 120 CHARACTERS.  Use 'enscript -r -fCourier9' to print this document            ***
************************************************************************************************************************

---------------------------------------------- PETSc Performance Summary: ----------------------------------------------

./ex45 on a arch-linux2-c-debug named compute-5-2.local with 8 processors, by zlwei Fri Sep 14 18:04:45 2012
Using Petsc Development HG revision: 98bf11863c3be31b7c2af504314a500bc64d88c9  HG Date: Wed Aug 29 13:51:08 2012 -0500

                         Max       Max/Min        Avg      Total 
Time (sec):           8.570e+00      1.00005   8.570e+00
Objects:              4.570e+02      1.00000   4.570e+02
Flops:                2.035e+08      1.00383   2.032e+08  1.625e+09
Flops/sec:            2.375e+07      1.00378   2.371e+07  1.896e+08
Memory:               3.716e+07      1.00000              2.973e+08
MPI Messages:         5.506e+03      1.10619   5.194e+03  4.155e+04
MPI Message Lengths:  8.593e+06      1.01613   1.639e+03  6.811e+07
MPI Reductions:       4.630e+03      1.00000

Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
                            e.g., VecAXPY() for real vectors of length N --> 2N flops
                            and VecAXPY() for complex vectors of length N --> 8N flops

Summary of Stages:   ----- Time ------  ----- Flops -----  --- Messages ---  -- Message Lengths --  -- Reductions --
                        Avg     %Total     Avg     %Total   counts   %Total     Avg         %Total   counts   %Total 
 0:      Main Stage: 8.5701e+00 100.0%  1.6252e+09 100.0%  4.155e+04 100.0%  1.639e+03      100.0%  4.629e+03 100.0% 

------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
   Count: number of times phase was executed
   Time and Flops: Max - maximum over all processors
                   Ratio - ratio of maximum to minimum over all processors
   Mess: number of messages sent
   Avg. len: average message length
   Reduct: number of global reductions
   Global: entire computation
   Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
      %T - percent time in this phase         %f - percent flops in this phase
      %M - percent messages in this phase     %L - percent message lengths in this phase
      %R - percent reductions in this phase
   Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------


      ##########################################################
      #                                                        #
      #                          WARNING!!!                    #
      #                                                        #
      #   This code was compiled with a debugging option,      #
      #   To get timing results run ./configure                #
      #   using --with-debugging=no, the performance will      #
      #   be generally two or three times faster.              #
      #                                                        #
      ##########################################################


Event                Count      Time (sec)     Flops                             --- Global ---  --- Stage ---   Total
                   Max Ratio  Max     Ratio   Max  Ratio  Mess   Avg len Reduct  %T %f %M %L %R  %T %f %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------

--- Event Stage 0: Main Stage

KSPGMRESOrthog        91 1.0 3.1189e-01 1.0 4.86e+07 1.0 0.0e+00 0.0e+00 6.6e+02  4 24  0  0 14   4 24  0  0 14  1246
KSPSetUp              11 1.0 4.4149e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 2.4e+01  1  0  0  0  1   1  0  0  0  1     0
KSPSolve               1 1.0 8.0593e+00 1.0 2.03e+08 1.0 4.1e+04 1.6e+03 4.6e+03 94100100 99 99  94100100 99 99   201
VecMDot               91 1.0 1.4309e-01 1.0 2.43e+07 1.0 0.0e+00 0.0e+00 9.1e+01  2 12  0  0  2   2 12  0  0  2  1358
VecNorm              123 1.0 2.2507e-02 1.1 2.50e+06 1.0 0.0e+00 0.0e+00 1.2e+02  0  1  0  0  3   0  1  0  0  3   884
VecScale             538 1.0 2.0931e-02 1.1 4.99e+06 1.0 0.0e+00 0.0e+00 0.0e+00  0  2  0  0  0   0  2  0  0  0  1903
VecCopy              135 1.0 1.1293e-02 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet               505 1.0 1.5996e-02 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY              864 1.0 7.1485e-02 1.1 1.53e+07 1.0 0.0e+00 0.0e+00 0.0e+00  1  8  0  0  0   1  8  0  0  0  1708
VecAYPX              832 1.0 7.6809e-02 1.1 9.43e+06 1.0 0.0e+00 0.0e+00 0.0e+00  1  5  0  0  0   1  5  0  0  0   981
VecMAXPY             122 1.0 1.0202e-01 1.0 2.66e+07 1.0 0.0e+00 0.0e+00 0.0e+00  1 13  0  0  0   1 13  0  0  0  2085
VecAssemblyBegin      53 1.0 3.2252e-02 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 1.6e+02  0  0  0  0  3   0  0  0  0  3     0
VecAssemblyEnd        53 1.0 4.4584e-04 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecPointwiseMult     668 1.0 1.1690e-01 1.0 6.06e+06 1.0 0.0e+00 0.0e+00 0.0e+00  1  3  0  0  0   1  3  0  0  0   414
VecScatterBegin      981 1.0 8.3254e-02 1.1 0.00e+00 0.0 3.8e+04 1.6e+03 0.0e+00  1  0 91 90  0   1  0 91 90  0     0
VecScatterEnd        981 1.0 6.4690e-02 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  1  0  0  0  0   1  0  0  0  0     0
VecSetRandom           4 1.0 4.8918e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  1  0  0  0  0   1  0  0  0  0     0
VecNormalize         122 1.0 2.9767e-02 1.0 3.66e+06 1.0 0.0e+00 0.0e+00 1.2e+02  0  2  0  0  3   0  2  0  0  3   977
MatMult              716 1.0 1.6713e+00 1.0 9.31e+07 1.0 3.0e+04 1.8e+03 0.0e+00 19 46 71 77  0  19 46 71 77  0   445
MatMultAdd           104 1.0 8.3075e-02 1.0 1.88e+06 1.0 2.7e+03 2.7e+02 0.0e+00  1  1  6  1  0   1  1  6  1  0   181
MatMultTranspose     104 1.0 1.0354e-01 1.0 1.88e+06 1.0 2.7e+03 2.7e+02 2.1e+02  1  1  6  1  4   1  1  6  1  4   145
MatSolve              52 0.0 2.3191e-03 0.0 3.88e+05 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0   167
MatLUFactorSym         1 1.0 4.6897e-04 4.7 0.00e+00 0.0 0.0e+00 0.0e+00 5.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatLUFactorNum         1 1.0 4.5013e-0418.9 4.21e+04 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0    94
MatConvert             4 1.0 2.0307e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 2.4e+01  0  0  0  0  1   0  0  0  0  1     0
MatScale               4 1.0 6.1872e-03 1.0 5.35e+05 1.0 1.7e+02 1.6e+03 0.0e+00  0  0  0  0  0   0  0  0  0  0   689
MatAssemblyBegin      50 1.0 4.0176e-02 1.7 0.00e+00 0.0 3.8e+02 3.5e+02 5.6e+01  0  0  1  0  1   0  0  1  0  1     0
MatAssemblyEnd        50 1.0 1.3871e-01 1.0 0.00e+00 0.0 1.5e+03 3.9e+02 4.0e+02  2  0  4  1  9   2  0  4  1  9     0
MatGetRow          72562 1.0 2.7369e-01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  3  0  0  0  0   3  0  0  0  0     0
MatGetRowIJ            1 0.0 4.1008e-05 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatGetOrdering         1 0.0 4.0412e-04 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 2.5e-01  0  0  0  0  0   0  0  0  0  0     0
MatCoarsen             4 1.0 1.6034e-01 1.0 0.00e+00 0.0 1.3e+03 2.7e+03 1.2e+02  2  0  3  5  3   2  0  3  5  3     0
MatView                8 1.0 4.7970e-03 1.4 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatPtAP                4 1.0 1.4446e-01 1.0 1.63e+06 1.1 1.4e+03 6.3e+02 2.3e+02  2  1  3  1  5   2  1  3  1  5    88
MatPtAPSymbolic        4 1.0 1.0185e-01 1.1 0.00e+00 0.0 1.3e+03 5.6e+02 2.0e+02  1  0  3  1  4   1  0  3  1  4     0
MatPtAPNumeric         4 1.0 4.2606e-02 1.0 1.63e+06 1.1 1.2e+02 1.4e+03 2.4e+01  0  1  0  0  1   0  1  0  0  1   297
MatTrnMatMult          4 1.0 7.4679e-01 1.0 1.54e+07 1.0 1.1e+03 4.8e+03 2.5e+02  9  8  3  8  5   9  8  3  8  5   163
MatGetLocalMat        12 1.0 3.0601e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 3.2e+01  0  0  0  0  1   0  0  0  0  1     0
MatGetBrAoCol          4 1.0 1.4587e-02 1.7 0.00e+00 0.0 5.2e+02 1.1e+03 1.6e+01  0  0  1  1  0   0  0  1  1  0     0
MatGetSymTrans         8 1.0 1.3292e-03 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
PCSetUp                2 1.0 3.9298e+00 1.0 3.29e+07 1.0 8.3e+03 2.0e+03 1.7e+03 46 16 20 25 38  46 16 20 25 38    67
PCSetUpOnBlocks       26 1.0 2.2025e-03 2.0 4.21e+04 0.0 0.0e+00 0.0e+00 8.0e+00  0  0  0  0  0   0  0  0  0  0    19
PCApply               26 1.0 2.9146e+00 1.0 1.15e+08 1.0 3.2e+04 1.4e+03 2.3e+03 34 57 78 67 50  34 57 78 67 50   316
PCGAMGgraph_AGG        4 1.0 1.6139e+00 1.0 5.35e+05 1.0 5.2e+02 7.9e+02 1.9e+02 19  0  1  1  4  19  0  1  1  4     3
PCGAMGcoarse_AGG       4 1.0 1.3659e+00 1.0 1.54e+07 1.0 3.5e+03 3.3e+03 4.7e+02 16  8  8 17 10  16  8  8 17 10    89
PCGAMGProl_AGG         4 1.0 3.1176e-01 1.0 0.00e+00 0.0 1.1e+03 1.2e+03 2.0e+02  4  0  3  2  4   4  0  3  2  4     0
PCGAMGPOpt_AGG         4 1.0 2.5988e-05 1.7 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
------------------------------------------------------------------------------------------------------------------------

