[petsc-dev] MatMult on Summit
Mark Adams
mfadams at lbl.gov
Sat Sep 21 18:40:53 CDT 2019
I came up with 36 cores/node for CPU GAMG runs. The memory bus is pretty
saturated at that point.
On Sat, Sep 21, 2019 at 1:44 AM Zhang, Junchao via petsc-dev <
petsc-dev at mcs.anl.gov> wrote:
> Here are CPU version results on one node with 24 cores, 42 cores. Click
> the links for core layout.
>
> 24 MPI ranks,
> https://jsrunvisualizer.olcf.ornl.gov/?s4f1o01n6c4g1r14d1b21l0=
> MatMult 100 1.0 3.1431e+00 1.0 2.63e+09 1.2 1.9e+04 5.9e+04
> 0.0e+00 8 99 97 25 0 100100100100 0 17948 0 0 0.00e+00 0
> 0.00e+00 0
> VecScatterBegin 100 1.0 2.0583e-02 2.3 0.00e+00 0.0 1.9e+04 5.9e+04
> 0.0e+00 0 0 97 25 0 0 0100100 0 0 0 0 0.00e+00 0
> 0.00e+00 0
> VecScatterEnd 100 1.0 1.0639e+0050.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 2 0 0 0 0 19 0 0 0 0 0 0 0 0.00e+00 0
> 0.00e+00 0
>
> 42 MPI ranks,
> https://jsrunvisualizer.olcf.ornl.gov/?s4f1o01n6c7g1r17d1b21l0=
> MatMult 100 1.0 2.0519e+00 1.0 1.52e+09 1.3 3.5e+04 4.1e+04
> 0.0e+00 23 99 97 30 0 100100100100 0 27493 0 0 0.00e+00 0
> 0.00e+00 0
> VecScatterBegin 100 1.0 2.0971e-02 3.4 0.00e+00 0.0 3.5e+04 4.1e+04
> 0.0e+00 0 0 97 30 0 1 0100100 0 0 0 0 0.00e+00 0
> 0.00e+00 0
> VecScatterEnd 100 1.0 8.5184e-0162.0 0.00e+00 0.0 0.0e+00 0.0e+00
> 0.0e+00 6 0 0 0 0 24 0 0 0 0 0 0 0 0.00e+00 0
> 0.00e+00 0
>
> --Junchao Zhang
>
>
> On Fri, Sep 20, 2019 at 11:48 PM Smith, Barry F. <bsmith at mcs.anl.gov>
> wrote:
>
>>
>> Junchao,
>>
>> Very interesting. For completeness please run also 24 and 42 CPUs
>> without the GPUs. Note that the default layout for CPU cores is not good.
>> You will want 3 cores on each socket then 12 on each.
>>
>> Thanks
>>
>> Barry
>>
>> Since Tim is one of our reviewers next week this is a very good test
>> matrix :-)
>>
>>
>> > On Sep 20, 2019, at 11:39 PM, Zhang, Junchao via petsc-dev <
>> petsc-dev at mcs.anl.gov> wrote:
>> >
>> > Click the links to visualize it.
>> >
>> > 6 ranks
>> > https://jsrunvisualizer.olcf.ornl.gov/?s4f1o01n6c1g1r11d1b21l0=
>> > jsrun -n 6 -a 1 -c 1 -g 1 -r 6 --latency_priority GPU-GPU
>> --launch_distribution packed --bind packed:1 js_task_info ./ex900 -f
>> HV15R.aij -mat_type aijcusparse -vec_type cuda -n 100 -log_view
>> >
>> > 24 ranks
>> > https://jsrunvisualizer.olcf.ornl.gov/?s4f1o01n6c4g1r14d1b21l0=
>> > jsrun -n 6 -a 4 -c 4 -g 1 -r 6 --latency_priority GPU-GPU
>> --launch_distribution packed --bind packed:1 js_task_info ./ex900 -f
>> HV15R.aij -mat_type aijcusparse -vec_type cuda -n 100 -log_view
>> >
>> > --Junchao Zhang
>> >
>> >
>> > On Fri, Sep 20, 2019 at 11:34 PM Mills, Richard Tran via petsc-dev <
>> petsc-dev at mcs.anl.gov> wrote:
>> > Junchao,
>> >
>> > Can you share your 'jsrun' command so that we can see how you are
>> mapping things to resource sets?
>> >
>> > --Richard
>> >
>> > On 9/20/19 11:22 PM, Zhang, Junchao via petsc-dev wrote:
>> >> I downloaded a sparse matrix (HV15R) from Florida Sparse Matrix
>> Collection. Its size is about 2M x 2M. Then I ran the same MatMult 100
>> times on one node of Summit with -mat_type aijcusparse -vec_type cuda. I
>> found MatMult was almost dominated by VecScatter in this simple test. Using
>> 6 MPI ranks + 6 GPUs, I found CUDA aware SF could improve performance. But
>> if I enabled Multi-Process Service on Summit and used 24 ranks + 6 GPUs, I
>> found CUDA aware SF hurt performance. I don't know why and have to profile
>> it. I will also collect data with multiple nodes. Are the matrix and tests
>> proper?
