[petsc-dev] MatMult on Summit

Smith, Barry F. bsmith at mcs.anl.gov
Mon Sep 23 11:19:49 CDT 2019



  Junchao,

    Great, thanks

   Barry

  Eventually I think this should all got into a MR that includes these tests and the PetscSF ping-pongs so later someone can reproduce these numbers on Summit and on the new machines that come out.

> On Sep 23, 2019, at 11:01 AM, Zhang, Junchao <jczhang at mcs.anl.gov> wrote:
> 
> I also did OpenMP stream test and then I found mismatch between OpenMPI and MPI.  That reminded me a subtle issue on summit: pair of cores share L2 cache.  One has to place MPI ranks to different pairs to get best bandwidth. See different bindings
> https://jsrunvisualizer.olcf.ornl.gov/?s4f1o01n2c21g3r12d1b21l0= and https://jsrunvisualizer.olcf.ornl.gov/?s4f1o01n2c21g3r12d1b22l0=. Note each node has 21 cores. I assume that means 11 pairs. The new results are below. They match with we what I got from OpenMPI. The bandwidth is almost doubled from 1 to 2 cores per socket. IBM document also says each socket has two memory controllers. I could not find the core-memory controller affinity info. I tried different bindings but did not find huge difference.
>   
> #Ranks  Rate (MB/s)    Ratio over 2 ranks
> 1         29229.8       -
> 2         59091.0      1.0
> 4        112260.7      1.9
> 6        159852.8      2.7
> 8        194351.7      3.3
> 10       215841.0      3.7
> 12       232316.6      3.9
> 14       244615.7      4.1
> 16       254450.8      4.3
> 18       262185.7      4.4
> 20       267181.0      4.5
> 22       270290.4      4.6
> 24       221944.9      3.8
> 26       238302.8      4.0
> 
> 
> --Junchao Zhang
> 
> 
> On Sun, Sep 22, 2019 at 6:04 PM Smith, Barry F. <bsmith at mcs.anl.gov> wrote:
> 
>   Junchao,
> 
>      For completeness could you please run with a single core? But leave the ratio as you have with over 2 ranks since that is the correct model.
> 
>    Thanks
> 
>      Barry
> 
> 
> > On Sep 22, 2019, at 11:14 AM, Zhang, Junchao <jczhang at mcs.anl.gov> wrote:
> > 
> > I did stream test on Summit. I used the MPI version from petsc, but largely increased the array size N since one socket of Summit has 120MB L3 cache. I used MPI version since it was easy for me to distribute ranks evenly to the two sockets. 
> > The result matches with data released by OLCF (see attached figure) and data given by Jed. We can see the bandwidth saturates around 24 ranks.
> > 
> > #Ranks     Rate (MB/s)     Ratio over 2 ranks
> > ------------------------------------------
> > 2          59012.2834        1.00
> > 4          70959.1475        1.20
> > 6         106639.9837        1.81
> > 8         138638.6929        2.35
> > 10        171125.0873        2.90
> > 12        196162.5197        3.32
> > 14        215272.7810        3.65
> > 16        229562.4040        3.89
> > 18        242587.4913        4.11
> > 20        251057.1731        4.25
> > 22        258569.7794        4.38
> > 24        265443.2924        4.50
> > 26        266562.7872        4.52
> > 28        267043.6367        4.53
> > 30        266833.7212        4.52
> > 32        267183.8474        4.53
> > 
> > On Sat, Sep 21, 2019 at 11:24 PM Smith, Barry F. <bsmith at mcs.anl.gov> wrote:
> > 
> >   Junchao could try the PETSc (and non-PETSc) streams tests on the machine. 
> > 
> >   There are a few differences, compiler, the reported results are with OpenMP, different number of cores but yes the performance is a bit low. For DOE that is great, makes GPUs look better :-)