Memory usage is given in bytes:

Object Type          Creations   Destructions     Memory  Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

           Container     1              1          548     0
       Krylov Solver    11             11       162856     0
              Vector   235            235     18591120     0
      Vector Scatter    26             26        26936     0
              Matrix    92             92     31827700     0
      Matrix Coarsen     4              4         2448     0
    Distributed Mesh     2              2       285240     0
     Bipartite Graph     4              4         2736     0
           Index Set    64             64       256456     0
   IS L to G Mapping     1              1       138468     0
      Preconditioner    11             11        10092     0
              Viewer     2              1          712     0
         PetscRandom     4              4         2432     0
========================================================================================================================
Average time to get PetscTime(): 5.00679e-07
Average time for MPI_Barrier(): 0.000130177
Average time for zero size MPI_Send(): 2.22325e-05
#PETSc Option Table entries:
-ksp_monitor
-ksp_rtol 1.0e-7
-ksp_view
-log_summary
-pc_type gamg
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 4
Configure run at: Wed Aug 29 14:54:25 2012
Configure options: --prefix=/work/zlwei/PETSc --with-cc=gcc --with-fc=gfortran --download-f-blas-lapack --download-mpich
-----------------------------------------
Libraries compiled on Wed Aug 29 14:54:25 2012 on firefox.bioinfo.ittc.ku.edu 
Machine characteristics: Linux-2.6.18-92.1.13.el5-x86_64-with-redhat-5.2-Final
Using PETSc directory: /nfs/work/zlwei/PETSc/petsc-dev
Using PETSc arch: arch-linux2-c-debug
-----------------------------------------

Using C compiler: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpicc  -Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -g3 -fno-inline -O0  ${COPTFLAGS} ${CFLAGS}
Using Fortran compiler: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpif90   -Wall -Wno-unused-variable -g  ${FOPTFLAGS} ${FFLAGS} 
-----------------------------------------

Using include paths: -I/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/include -I/nfs/work/zlwei/PETSc/petsc-dev/include -I/nfs/work/zlwei/PETSc/petsc-dev/include -I/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/include
-----------------------------------------