>> >>
>> >>
>> ------------------------------------------------------------------------------------------------------------------------
>> >> Event Count Time (sec) Flop
>> --- Global --- --- Stage ---- Total GPU - CpuToGpu - -
>> GpuToCpu - GPU
>> >> Max Ratio Max Ratio Max Ratio Mess
>> AvgLen Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s Mflop/s Count
>> Size Count Size %F
>> >>
>> ---------------------------------------------------------------------------------------------------------------------------------------------------------------
>> >> 6 MPI ranks (CPU version)
>> >> MatMult 100 1.0 1.1895e+01 1.0 9.63e+09 1.1 2.8e+03
>> 2.2e+05 0.0e+00 24 99 97 18 0 100100100100 0 4743 0 0
>> 0.00e+00 0 0.00e+00 0
>> >> VecScatterBegin 100 1.0 4.9145e-02 3.0 0.00e+00 0.0 2.8e+03
>> 2.2e+05 0.0e+00 0 0 97 18 0 0 0100100 0 0 0 0
>> 0.00e+00 0 0.00e+00 0
>> >> VecScatterEnd 100 1.0 2.9441e+00133 0.00e+00 0.0 0.0e+00
>> 0.0e+00 0.0e+00 3 0 0 0 0 13 0 0 0 0 0 0 0
>> 0.00e+00 0 0.00e+00 0
>> >>
>> >> 6 MPI ranks + 6 GPUs + regular SF
>> >> MatMult 100 1.0 1.7800e-01 1.0 9.66e+09 1.1 2.8e+03
>> 2.2e+05 0.0e+00 0 99 97 18 0 100100100100 0 318057 3084009 100
>> 1.02e+02 100 2.69e+02 100
>> >> VecScatterBegin 100 1.0 1.2786e-01 1.3 0.00e+00 0.0 2.8e+03
>> 2.2e+05 0.0e+00 0 0 97 18 0 64 0100100 0 0 0 0
>> 0.00e+00 100 2.69e+02 0
>> >> VecScatterEnd 100 1.0 6.2196e-02 3.0 0.00e+00 0.0 0.0e+00
>> 0.0e+00 0.0e+00 0 0 0 0 0 22 0 0 0 0 0 0 0
>> 0.00e+00 0 0.00e+00 0
>> >> VecCUDACopyTo 100 1.0 1.0850e-02 2.3 0.00e+00 0.0 0.0e+00
>> 0.0e+00 0.0e+00 0 0 0 0 0 5 0 0 0 0 0 0 100
>> 1.02e+02 0 0.00e+00 0
>> >> VecCopyFromSome 100 1.0 1.0263e-01 1.2 0.00e+00 0.0 0.0e+00
>> 0.0e+00 0.0e+00 0 0 0 0 0 54 0 0 0 0 0 0 0
>> 0.00e+00 100 2.69e+02 0
>> >>
>> >> 6 MPI ranks + 6 GPUs + CUDA-aware SF
>> >> MatMult 100 1.0 1.1112e-01 1.0 9.66e+09 1.1 2.8e+03
>> 2.2e+05 0.0e+00 1 99 97 18 0 100100100100 0 509496 3133521 0
>> 0.00e+00 0 0.00e+00 100
>> >> VecScatterBegin 100 1.0 7.9461e-02 1.1 0.00e+00 0.0 2.8e+03
>> 2.2e+05 0.0e+00 1 0 97 18 0 70 0100100 0 0 0 0
>> 0.00e+00 0 0.00e+00 0
>> >> VecScatterEnd 100 1.0 2.2805e-02 1.5 0.00e+00 0.0 0.0e+00
>> 0.0e+00 0.0e+00 0 0 0 0 0 17 0 0 0 0 0 0 0
>> 0.00e+00 0 0.00e+00 0
>> >>
>> >> 24 MPI ranks + 6 GPUs + regular SF
>> >> MatMult 100 1.0 1.1094e-01 1.0 2.63e+09 1.2 1.9e+04
>> 5.9e+04 0.0e+00 1 99 97 25 0 100100100100 0 510337 951558 100
>> 4.61e+01 100 6.72e+01 100
>> >> VecScatterBegin 100 1.0 4.8966e-02 1.8 0.00e+00 0.0 1.9e+04
>> 5.9e+04 0.0e+00 0 0 97 25 0 34 0100100 0 0 0 0
>> 0.00e+00 100 6.72e+01 0
>> >> VecScatterEnd 100 1.0 7.2969e-02 4.9 0.00e+00 0.0 0.0e+00
>> 0.0e+00 0.0e+00 1 0 0 0 0 42 0 0 0 0 0 0 0
>> 0.00e+00 0 0.00e+00 0
>> >> VecCUDACopyTo 100 1.0 4.4487e-03 1.8 0.00e+00 0.0 0.0e+00
>> 0.0e+00 0.0e+00 0 0 0 0 0 3 0 0 0 0 0 0 100
>> 4.61e+01 0 0.00e+00 0
>> >> VecCopyFromSome 100 1.0 4.3315e-02 1.9 0.00e+00 0.0 0.0e+00
>> 0.0e+00 0.0e+00 0 0 0 0 0 29 0 0 0 0 0 0 0
>> 0.00e+00 100 6.72e+01 0
>> >>
>> >> 24 MPI ranks + 6 GPUs + CUDA-aware SF
>> >> MatMult 100 1.0 1.4597e-01 1.2 2.63e+09 1.2 1.9e+04
>> 5.9e+04 0.0e+00 1 99 97 25 0 100100100100 0 387864 973391 0
>> 0.00e+00 0 0.00e+00 100
>> >> VecScatterBegin 100 1.0 6.4899e-02 2.9 0.00e+00 0.0 1.9e+04
>> 5.9e+04 0.0e+00 1 0 97 25 0 35 0100100 0 0 0 0
>> 0.00e+00 0 0.00e+00 0
>> >> VecScatterEnd 100 1.0 1.1179e-01 4.1 0.00e+00 0.0 0.0e+00
>> 0.0e+00 0.0e+00 1 0 0 0 0 48 0 0 0 0 0 0 0
>> 0.00e+00 0 0.00e+00 0
>> >>
>> >>
>> >> --Junchao Zhang
>> >
>>
>>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-dev/attachments/20190921/71e7efdc/attachment-0001.html>
More information about the petsc-dev
mailing list