> > 
> > 
> > > On Sep 21, 2019, at 11:11 PM, Jed Brown <jed at jedbrown.org> wrote:
> > > 
> > > For an AIJ matrix with 32-bit integers, this is 1 flops/6 bytes, or 165
> > > GB/s for the node for the best case (42 ranks).
> > > 
> > > My understanding is that these systems have 8 channels of DDR4-2666 per
> > > socket, which is ~340 GB/s of theoretical bandwidth on a 2-socket
> > > system, and 270 GB/s STREAM Triad according to this post
> > > 
> > >  https://openpowerblog.wordpress.com/2018/07/19/epyc-skylake-vs-power9-stream-memory-bandwidth-comparison-via-zaius-barreleye-g2/
> > > 
> > > Is this 60% of Triad the best we can get for SpMV?
> > > 
> > > "Zhang, Junchao via petsc-dev" <petsc-dev at mcs.anl.gov> writes:
> > > 
> > >> 42 cores have better performance.
> > >> 
> > >> 36 MPI ranks
> > >> MatMult              100 1.0 2.2435e+00 1.0 1.75e+09 1.3 2.9e+04 4.5e+04 0.0e+00  6 99 97 28  0 100100100100  0 25145       0      0 0.00e+00    0 0.00e+00  0
> > >> VecScatterBegin      100 1.0 2.1869e-02 3.3 0.00e+00 0.0 2.9e+04 4.5e+04 0.0e+00  0  0 97 28  0   1  0100100  0     0       0      0 0.00e+00    0 0.00e+00  0
> > >> VecScatterEnd        100 1.0 7.9205e-0152.6 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  1  0  0  0  0  22  0  0  0  0     0       0      0 0.00e+00    0 0.00e+00  0
> > >> 
> > >> --Junchao Zhang
> > >> 
> > >> 
> > >> On Sat, Sep 21, 2019 at 9:41 PM Smith, Barry F. <bsmith at mcs.anl.gov<mailto:bsmith at mcs.anl.gov>> wrote:
> > >> 
> > >>  Junchao,
> > >> 
> > >>    Mark has a good point; could you also try for completeness the CPU with 36 cores and see if it is any better than the 42 core case?
> > >> 
> > >>  Barry
> > >> 
> > >>  So extrapolating about 20 nodes of the CPUs is equivalent to 1 node of the GPUs for the multiply for this problem size.
> > >> 
> > >>> On Sep 21, 2019, at 6:40 PM, Mark Adams <mfadams at lbl.gov<mailto:mfadams at lbl.gov>> wrote:
> > >>> 
> > >>> I came up with 36 cores/node for CPU GAMG runs. The memory bus is pretty saturated at that point.
> > >>> 
> > >>> On Sat, Sep 21, 2019 at 1:44 AM Zhang, Junchao via petsc-dev <petsc-dev at mcs.anl.gov<mailto:petsc-dev at mcs.anl.gov>> wrote:
> > >>> Here are CPU version results on one node with 24 cores, 42 cores. Click the links for core layout.
> > >>> 
> > >>> 24 MPI ranks, https://jsrunvisualizer.olcf.ornl.gov/?s4f1o01n6c4g1r14d1b21l0=
> > >>> MatMult              100 1.0 3.1431e+00 1.0 2.63e+09 1.2 1.9e+04 5.9e+04 0.0e+00  8 99 97 25  0 100100100100  0 17948       0      0 0.00e+00    0 0.00e+00  0
> > >>> VecScatterBegin      100 1.0 2.0583e-02 2.3 0.00e+00 0.0 1.9e+04 5.9e+04 0.0e+00  0  0 97 25  0   0  0100100  0     0       0      0 0.00e+00    0 0.00e+00  0
> > >>> VecScatterEnd        100 1.0 1.0639e+0050.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  2  0  0  0  0  19  0  0  0  0     0       0      0 0.00e+00    0 0.00e+00  0
> > >>> 
> > >>> 42 MPI ranks, https://jsrunvisualizer.olcf.ornl.gov/?s4f1o01n6c7g1r17d1b21l0=
> > >>> MatMult              100 1.0 2.0519e+00 1.0 1.52e+09 1.3 3.5e+04 4.1e+04 0.0e+00 23 99 97 30  0 100100100100  0 27493       0      0 0.00e+00    0 0.00e+00  0
> > >>> VecScatterBegin      100 1.0 2.0971e-02 3.4 0.00e+00 0.0 3.5e+04 4.1e+04 0.0e+00  0  0 97 30  0   1  0100100  0     0       0      0 0.00e+00    0 0.00e+00  0