Using C linker: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpicc
Using Fortran linker: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpif90
Using libraries: -Wl,-rpath,/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -L/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -lpetsc -lX11 -lpthread -Wl,-rpath,/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -L/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -lflapack -lfblas -lm -L/usr/lib/gcc/x86_64-redhat-linux/4.1.2 -lmpichf90 -lgfortran -lm -lm -ldl -lmpich -lopa -lmpl -lrt -lgcc_s -ldl 
-----------------------------------------
-------------- next part --------------
  0 KSP Residual norm 3.368148596765e+02 
  1 KSP Residual norm 7.884667648061e+01 
  2 KSP Residual norm 3.983220874680e+01 
  3 KSP Residual norm 2.529465334442e+01 
  4 KSP Residual norm 1.819644017854e+01 
  5 KSP Residual norm 1.458219316768e+01 
  6 KSP Residual norm 1.180412704465e+01 
  7 KSP Residual norm 9.575897241358e+00 
  8 KSP Residual norm 8.043264261713e+00 
  9 KSP Residual norm 7.018519352883e+00 
 10 KSP Residual norm 6.130476554332e+00 
 11 KSP Residual norm 5.397263048170e+00 
 12 KSP Residual norm 4.835967632485e+00 
 13 KSP Residual norm 4.352028777238e+00 
 14 KSP Residual norm 3.952712102274e+00 
 15 KSP Residual norm 3.617454495697e+00 
 16 KSP Residual norm 3.301898504445e+00 
 17 KSP Residual norm 3.027795288920e+00 
 18 KSP Residual norm 2.801330506731e+00 
 19 KSP Residual norm 2.600088323848e+00 
 20 KSP Residual norm 2.415396607825e+00 
 21 KSP Residual norm 2.251635941363e+00 
 22 KSP Residual norm 2.107710728118e+00 
 23 KSP Residual norm 1.976827356870e+00 
 24 KSP Residual norm 1.855722787536e+00 
 25 KSP Residual norm 1.744283789182e+00 
 26 KSP Residual norm 1.643979116571e+00 
 27 KSP Residual norm 1.555420193633e+00 
 28 KSP Residual norm 1.473610804642e+00 
 29 KSP Residual norm 1.395581630789e+00 
 30 KSP Residual norm 1.324035740635e+00 
 31 KSP Residual norm 1.289620876123e+00 
 32 KSP Residual norm 1.254163025674e+00 
 33 KSP Residual norm 1.218122418418e+00 
 34 KSP Residual norm 1.181980463870e+00 
 35 KSP Residual norm 1.145084266546e+00 
 36 KSP Residual norm 1.107771307421e+00 
 37 KSP Residual norm 1.070515918578e+00 
 38 KSP Residual norm 1.033345073830e+00 
 39 KSP Residual norm 9.957326457777e-01 
 40 KSP Residual norm 9.574090681547e-01 
 41 KSP Residual norm 9.206214332288e-01 
 42 KSP Residual norm 8.860402343860e-01 
 43 KSP Residual norm 8.519570071849e-01 
 44 KSP Residual norm 8.160171689292e-01 
 45 KSP Residual norm 7.780106459520e-01 
 46 KSP Residual norm 7.384806314831e-01 
 47 KSP Residual norm 7.011353257545e-01 
 48 KSP Residual norm 6.660776428339e-01 
 49 KSP Residual norm 6.290570146661e-01 
 50 KSP Residual norm 5.898901582810e-01 
 51 KSP Residual norm 5.530351127027e-01 
 52 KSP Residual norm 5.150136349357e-01 
 53 KSP Residual norm 4.769315717084e-01 
 54 KSP Residual norm 4.418695812249e-01 
 55 KSP Residual norm 4.055730558383e-01 
 56 KSP Residual norm 3.701573952578e-01 
 57 KSP Residual norm 3.405955774779e-01 
 58 KSP Residual norm 3.138542961303e-01 
 59 KSP Residual norm 2.904777931959e-01 
 60 KSP Residual norm 2.721221568117e-01 
 61 KSP Residual norm 2.637111203338e-01 
 62 KSP Residual norm 2.555282288716e-01 
 63 KSP Residual norm 2.457633020644e-01 
 64 KSP Residual norm 2.312064551884e-01 
 65 KSP Residual norm 2.168687024333e-01 
 66 KSP Residual norm 2.021462808115e-01 
 67 KSP Residual norm 1.882502502712e-01 
 68 KSP Residual norm 1.726156627947e-01 
 69 KSP Residual norm 1.580948063184e-01 
 70 KSP Residual norm 1.450188243537e-01 
 71 KSP Residual norm 1.329090943840e-01 
 72 KSP Residual norm 1.224648275772e-01 
 73 KSP Residual norm 1.134430099592e-01 
 74 KSP Residual norm 1.062156089215e-01 
 75 KSP Residual norm 1.009515456891e-01 
 76 KSP Residual norm 9.677088026876e-02 
 77 KSP Residual norm 9.330462638461e-02 
 78 KSP Residual norm 9.014986471375e-02 
 79 KSP Residual norm 8.728725736359e-02 
 80 KSP Residual norm 8.474425436748e-02 
 81 KSP Residual norm 8.239085729749e-02 
 82 KSP Residual norm 8.004171069055e-02 
 83 KSP Residual norm 7.754583057709e-02 
 84 KSP Residual norm 7.503607926802e-02 
 85 KSP Residual norm 7.251754709396e-02 
 86 KSP Residual norm 7.023044020357e-02 
 87 KSP Residual norm 6.816259549138e-02 
 88 KSP Residual norm 6.615708630367e-02 
 89 KSP Residual norm 6.410877480267e-02 
 90 KSP Residual norm 6.220199693340e-02 
 91 KSP Residual norm 6.079561000422e-02 
 92 KSP Residual norm 5.945366054862e-02 
 93 KSP Residual norm 5.805745558808e-02 
 94 KSP Residual norm 5.647865842490e-02 
 95 KSP Residual norm 5.482579066632e-02 
 96 KSP Residual norm 5.327464699030e-02 
 97 KSP Residual norm 5.181785368265e-02 
 98 KSP Residual norm 5.026058189172e-02 
 99 KSP Residual norm 4.853529822466e-02 
100 KSP Residual norm 4.672552830768e-02 
101 KSP Residual norm 4.488451706047e-02 
102 KSP Residual norm 4.274002202667e-02 
103 KSP Residual norm 4.066715145826e-02 
104 KSP Residual norm 3.879543017112e-02 
105 KSP Residual norm 3.692545546597e-02 
106 KSP Residual norm 3.496725881242e-02 
107 KSP Residual norm 3.291047034156e-02 
108 KSP Residual norm 3.073335561917e-02 
109 KSP Residual norm 2.849664394983e-02 
110 KSP Residual norm 2.626973767994e-02 
111 KSP Residual norm 2.438406681556e-02 
112 KSP Residual norm 2.253397732039e-02 
113 KSP Residual norm 2.054090707797e-02 
114 KSP Residual norm 1.890158567808e-02 
115 KSP Residual norm 1.742573595014e-02 
116 KSP Residual norm 1.629263326782e-02 
117 KSP Residual norm 1.532685125519e-02 
118 KSP Residual norm 1.465738126879e-02 
119 KSP Residual norm 1.408292302474e-02 
120 KSP Residual norm 1.353341128860e-02 
121 KSP Residual norm 1.310193200424e-02 
122 KSP Residual norm 1.268439577064e-02 
123 KSP Residual norm 1.221270299177e-02 
124 KSP Residual norm 1.153059978148e-02 
125 KSP Residual norm 1.084782525529e-02 
126 KSP Residual norm 1.008849505102e-02 
127 KSP Residual norm 9.358912388407e-03 
128 KSP Residual norm 8.541223977083e-03 
129 KSP Residual norm 7.865522556463e-03 
130 KSP Residual norm 7.286455417054e-03 
131 KSP Residual norm 6.746096551092e-03 
132 KSP Residual norm 6.265169639034e-03 
133 KSP Residual norm 5.831333351878e-03 
134 KSP Residual norm 5.460797382663e-03 
135 KSP Residual norm 5.177705767837e-03 
136 KSP Residual norm 4.933073975857e-03 
137 KSP Residual norm 4.721768175681e-03 
138 KSP Residual norm 4.524437438027e-03 
139 KSP Residual norm 4.341955963482e-03 
140 KSP Residual norm 4.188429974280e-03 
141 KSP Residual norm 4.043862515122e-03 
142 KSP Residual norm 3.918929706117e-03 
143 KSP Residual norm 3.814454962740e-03 
144 KSP Residual norm 3.716285727000e-03 
145 KSP Residual norm 3.616166834928e-03 
146 KSP Residual norm 3.517411257480e-03 
147 KSP Residual norm 3.424011069705e-03 
148 KSP Residual norm 3.333161789233e-03 
149 KSP Residual norm 3.238552146236e-03 
150 KSP Residual norm 3.148952887727e-03 
151 KSP Residual norm 3.071169436807e-03 
152 KSP Residual norm 2.995279685803e-03 
153 KSP Residual norm 2.918890614973e-03 
154 KSP Residual norm 2.841924652276e-03 
155 KSP Residual norm 2.767745676000e-03 
156 KSP Residual norm 2.709880325144e-03 
157 KSP Residual norm 2.655188186095e-03 
158 KSP Residual norm 2.594800880316e-03 
159 KSP Residual norm 2.511751585705e-03 
160 KSP Residual norm 2.418560169069e-03 
161 KSP Residual norm 2.323693463105e-03 
162 KSP Residual norm 2.202281878316e-03 
163 KSP Residual norm 2.081222945431e-03 
164 KSP Residual norm 1.973162638634e-03 
165 KSP Residual norm 1.862310198198e-03 
166 KSP Residual norm 1.749849970665e-03 
167 KSP Residual norm 1.633061071294e-03 
168 KSP Residual norm 1.521124032557e-03 
169 KSP Residual norm 1.408323314143e-03 
170 KSP Residual norm 1.293048175498e-03 
171 KSP Residual norm 1.198666442585e-03 
172 KSP Residual norm 1.104292340266e-03 
173 KSP Residual norm 9.903517641547e-04 
174 KSP Residual norm 9.006840819784e-04 
175 KSP Residual norm 8.220140598814e-04 
176 KSP Residual norm 7.701687567256e-04 
177 KSP Residual norm 7.277976116145e-04 
178 KSP Residual norm 7.000140296237e-04 
179 KSP Residual norm 6.773749425038e-04 
180 KSP Residual norm 6.550713166809e-04 
181 KSP Residual norm 6.359176664418e-04 
182 KSP Residual norm 6.168972906949e-04 
183 KSP Residual norm 5.950139987555e-04 
184 KSP Residual norm 5.622068365562e-04 
185 KSP Residual norm 5.273547552299e-04 
186 KSP Residual norm 4.818810755826e-04 
187 KSP Residual norm 4.384533123217e-04 
188 KSP Residual norm 3.907464303241e-04 
189 KSP Residual norm 3.586153163812e-04 
190 KSP Residual norm 3.336501378016e-04 
191 KSP Residual norm 3.104406491737e-04 
192 KSP Residual norm 2.901902786842e-04 
193 KSP Residual norm 2.716799088525e-04 
194 KSP Residual norm 2.537323499807e-04 
195 KSP Residual norm 2.393026806501e-04 
196 KSP Residual norm 2.263905103671e-04 
197 KSP Residual norm 2.157021715528e-04 
198 KSP Residual norm 2.057920256098e-04 
199 KSP Residual norm 1.969756726158e-04 
200 KSP Residual norm 1.900711849490e-04 
201 KSP Residual norm 1.834129243787e-04 
202 KSP Residual norm 1.778746265038e-04 
203 KSP Residual norm 1.740906692660e-04 
204 KSP Residual norm 1.706199678117e-04 
205 KSP Residual norm 1.668919206574e-04 
206 KSP Residual norm 1.622105706626e-04 
207 KSP Residual norm 1.572060039751e-04 
208 KSP Residual norm 1.518496090051e-04 
209 KSP Residual norm 1.463692706552e-04 
210 KSP Residual norm 1.418011930173e-04 
211 KSP Residual norm 1.377765629498e-04 
212 KSP Residual norm 1.334751880052e-04 
213 KSP Residual norm 1.291286531826e-04 
214 KSP Residual norm 1.251832711544e-04 
215 KSP Residual norm 1.218001179107e-04 
216 KSP Residual norm 1.196976772828e-04 
217 KSP Residual norm 1.177303742190e-04 
218 KSP Residual norm 1.155947299539e-04 
219 KSP Residual norm 1.122085992182e-04 
220 KSP Residual norm 1.083653641467e-04 
221 KSP Residual norm 1.043599353987e-04 
222 KSP Residual norm 9.863046990455e-05 
223 KSP Residual norm 9.288192270074e-05 
224 KSP Residual norm 8.783813676585e-05 
225 KSP Residual norm 8.246551518283e-05 
226 KSP Residual norm 7.720911064459e-05 
227 KSP Residual norm 7.171219551448e-05 
228 KSP Residual norm 6.709483001659e-05 
229 KSP Residual norm 6.232136142160e-05 
230 KSP Residual norm 5.725941336029e-05 
231 KSP Residual norm 5.315634584336e-05 
232 KSP Residual norm 4.868189668074e-05 
233 KSP Residual norm 4.242157170447e-05 
234 KSP Residual norm 3.768648100701e-05 
235 KSP Residual norm 3.337401865099e-05 
KSP Object: 8 MPI processes
  type: gmres
    GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
    GMRES: happy breakdown tolerance 1e-30
  maximum iterations=10000
  tolerances:  relative=1e-07, absolute=1e-50, divergence=10000
  left preconditioning
  using nonzero initial guess
  using PRECONDITIONED norm type for convergence test
PC Object: 8 MPI processes
  type: bjacobi
    block Jacobi: number of blocks = 8
    Local solve is same for all blocks, in the following KSP and PC objects:
  KSP Object:  (sub_)   1 MPI processes
    type: preonly
    maximum iterations=10000, initial guess is zero
    tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
    left preconditioning
    using NONE norm type for convergence test
  PC Object:  (sub_)   1 MPI processes
    type: ilu
      ILU: out-of-place factorization
      0 levels of fill
      tolerance for zero pivot 2.22045e-14
      using diagonal shift to prevent zero pivot
      matrix ordering: natural
      factor fill ratio given 1, needed 1
        Factored matrix follows:
          Matrix Object:           1 MPI processes
            type: seqaij
            rows=250000, cols=250000
            package used to perform factorization: petsc
            total: nonzeros=1725000, allocated nonzeros=1725000
            total number of mallocs used during MatSetValues calls =0
              not using I-node routines
    linear system matrix = precond matrix:
    Matrix Object:     1 MPI processes
      type: seqaij
      rows=250000, cols=250000
      total: nonzeros=1725000, allocated nonzeros=1725000
      total number of mallocs used during MatSetValues calls =0
        not using I-node routines
  linear system matrix = precond matrix:
  Matrix Object:   8 MPI processes
    type: mpiaij
    rows=2000000, cols=2000000
    total: nonzeros=13900000, allocated nonzeros=13900000
    total number of mallocs used during MatSetValues calls =0
Residual norm 4.10372e-07
************************************************************************************************************************
***             WIDEN YOUR WINDOW TO 120 CHARACTERS.  Use 'enscript -r -fCourier9' to print this document            ***
************************************************************************************************************************

---------------------------------------------- PETSc Performance Summary: ----------------------------------------------

./ex45 on a arch-linux2-c-debug named compute-5-2.local with 8 processors, by zlwei Fri Sep 14 18:02:30 2012
Using Petsc Development HG revision: 98bf11863c3be31b7c2af504314a500bc64d88c9  HG Date: Wed Aug 29 13:51:08 2012 -0500

                         Max       Max/Min        Avg      Total 
Time (sec):           6.489e+01      1.00001   6.489e+01
Objects:              7.400e+01      1.00000   7.400e+01
Flops:                5.455e+09      1.00001   5.455e+09  4.364e+10
Flops/sec:            8.407e+07      1.00001   8.407e+07  6.725e+08
Memory:               1.397e+08      1.00000              1.118e+09
MPI Messages:         7.480e+02      1.00809   7.428e+02  5.942e+03
MPI Message Lengths:  2.440e+07      1.00000   3.285e+04  1.952e+08
MPI Reductions:       4.972e+03      1.00040

Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
                            e.g., VecAXPY() for real vectors of length N --> 2N flops
                            and VecAXPY() for complex vectors of length N --> 8N flops

Summary of Stages:   ----- Time ------  ----- Flops -----  --- Messages ---  -- Message Lengths --  -- Reductions --
                        Avg     %Total     Avg     %Total   counts   %Total     Avg         %Total   counts   %Total 
 0:      Main Stage: 6.4885e+01 100.0%  4.3638e+10 100.0%  5.942e+03 100.0%  3.285e+04      100.0%  4.969e+03  99.9% 

------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
   Count: number of times phase was executed
   Time and Flops: Max - maximum over all processors
                   Ratio - ratio of maximum to minimum over all processors
   Mess: number of messages sent
   Avg. len: average message length
   Reduct: number of global reductions
   Global: entire computation
   Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
      %T - percent time in this phase         %f - percent flops in this phase
      %M - percent messages in this phase     %L - percent message lengths in this phase
      %R - percent reductions in this phase
   Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------


      ##########################################################
      #                                                        #
      #                          WARNING!!!                    #
      #                                                        #
      #   This code was compiled with a debugging option,      #
      #   To get timing results run ./configure                #
      #   using --with-debugging=no, the performance will      #
      #   be generally two or three times faster.              #
      #                                                        #
      ##########################################################


Event                Count      Time (sec)     Flops                             --- Global ---  --- Stage ---   Total
                   Max Ratio  Max     Ratio   Max  Ratio  Mess   Avg len Reduct  %T %f %M %L %R  %T %f %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------

--- Event Stage 0: Main Stage

KSPGMRESOrthog       235 1.0 2.4753e+01 1.0 3.58e+09 1.0 0.0e+00 0.0e+00 3.8e+03 38 66  0  0 77  38 66  0  0 77  1157
KSPSetUp               2 1.0 2.5209e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 1.0e+01  0  0  0  0  0   0  0  0  0  0     0
KSPSolve               1 1.0 6.4022e+01 1.0 5.45e+09 1.0 5.9e+03 3.3e+04 4.9e+03 99100 99 99 99  99100 99 99 99   681
VecMDot              235 1.0 1.1786e+01 1.1 1.79e+09 1.0 0.0e+00 0.0e+00 2.4e+02 18 33  0  0  5  18 33  0  0  5  1215
VecNorm              244 1.0 7.7111e-01 1.4 1.22e+08 1.0 0.0e+00 0.0e+00 2.4e+02  1  2  0  0  5   1  2  0  0  5  1266
VecScale             243 1.0 2.0378e-01 1.0 6.08e+07 1.0 0.0e+00 0.0e+00 0.0e+00  0  1  0  0  0   0  1  0  0  0  2385
VecCopy                8 1.0 4.7706e-02 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet               253 1.0 6.1563e-01 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  1  0  0  0  0   1  0  0  0  0     0
VecAXPY               16 1.0 8.1648e-02 1.0 8.00e+06 1.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0   784
VecMAXPY             243 1.0 1.3352e+01 1.0 1.91e+09 1.0 0.0e+00 0.0e+00 0.0e+00 20 35  0  0  0  20 35  0  0  0  1143
VecScatterBegin      243 1.0 1.3329e-01 1.0 0.00e+00 0.0 5.8e+03 3.3e+04 0.0e+00  0  0 98100  0   0  0 98100  0     0
VecScatterEnd        243 1.0 1.6686e-01 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecNormalize         243 1.0 9.7965e-01 1.3 1.82e+08 1.0 0.0e+00 0.0e+00 2.4e+02  1  3  0  0  5   1  3  0  0  5  1488
MatMult              243 1.0 1.0068e+01 1.0 7.84e+08 1.0 5.8e+03 3.3e+04 0.0e+00 15 14 98100  0  15 14 98100  0   623
MatSolve             243 1.0 9.0452e+00 1.0 7.78e+08 1.0 0.0e+00 0.0e+00 0.0e+00 14 14  0  0  0  14 14  0  0  0   688
MatLUFactorNum         1 1.0 1.2613e-01 1.0 5.19e+06 1.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0   328
MatILUFactorSym        1 1.0 1.2127e-01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 1.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatAssemblyBegin       2 1.0 5.0238e-02 6.8 0.00e+00 0.0 0.0e+00 0.0e+00 4.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatAssemblyEnd         2 1.0 9.5135e-02 1.0 0.00e+00 0.0 4.8e+01 8.3e+03 2.3e+01  0  0  1  0  0   0  0  1  0  0     0
MatGetRowIJ            1 1.0 7.1526e-06 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatGetOrdering         1 1.0 4.3743e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 2.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatView                3 3.0 5.2476e-04 2.9 0.00e+00 0.0 0.0e+00 0.0e+00 1.0e+00  0  0  0  0  0   0  0  0  0  0     0
PCSetUp                2 1.0 2.9335e-01 1.0 5.19e+06 1.0 0.0e+00 0.0e+00 8.0e+00  0  0  0  0  0   0  0  0  0  0   141
PCSetUpOnBlocks        1 1.0 2.9270e-01 1.0 5.19e+06 1.0 0.0e+00 0.0e+00 4.0e+00  0  0  0  0  0   0  0  0  0  0   141
PCApply              243 1.0 1.3113e+01 1.0 7.78e+08 1.0 0.0e+00 0.0e+00 4.9e+02 20 14  0  0 10  20 14  0  0 10   474
------------------------------------------------------------------------------------------------------------------------