> > >>> VecScatterEnd        100 1.0 8.5184e-0162.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  6  0  0  0  0  24  0  0  0  0     0       0      0 0.00e+00    0 0.00e+00  0
> > >>> 
> > >>> --Junchao Zhang
> > >>> 
> > >>> 
> > >>> On Fri, Sep 20, 2019 at 11:48 PM Smith, Barry F. <bsmith at mcs.anl.gov<mailto:bsmith at mcs.anl.gov>> wrote:
> > >>> 
> > >>>  Junchao,
> > >>> 
> > >>>   Very interesting. For completeness please run also 24 and 42 CPUs without the GPUs. Note that the default layout for CPU cores is not good. You will want 3 cores on each socket then 12 on each.
> > >>> 
> > >>>  Thanks
> > >>> 
> > >>>   Barry
> > >>> 
> > >>>  Since Tim is one of our reviewers next week this is a very good test matrix :-)
> > >>> 
> > >>> 
> > >>>> On Sep 20, 2019, at 11:39 PM, Zhang, Junchao via petsc-dev <petsc-dev at mcs.anl.gov<mailto:petsc-dev at mcs.anl.gov>> wrote:
> > >>>> 
> > >>>> Click the links to visualize it.
> > >>>> 
> > >>>> 6 ranks
> > >>>> https://jsrunvisualizer.olcf.ornl.gov/?s4f1o01n6c1g1r11d1b21l0=
> > >>>> jsrun -n 6 -a 1 -c 1 -g 1 -r 6 --latency_priority GPU-GPU --launch_distribution packed --bind packed:1 js_task_info ./ex900 -f HV15R.aij -mat_type aijcusparse -vec_type cuda -n 100 -log_view
> > >>>> 
> > >>>> 24 ranks
> > >>>> https://jsrunvisualizer.olcf.ornl.gov/?s4f1o01n6c4g1r14d1b21l0=
> > >>>> jsrun -n 6 -a 4 -c 4 -g 1 -r 6 --latency_priority GPU-GPU --launch_distribution packed --bind packed:1 js_task_info ./ex900 -f HV15R.aij -mat_type aijcusparse -vec_type cuda -n 100 -log_view
> > >>>> 
> > >>>> --Junchao Zhang
> > >>>> 
> > >>>> 
> > >>>> On Fri, Sep 20, 2019 at 11:34 PM Mills, Richard Tran via petsc-dev <petsc-dev at mcs.anl.gov<mailto:petsc-dev at mcs.anl.gov>> wrote:
> > >>>> Junchao,
> > >>>> 
> > >>>> Can you share your 'jsrun' command so that we can see how you are mapping things to resource sets?
> > >>>> 
> > >>>> --Richard
> > >>>> 
> > >>>> On 9/20/19 11:22 PM, Zhang, Junchao via petsc-dev wrote:
> > >>>>> I downloaded a sparse matrix (HV15R) from Florida Sparse Matrix Collection. Its size is about 2M x 2M. Then I ran the same MatMult 100 times on one node of Summit with -mat_type aijcusparse -vec_type cuda. I found MatMult was almost dominated by VecScatter in this simple test. Using 6 MPI ranks + 6 GPUs,  I found CUDA aware SF could improve performance. But if I enabled Multi-Process Service on Summit and used 24 ranks + 6 GPUs, I found CUDA aware SF hurt performance. I don't know why and have to profile it. I will also collect  data with multiple nodes. Are the matrix and tests proper?
> > >>>>> 
> > >>>>> ------------------------------------------------------------------------------------------------------------------------
> > >>>>> Event                Count      Time (sec)     Flop                              --- Global ---  --- Stage ----  Total   GPU    - CpuToGpu -   - GpuToCpu - GPU
> > >>>>>                   Max Ratio  Max     Ratio   Max  Ratio  Mess   AvgLen  Reduct  %T %F %M %L %R  %T %F %M %L %R Mflop/s Mflop/s Count   Size   Count   Size  %F
> > >>>>> ---------------------------------------------------------------------------------------------------------------------------------------------------------------
> > >>>>> 6 MPI ranks (CPU version)
> > >>>>> MatMult              100 1.0 1.1895e+01 1.0 9.63e+09 1.1 2.8e+03 2.2e+05 0.0e+00 24 99 97 18  0 100100100100  0  4743       0      0 0.00e+00    0 0.00e+00  0
> > >>>>> VecScatterBegin      100 1.0 4.9145e-02 3.0 0.00e+00 0.0 2.8e+03 2.2e+05 0.0e+00  0  0 97 18  0   0  0100100  0     0       0      0 0.00e+00    0 0.00e+00  0
> > >>>>> VecScatterEnd        100 1.0 2.9441e+00133  0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  3  0  0  0  0  13  0  0  0  0     0       0      0 0.00e+00    0 0.00e+00  0
> > >>>>> 
> > >>>>> 6 MPI ranks + 6 GPUs + regular SF
> > >>>>> MatMult              100 1.0 1.7800e-01 1.0 9.66e+09 1.1 2.8e+03 2.2e+05 0.0e+00  0 99 97 18  0 100100100100  0 318057   3084009 100 1.02e+02  100 2.69e+02 100
> > >>>>> VecScatterBegin      100 1.0 1.2786e-01 1.3 0.00e+00 0.0 2.8e+03 2.2e+05 0.0e+00  0  0 97 18  0  64  0100100  0     0       0      0 0.00e+00  100 2.69e+02  0
> > >>>>> VecScatterEnd        100 1.0 6.2196e-02 3.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0  22  0  0  0  0     0       0      0 0.00e+00    0 0.00e+00  0
> > >>>>> VecCUDACopyTo        100 1.0 1.0850e-02 2.3 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   5  0  0  0  0     0       0    100 1.02e+02    0 0.00e+00  0
> > >>>>> VecCopyFromSome      100 1.0 1.0263e-01 1.2 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0  54  0  0  0  0     0       0      0 0.00e+00  100 2.69e+02  0
> > >>>>> 
> > >>>>> 6 MPI ranks + 6 GPUs + CUDA-aware SF
> > >>>>> MatMult              100 1.0 1.1112e-01 1.0 9.66e+09 1.1 2.8e+03 2.2e+05 0.0e+00  1 99 97 18  0 100100100100  0 509496   3133521   0 0.00e+00    0 0.00e+00 100
> > >>>>> VecScatterBegin      100 1.0 7.9461e-02 1.1 0.00e+00 0.0 2.8e+03 2.2e+05 0.0e+00  1  0 97 18  0  70  0100100  0     0       0      0 0.00e+00    0 0.00e+00  0
> > >>>>> VecScatterEnd        100 1.0 2.2805e-02 1.5 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0  17  0  0  0  0     0       0      0 0.00e+00    0 0.00e+00  0
> > >>>>> 
> > >>>>> 24 MPI ranks + 6 GPUs + regular SF
> > >>>>> MatMult              100 1.0 1.1094e-01 1.0 2.63e+09 1.2 1.9e+04 5.9e+04 0.0e+00  1 99 97 25  0 100100100100  0 510337   951558  100 4.61e+01  100 6.72e+01 100
> > >>>>> VecScatterBegin      100 1.0 4.8966e-02 1.8 0.00e+00 0.0 1.9e+04 5.9e+04 0.0e+00  0  0 97 25  0  34  0100100  0     0       0      0 0.00e+00  100 6.72e+01  0
> > >>>>> VecScatterEnd        100 1.0 7.2969e-02 4.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  1  0  0  0  0  42  0  0  0  0     0       0      0 0.00e+00    0 0.00e+00  0
> > >>>>> VecCUDACopyTo        100 1.0 4.4487e-03 1.8 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0   3  0  0  0  0     0       0    100 4.61e+01    0 0.00e+00  0
> > >>>>> VecCopyFromSome      100 1.0 4.3315e-02 1.9 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  0  0  0  0  0  29  0  0  0  0     0       0      0 0.00e+00  100 6.72e+01  0
> > >>>>> 
> > >>>>> 24 MPI ranks + 6 GPUs + CUDA-aware SF
> > >>>>> MatMult              100 1.0 1.4597e-01 1.2 2.63e+09 1.2 1.9e+04 5.9e+04 0.0e+00  1 99 97 25  0 100100100100  0 387864   973391    0 0.00e+00    0 0.00e+00 100
> > >>>>> VecScatterBegin      100 1.0 6.4899e-02 2.9 0.00e+00 0.0 1.9e+04 5.9e+04 0.0e+00  1  0 97 25  0  35  0100100  0     0       0      0 0.00e+00    0 0.00e+00  0
> > >>>>> VecScatterEnd        100 1.0 1.1179e-01 4.1 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00  1  0  0  0  0  48  0  0  0  0     0       0      0 0.00e+00    0 0.00e+00  0
> > >>>>> 
> > >>>>> 
> > >>>>> --Junchao Zhang
> > >>>> 
> > >>> 
> > 
> > <SummitNode.png>
> 



More information about the petsc-dev mailing list