Memory usage is given in bytes:

Object Type          Creations   Destructions     Memory  Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

           Container     1              1          548     0
       Krylov Solver     2              2        19360     0
              Vector    43             43     74164072     0
      Vector Scatter     3              3         3108     0
              Matrix     4              4     53610212     0
    Distributed Mesh     2              2      2111040     0
     Bipartite Graph     4              4         2736     0
           Index Set    10             10      2107424     0
   IS L to G Mapping     1              1      1051368     0
      Preconditioner     2              2         1784     0
              Viewer     2              1          712     0
========================================================================================================================
Average time to get PetscTime(): 5.96046e-07
Average time for MPI_Barrier(): 0.000142002
Average time for zero size MPI_Send(): 0.00040701
#PETSc Option Table entries:
-ksp_monitor
-ksp_rtol 1.0e-7
-ksp_view
-log_summary
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 4
Configure run at: Wed Aug 29 14:54:25 2012
Configure options: --prefix=/work/zlwei/PETSc --with-cc=gcc --with-fc=gfortran --download-f-blas-lapack --download-mpich
-----------------------------------------
Libraries compiled on Wed Aug 29 14:54:25 2012 on firefox.bioinfo.ittc.ku.edu 
Machine characteristics: Linux-2.6.18-92.1.13.el5-x86_64-with-redhat-5.2-Final
Using PETSc directory: /nfs/work/zlwei/PETSc/petsc-dev
Using PETSc arch: arch-linux2-c-debug
-----------------------------------------

Using C compiler: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpicc  -Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -g3 -fno-inline -O0  ${COPTFLAGS} ${CFLAGS}
Using Fortran compiler: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpif90   -Wall -Wno-unused-variable -g  ${FOPTFLAGS} ${FFLAGS} 
-----------------------------------------

Using include paths: -I/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/include -I/nfs/work/zlwei/PETSc/petsc-dev/include -I/nfs/work/zlwei/PETSc/petsc-dev/include -I/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/include
-----------------------------------------

Using C linker: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpicc
Using Fortran linker: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpif90
Using libraries: -Wl,-rpath,/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -L/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -lpetsc -lX11 -lpthread -Wl,-rpath,/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -L/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -lflapack -lfblas -lm -L/usr/lib/gcc/x86_64-redhat-linux/4.1.2 -lmpichf90 -lgfortran -lm -lm -ldl -lmpich -lopa -lmpl -lrt -lgcc_s -ldl 
-----------------------------------------
-------------- next part --------------
  0 KSP Residual norm 3.783525866986e+02 
  1 KSP Residual norm 1.355893441623e+02 
  2 KSP Residual norm 7.589085973838e+01 
  3 KSP Residual norm 4.823882044088e+01 
  4 KSP Residual norm 3.576939460641e+01 
  5 KSP Residual norm 2.568586752716e+01 
  6 KSP Residual norm 1.911353651617e+01 
  7 KSP Residual norm 1.476612759706e+01 
  8 KSP Residual norm 1.120103269246e+01 
  9 KSP Residual norm 8.447905007266e+00 
 10 KSP Residual norm 6.370754282832e+00 
 11 KSP Residual norm 4.663740863807e+00 
 12 KSP Residual norm 3.270563368805e+00 
 13 KSP Residual norm 2.221723082951e+00 
 14 KSP Residual norm 1.499655110516e+00 
 15 KSP Residual norm 1.025805172424e+00 
 16 KSP Residual norm 6.958772552651e-01 
 17 KSP Residual norm 4.398302154107e-01 
 18 KSP Residual norm 2.533473339850e-01 
 19 KSP Residual norm 1.446856653276e-01 
 20 KSP Residual norm 8.823403825208e-02 
 21 KSP Residual norm 5.562369474397e-02 
 22 KSP Residual norm 3.414214762893e-02 
 23 KSP Residual norm 2.080524442410e-02 
 24 KSP Residual norm 1.195406832279e-02 
 25 KSP Residual norm 6.116395185712e-03 
 26 KSP Residual norm 3.571727881359e-03 
 27 KSP Residual norm 2.211651069789e-03 
 28 KSP Residual norm 1.307637746982e-03 
 29 KSP Residual norm 8.576482161323e-04 
 30 KSP Residual norm 6.057261603377e-04 
 31 KSP Residual norm 5.157507148603e-04 
 32 KSP Residual norm 3.933614801888e-04 
 33 KSP Residual norm 2.865687664919e-04 
 34 KSP Residual norm 1.847542136621e-04 
 35 KSP Residual norm 1.141737708009e-04 
 36 KSP Residual norm 6.706587799191e-05 
 37 KSP Residual norm 4.120603316253e-05 
 38 KSP Residual norm 2.698388463745e-05 
KSP Object: 8 MPI processes
  type: gmres
    GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
    GMRES: happy breakdown tolerance 1e-30
  maximum iterations=10000
  tolerances:  relative=1e-07, absolute=1e-50, divergence=10000
  left preconditioning
  using nonzero initial guess
  using PRECONDITIONED norm type for convergence test
PC Object: 8 MPI processes
  type: gamg
    MG: type is MULTIPLICATIVE, levels=5 cycles=v
      Cycles per PCApply=1
      Using Galerkin computed coarse grid matrices
  Coarse grid solver -- level -------------------------------
    KSP Object:    (mg_coarse_)     8 MPI processes
      type: gmres
        GMRES: restart=30, using Classical (unmodified) Gram-Schmidt Orthogonalization with no iterative refinement
        GMRES: happy breakdown tolerance 1e-30
      maximum iterations=1, initial guess is zero
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using NONE norm type for convergence test
    PC Object:    (mg_coarse_)     8 MPI processes
      type: bjacobi
        block Jacobi: number of blocks = 8
        Local solve info for each block is in the following KSP and PC objects:
      [0] number of local blocks = 1, first local block number = 0
        [0] local block number 0
        KSP Object:        (mg_coarse_sub_)         1 MPI processes
          type: preonly
          maximum iterations=10000, initial guess is zero
            tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
            KSP Object:      left preconditioning
            KSP Object:        (mg_coarse_sub_)            KSP Object:        (mg_coarse_sub_)         1 MPI processes
        KSP Object:        (mg_coarse_sub_)         1 MPI processes
              KSP Object:        (mg_coarse_sub_)         1 MPI processes
        KSP Object:        (mg_coarse_sub_)         1 MPI processes
          type: preonly
            using NONE norm type for convergence test
        PC Object:        (mg_coarse_sub_)         1 MPI processes
        (mg_coarse_sub_)         1 MPI processes
          type: preonly
   1 MPI processes
          type: preonly
          maximum iterations=10000, initial guess is zero
                  type: preonly
          maximum iterations=10000, initial guess is zero
            type: preonly
          maximum iterations=10000, initial guess is zero
                  type: preonly
          maximum iterations=10000, initial guess is zero
            maximum iterations=10000, initial guess is zero
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
                  type: lu
            LU: out-of-place factorization
          maximum iterations=10000, initial guess is zero
          tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using NONE norm type for convergence test
  left preconditioning
          using NONE norm type for convergence test
        PC Object:            tolerance for zero pivot 2.22045e-14
  tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
  tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using NONE norm type for convergence test
  tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using NONE norm type for convergence test
        PC Object:        PC Object:        (mg_coarse_sub_)         1 MPI processes
    tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
          left preconditioning
          using NONE norm type for convergence test
        PC Object:        (mg_coarse_sub_)         1 MPI processes
          type: lu
                  matrix ordering: nd
            factor fill ratio given 5, needed 2.91134
              Factored matrix follows:
          using NONE norm type for convergence test
        PC Object:        (mg_coarse_sub_)         1 MPI processes
        PC Object:        (mg_coarse_sub_)         1 MPI processes
          type: lu
          (mg_coarse_sub_)         1 MPI processes
          type: lu
                  (mg_coarse_sub_)         1 MPI processes
          type: lu
      LU: out-of-place factorization
            tolerance for zero pivot 2.22045e-14
                      Matrix Object:          type: lu
            LU: out-of-place factorization
              LU: out-of-place factorization
            tolerance for zero pivot 2.22045e-14
            matrix ordering: nd
  LU: out-of-place factorization
            tolerance for zero pivot 2.22045e-14
                  LU: out-of-place factorization
            tolerance for zero pivot 2.22045e-14
            matrix ordering: nd
      matrix ordering: nd
            factor fill ratio given 5, needed 0
              Factored matrix follows:
                 1 MPI processes
                  type: seqaij
        tolerance for zero pivot 2.22045e-14
            matrix ordering: nd
            factor fill ratio given 5, needed 0
            factor fill ratio given 5, needed 0
              Factored matrix follows:
      matrix ordering: nd
            factor fill ratio given 5, needed 0
                  factor fill ratio given 5, needed 0
              Factored matrix follows:
                  rows=718, cols=718
              Factored matrix follows:
        Factored matrix follows:
                Matrix Object:                 1 MPI processes
                  package used to perform factorization: petsc
                Matrix Object:                  type: seqaij
                  total: nonzeros=18324, allocated nonzeros=18324
                Matrix Object:                 1 MPI processes
                 1 MPI processes
                  type: seqaij
                Matrix Object:                 1 MPI processes
                  Matrix Object:                 1 MPI processes
                  type: seqaij
                  total number of mallocs used during MatSetValues calls =0
                  type: seqaij
                        rows=0, cols=0
                type: seqaij
                  rows=0, cols=0
                  rows=0, cols=0
                  package used to perform factorization: petsc
                  total: nonzeros=1, allocated nonzeros=1
                    not using I-node routines
            rows=0, cols=0
                  rows=0, cols=0
                  total number of mallocs used during MatSetValues calls =0
                        package used to perform factorization: petsc
                                  package used to perform factorization: petsc
                                    package used to perform factorization: petsc
                  total: nonzeros=1, allocated nonzeros=1
          linear system matrix = precond matrix:
            package used to perform factorization: petsc
                  total: nonzeros=1, allocated nonzeros=1
  total: nonzeros=1, allocated nonzeros=1
                  total number of mallocs used during MatSetValues calls =0
total: nonzeros=1, allocated nonzeros=1
                  total number of mallocs used during MatSetValues calls =0
                  total number of mallocs used during MatSetValues calls =0
                    not using I-node routines
          Matrix Object:           1 MPI processes
            type: seqaij
                  total number of mallocs used during MatSetValues calls =0
          linear system matrix = precond matrix:
                                                not using I-node routines
                    not using I-node routines
                    not using I-node routines
rows=718, cols=718
            total: nonzeros=6294, allocated nonzeros=6294
                not using I-node routines
          Matrix Object:           1 MPI processes
            type: seqaij
total number of mallocs used during MatSetValues calls =0
          linear system matrix = precond matrix:
          linear system matrix = precond matrix:
                linear system matrix = precond matrix:
          Matrix Object:              not using I-node routines
          linear system matrix = precond matrix:
                Matrix Object:           1 MPI processes
            type: seqaij
    Matrix Object:           1 MPI processes
                       1 MPI processes
            type: seqaij
                        rows=0, cols=0
            total: nonzeros=0, allocated nonzeros=0
            total number of mallocs used during MatSetValues calls =0
              not using I-node routines
        - - - - - - - - - - - - - - - - - -
    Matrix Object:           1 MPI processes
            type: seqaij
            rows=0, cols=0
            total: nonzeros=0, allocated nonzeros=0
  type: seqaij
            rows=0, cols=0
rows=0, cols=0
            total: nonzeros=0, allocated nonzeros=0
                      rows=0, cols=0
            total number of mallocs used during MatSetValues calls =0
            total: nonzeros=0, allocated nonzeros=0
      total number of mallocs used during MatSetValues calls =0
            total: nonzeros=0, allocated nonzeros=0
                  not using I-node routines
        total number of mallocs used during MatSetValues calls =0
              not using I-node routines
        total number of mallocs used during MatSetValues calls =0
              not using I-node routines
              not using I-node routines
      type: lu
            LU: out-of-place factorization
            tolerance for zero pivot 2.22045e-14
            matrix ordering: nd
            factor fill ratio given 5, needed 0
                      Factored matrix follows:
KSP Object:        (mg_coarse_sub_)         1 MPI processes
          type: preonly
          maximum iterations=10000, initial guess is zero
                  tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
                left preconditioning
            using NONE norm type for convergence test
Matrix Object:            PC Object:              (mg_coarse_sub_)             1 MPI processes
   1 MPI processes
          type: lu
                LU: out-of-place factorization
                        tolerance for zero pivot 2.22045e-14
  type: seqaij
            matrix ordering: nd
                  factor fill ratio given 5, needed 0
                    Factored matrix follows:
      rows=0, cols=0
                Matrix Object:                     1 MPI processes
                        type: seqaij
                          package used to perform factorization: petsc
rows=0, cols=0
                                package used to perform factorization: petsc
            total: nonzeros=1, allocated nonzeros=1
          total: nonzeros=1, allocated nonzeros=1
                        total number of mallocs used during MatSetValues calls =0
                            total number of mallocs used during MatSetValues calls =0
    not using I-node routines
                      linear system matrix = precond matrix:
        not using I-node routines
          Matrix Object:           1 MPI processes
            type: seqaij
                rows=0, cols=0
      linear system matrix = precond matrix:
            total: nonzeros=0, allocated nonzeros=0
            total number of mallocs used during MatSetValues calls =0
                      not using I-node routines
  Matrix Object:           1 MPI processes
            type: seqaij
            rows=0, cols=0
            total: nonzeros=0, allocated nonzeros=0
            total number of mallocs used during MatSetValues calls =0
              not using I-node routines
      [1] number of local blocks = 1, first local block number = 1
        [1] local block number 0
        - - - - - - - - - - - - - - - - - -
      [2] number of local blocks = 1, first local block number = 2
        [2] local block number 0
        - - - - - - - - - - - - - - - - - -
      [3] number of local blocks = 1, first local block number = 3
        [3] local block number 0
        - - - - - - - - - - - - - - - - - -
      [4] number of local blocks = 1, first local block number = 4
        [4] local block number 0
        - - - - - - - - - - - - - - - - - -
      [5] number of local blocks = 1, first local block number = 5
        [5] local block number 0
        - - - - - - - - - - - - - - - - - -
      [6] number of local blocks = 1, first local block number = 6
        [6] local block number 0
        - - - - - - - - - - - - - - - - - -
      [7] number of local blocks = 1, first local block number = 7
        [7] local block number 0
        - - - - - - - - - - - - - - - - - -
      linear system matrix = precond matrix:
      Matrix Object:       8 MPI processes
        type: mpiaij
        rows=718, cols=718
        total: nonzeros=6294, allocated nonzeros=6294
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Down solver (pre-smoother) on level 1 -------------------------------
    KSP Object:    (mg_levels_1_)     8 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.0710112, max = 1.49123
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_1_)     8 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       8 MPI processes
        type: mpiaij
        rows=3821, cols=3821
        total: nonzeros=31479, allocated nonzeros=31479
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 2 -------------------------------
    KSP Object:    (mg_levels_2_)     8 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.071608, max = 1.50377
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_2_)     8 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       8 MPI processes
        type: mpiaij
        rows=23143, cols=23143
        total: nonzeros=230755, allocated nonzeros=230755
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 3 -------------------------------
    KSP Object:    (mg_levels_3_)     8 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.075852, max = 1.59289
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_3_)     8 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       8 MPI processes
        type: mpiaij
        rows=224819, cols=224819
        total: nonzeros=2625247, allocated nonzeros=2625247
        total number of mallocs used during MatSetValues calls =0
          not using I-node (on process 0) routines
  Up solver (post-smoother) same as down solver (pre-smoother)
  Down solver (pre-smoother) on level 4 -------------------------------
    KSP Object:    (mg_levels_4_)     8 MPI processes
      type: chebyshev
        Chebyshev: eigenvalue estimates:  min = 0.0977111, max = 2.05193
      maximum iterations=2
      tolerances:  relative=1e-05, absolute=1e-50, divergence=10000
      left preconditioning
      using nonzero initial guess
      using NONE norm type for convergence test
    PC Object:    (mg_levels_4_)     8 MPI processes
      type: jacobi
      linear system matrix = precond matrix:
      Matrix Object:       8 MPI processes
        type: mpiaij
        rows=2000000, cols=2000000
        total: nonzeros=13900000, allocated nonzeros=13900000
        total number of mallocs used during MatSetValues calls =0
  Up solver (post-smoother) same as down solver (pre-smoother)
  linear system matrix = precond matrix:
  Matrix Object:   8 MPI processes
    type: mpiaij
    rows=2000000, cols=2000000
    total: nonzeros=13900000, allocated nonzeros=13900000
    total number of mallocs used during MatSetValues calls =0
Residual norm 4.49376e-07
************************************************************************************************************************
***             WIDEN YOUR WINDOW TO 120 CHARACTERS.  Use 'enscript -r -fCourier9' to print this document            ***
************************************************************************************************************************

---------------------------------------------- PETSc Performance Summary: ----------------------------------------------

./ex45 on a arch-linux2-c-debug named compute-5-2.local with 8 processors, by zlwei Fri Sep 14 17:59:53 2012
Using Petsc Development HG revision: 98bf11863c3be31b7c2af504314a500bc64d88c9  HG Date: Wed Aug 29 13:51:08 2012 -0500

                         Max       Max/Min        Avg      Total 
Time (sec):           7.150e+01      1.00001   7.150e+01
Objects:              4.570e+02      1.00000   4.570e+02
Flops:                2.338e+09      1.00241   2.335e+09  1.868e+10
Flops/sec:            3.270e+07      1.00241   3.266e+07  2.613e+08
Memory:               2.987e+08      1.00000              2.390e+09
MPI Messages:         7.807e+03      1.08415   7.544e+03  6.035e+04
MPI Message Lengths:  4.598e+07      1.00776   6.071e+03  3.664e+08
MPI Reductions:       6.099e+03      1.00000

Flop counting convention: 1 flop = 1 real number operation of type (multiply/divide/add/subtract)
                            e.g., VecAXPY() for real vectors of length N --> 2N flops
                            and VecAXPY() for complex vectors of length N --> 8N flops

Summary of Stages:   ----- Time ------  ----- Flops -----  --- Messages ---  -- Message Lengths --  -- Reductions --
                        Avg     %Total     Avg     %Total   counts   %Total     Avg         %Total   counts   %Total 
 0:      Main Stage: 7.1498e+01 100.0%  1.8683e+10 100.0%  6.035e+04 100.0%  6.071e+03      100.0%  6.098e+03 100.0% 

------------------------------------------------------------------------------------------------------------------------
See the 'Profiling' chapter of the users' manual for details on interpreting output.
Phase summary info:
   Count: number of times phase was executed
   Time and Flops: Max - maximum over all processors
                   Ratio - ratio of maximum to minimum over all processors
   Mess: number of messages sent
   Avg. len: average message length
   Reduct: number of global reductions
   Global: entire computation
   Stage: stages of a computation. Set stages with PetscLogStagePush() and PetscLogStagePop().
      %T - percent time in this phase         %f - percent flops in this phase
      %M - percent messages in this phase     %L - percent message lengths in this phase
      %R - percent reductions in this phase
   Total Mflop/s: 10e-6 * (sum of flops over all processors)/(max time over all processors)
------------------------------------------------------------------------------------------------------------------------


      ##########################################################
      #                                                        #
      #                          WARNING!!!                    #
      #                                                        #
      #   This code was compiled with a debugging option,      #
      #   To get timing results run ./configure                #
      #   using --with-debugging=no, the performance will      #
      #   be generally two or three times faster.              #
      #                                                        #
      ##########################################################


Event                Count      Time (sec)     Flops                             --- Global ---  --- Stage ---   Total
                   Max Ratio  Max     Ratio   Max  Ratio  Mess   Avg len Reduct  %T %f %M %L %R  %T %f %M %L %R Mflop/s
------------------------------------------------------------------------------------------------------------------------

--- Event Stage 0: Main Stage

KSPGMRESOrthog       118 1.0 3.8889e+00 1.0 5.63e+08 1.0 0.0e+00 0.0e+00 8.8e+02  5 24  0  0 14   5 24  0  0 14  1158
KSPSetUp              11 1.0 9.3905e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 2.4e+01  0  0  0  0  0   0  0  0  0  0     0
KSPSolve               1 1.0 7.0933e+01 1.0 2.33e+09 1.0 6.0e+04 6.1e+03 6.0e+03 99100100100 99  99100100100 99   263
VecMDot              118 1.0 1.8252e+00 1.0 2.82e+08 1.0 0.0e+00 0.0e+00 1.2e+02  3 12  0  0  2   3 12  0  0  2  1234
VecNorm              165 1.0 1.4453e-01 1.2 2.68e+07 1.0 0.0e+00 0.0e+00 1.6e+02  0  1  0  0  3   0  1  0  0  3  1478
VecScale             804 1.0 1.8971e-01 1.0 5.82e+07 1.0 0.0e+00 0.0e+00 0.0e+00  0  2  0  0  0   0  2  0  0  0  2452
VecCopy              206 1.0 2.8914e-01 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSet               744 1.0 1.7086e-01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecAXPY             1328 1.0 1.5434e+00 1.0 1.83e+08 1.0 0.0e+00 0.0e+00 0.0e+00  2  8  0  0  0   2  8  0  0  0   947
VecAYPX             1280 1.0 1.3966e+00 1.0 1.13e+08 1.0 0.0e+00 0.0e+00 0.0e+00  2  5  0  0  0   2  5  0  0  0   645
VecMAXPY             164 1.0 2.1316e+00 1.0 3.06e+08 1.0 0.0e+00 0.0e+00 0.0e+00  3 13  0  0  0   3 13  0  0  0  1149
VecAssemblyBegin      54 1.0 9.9215e-02 1.9 0.00e+00 0.0 0.0e+00 0.0e+00 1.6e+02  0  0  0  0  3   0  0  0  0  3     0
VecAssemblyEnd        54 1.0 4.9758e-04 1.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecPointwiseMult    1004 1.0 2.0735e+00 1.1 7.07e+07 1.0 0.0e+00 0.0e+00 0.0e+00  3  3  0  0  0   3  3  0  0  0   273
VecScatterBegin     1458 1.0 3.4748e-01 1.1 0.00e+00 0.0 5.6e+04 6.0e+03 0.0e+00  0  0 94 93  0   0  0 94 93  0     0
VecScatterEnd       1458 1.0 2.9766e-01 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
VecSetRandom           4 1.0 3.8469e-01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  1  0  0  0  0   1  0  0  0  0     0
VecNormalize         164 1.0 1.9133e-01 1.1 3.95e+07 1.0 0.0e+00 0.0e+00 1.6e+02  0  2  0  0  3   0  2  0  0  3  1644
MatMult             1080 1.0 1.5564e+01 1.0 1.11e+09 1.0 4.4e+04 6.9e+03 0.0e+00 22 47 73 83  0  22 47 73 83  0   569
MatMultAdd           160 1.0 7.8439e-01 1.0 2.25e+07 1.0 4.8e+03 9.2e+02 0.0e+00  1  1  8  1  0   1  1  8  1  0   229
MatMultTranspose     160 1.0 7.3742e-01 1.0 2.25e+07 1.0 4.8e+03 9.2e+02 3.2e+02  1  1  8  1  5   1  1  8  1  5   244
MatSolve              80 0.0 1.2254e-02 0.0 2.87e+06 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0   235
MatLUFactorSym         1 1.0 1.6282e-0317.0 0.00e+00 0.0 0.0e+00 0.0e+00 5.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatLUFactorNum         1 1.0 2.3890e-03107.7 3.37e+05 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0   141
MatConvert             4 1.0 1.1830e-01 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 2.4e+01  0  0  0  0  0   0  0  0  0  0     0
MatScale               4 1.0 8.0437e-02 1.0 4.21e+06 1.0 1.7e+02 6.3e+03 0.0e+00  0  0  0  0  0   0  0  0  0  0   417
MatAssemblyBegin      50 1.0 1.9675e-01 2.4 0.00e+00 0.0 4.3e+02 1.2e+03 5.6e+01  0  0  1  0  1   0  0  1  0  1     0
MatAssemblyEnd        50 1.0 8.5181e-01 1.0 0.00e+00 0.0 1.5e+03 1.5e+03 4.0e+02  1  0  3  1  7   1  0  3  1  7     0
MatGetRow         563366 1.0 2.0994e+00 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  3  0  0  0  0   3  0  0  0  0     0
MatGetRowIJ            1 0.0 1.4687e-04 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatGetOrdering         1 0.0 1.5841e-03 0.0 0.00e+00 0.0 0.0e+00 0.0e+00 2.5e-01  0  0  0  0  0   0  0  0  0  0     0
MatCoarsen             4 1.0 1.4392e+00 1.0 0.00e+00 0.0 1.4e+03 9.7e+03 1.2e+02  2  0  2  4  2   2  0  2  4  2     0
MatView                8 1.0 4.0925e-03 2.2 0.00e+00 0.0 0.0e+00 0.0e+00 6.0e+00  0  0  0  0  0   0  0  0  0  0     0
MatPtAP                4 1.0 8.0547e-01 1.1 1.25e+07 1.0 1.5e+03 2.3e+03 2.3e+02  1  1  2  1  4   1  1  2  1  4   123
MatPtAPSymbolic        4 1.0 5.3591e-01 1.1 0.00e+00 0.0 1.3e+03 2.1e+03 2.0e+02  1  0  2  1  3   1  0  2  1  3     0
MatPtAPNumeric         4 1.0 2.6955e-01 1.0 1.25e+07 1.0 1.4e+02 4.7e+03 2.4e+01  0  1  0  0  0   0  1  0  0  0   368
MatTrnMatMult          4 1.0 5.9091e+00 1.0 1.28e+08 1.0 1.1e+03 1.9e+04 2.5e+02  8  5  2  6  4   8  5  2  6  4   172
MatGetLocalMat        12 1.0 2.5454e-01 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 3.2e+01  0  0  0  0  1   0  0  0  0  1     0
MatGetBrAoCol          4 1.0 6.7071e-02 2.8 0.00e+00 0.0 5.2e+02 4.2e+03 1.6e+01  0  0  1  1  0   0  0  1  1  0     0
MatGetSymTrans         8 1.0 1.0458e-02 1.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
PCSetUp                2 1.0 2.9746e+01 1.0 2.64e+08 1.0 8.4e+03 7.7e+03 1.7e+03 42 11 14 18 29  42 11 14 18 29    71
PCSetUpOnBlocks       40 1.0 6.5384e-03 5.5 3.37e+05 0.0 0.0e+00 0.0e+00 8.0e+00  0  0  0  0  0   0  0  0  0  0    52
PCApply               40 1.0 2.9190e+01 1.0 1.39e+09 1.0 5.1e+04 5.3e+03 3.6e+03 41 60 84 73 59  41 60 84 73 59   381
PCGAMGgraph_AGG        4 1.0 1.2728e+01 1.0 4.21e+06 1.0 5.2e+02 3.1e+03 1.9e+02 18  0  1  0  3  18  0  1  0  3     3
PCGAMGcoarse_AGG       4 1.0 1.1054e+01 1.0 1.28e+08 1.0 3.5e+03 1.2e+04 4.7e+02 15  5  6 12  8  15  5  6 12  8    92
PCGAMGProl_AGG         4 1.0 2.4394e+00 1.0 0.00e+00 0.0 1.1e+03 4.3e+03 2.0e+02  3  0  2  1  3   3  0  2  1  3     0
PCGAMGPOpt_AGG         4 1.0 3.3855e-05 1.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   0  0  0  0  0     0
------------------------------------------------------------------------------------------------------------------------

Memory usage is given in bytes:

Object Type          Creations   Destructions     Memory  Descendants' Mem.
Reports information only for process 0.

--- Event Stage 0: Main Stage

           Container     1              1          548     0
       Krylov Solver    11             11       162856     0
              Vector   235            235    142154440     0
      Vector Scatter    26             26        26936     0
              Matrix    92             92    249866276     0
      Matrix Coarsen     4              4         2448     0
    Distributed Mesh     2              2      2111040     0
     Bipartite Graph     4              4         2736     0
           Index Set    64             64      1375492     0
   IS L to G Mapping     1              1      1051368     0
      Preconditioner    11             11        10092     0
              Viewer     2              1          712     0
         PetscRandom     4              4         2432     0
========================================================================================================================
Average time to get PetscTime(): 5.96046e-07
Average time for MPI_Barrier(): 0.000152588
Average time for zero size MPI_Send(): 7.42376e-05
#PETSc Option Table entries:
-ksp_monitor
-ksp_rtol 1.0e-7
-ksp_view
-log_summary
-pc_type gamg
#End of PETSc Option Table entries
Compiled without FORTRAN kernels
Compiled with full precision matrices (default)
sizeof(short) 2 sizeof(int) 4 sizeof(long) 8 sizeof(void*) 8 sizeof(PetscScalar) 8 sizeof(PetscInt) 4
Configure run at: Wed Aug 29 14:54:25 2012
Configure options: --prefix=/work/zlwei/PETSc --with-cc=gcc --with-fc=gfortran --download-f-blas-lapack --download-mpich
-----------------------------------------
Libraries compiled on Wed Aug 29 14:54:25 2012 on firefox.bioinfo.ittc.ku.edu 
Machine characteristics: Linux-2.6.18-92.1.13.el5-x86_64-with-redhat-5.2-Final
Using PETSc directory: /nfs/work/zlwei/PETSc/petsc-dev
Using PETSc arch: arch-linux2-c-debug
-----------------------------------------

Using C compiler: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpicc  -Wall -Wwrite-strings -Wno-strict-aliasing -Wno-unknown-pragmas -g3 -fno-inline -O0  ${COPTFLAGS} ${CFLAGS}
Using Fortran compiler: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpif90   -Wall -Wno-unused-variable -g  ${FOPTFLAGS} ${FFLAGS} 
-----------------------------------------

Using include paths: -I/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/include -I/nfs/work/zlwei/PETSc/petsc-dev/include -I/nfs/work/zlwei/PETSc/petsc-dev/include -I/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/include
-----------------------------------------

Using C linker: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpicc
Using Fortran linker: /nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/bin/mpif90
Using libraries: -Wl,-rpath,/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -L/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -lpetsc -lX11 -lpthread -Wl,-rpath,/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -L/nfs/work/zlwei/PETSc/petsc-dev/arch-linux2-c-debug/lib -lflapack -lfblas -lm -L/usr/lib/gcc/x86_64-redhat-linux/4.1.2 -lmpichf90 -lgfortran -lm -lm -ldl -lmpich -lopa -lmpl -lrt -lgcc_s -ldl 
-----------------------------------------


More information about the petsc-users mailing list