[petsc-users] Mysterious error code 77
Quentin Chevalier
quentin.chevalier at polytechnique.edu
Thu May 5 03:34:15 CDT 2022
Hello all and thanks for your great work in bringing this very helpful
package to the community !
That said, I wouldn't need this mailing list if everything was running
smoothly. I have a rather involved eigenvalue problem that I've been
working on that's been throwing a mysterious error :
> petsc4py.PETSc.Error: error code 77
>
[1] EPSSolve() at /usr/local/slepc/src/eps/interface/epssolve.c:149
> [1] EPSSolve_KrylovSchur_Default() at
> /usr/local/slepc/src/eps/impls/krylov/krylovschur/krylovschur.c:289
> [1] EPSGetStartVector() at
> /usr/local/slepc/src/eps/interface/epssolve.c:824
> [1] Petsc has generated inconsistent data
> [1] Initial vector is zero or belongs to the deflation space
This problem occurs in parallel with two processors, using the petsc4py
<https://www.mcs.anl.gov/petsc/petsc4py-current/docs/apiref/petsc4py-module.html>
library using the dolfinx/dolfinx docker container
<https://hub.docker.com/r/dolfinx/dolfinx>. I have PETSc version 3.16.0, in
complex mode, python 3, and I'm running all of that on a OpenSUSE Leap 15.2
machine (but I think the docker container has a Ubuntu OS).
I wrote a minimal working example below, but I'm afraid the process for
building the matrices is involved, so I decided to directly share the
matrices instead :
https://seminaris.polytechnique.fr/share/s/ryJ6L2nR4ketDwP
They are in binary format, but inside the container I hope someone could
reproduce my issue. A word on the structure and intent behind these
matrices :
- QE is a diagonal rectangular real matrix. Think of it as some sort of
preconditioner
- L is the least dense of them all, the only one that is complex, and in
order to avoid inverting it I'm using two KSPs to compute solve problems on
the fly
- Mf is a diagonal square real matrix, its on the right-hand side of the
Generalised Hermitian Eigenvalue problem (I'm solving
QE^H*L^-1H*L^-1*QE*x=lambda*Mf*x
Full MWE is below :
from petsc4py import PETSc as pet
from slepc4py import SLEPc as slp
from mpi4py.MPI import COMM_WORLD
# Global sizes
m_local=COMM_WORLD.rank*(490363-489780)+489780
n_local=COMM_WORLD.rank*(452259-451743)+451743
m=980143
n=904002
QE=pet.Mat().createAIJ([[m_local,m],[n_local,n]])
L=pet.Mat().createAIJ([[m_local,m],[m_local,m]])
Mf=pet.Mat().createAIJ([[n_local,n],[n_local,n]])
viewerQE = pet.Viewer().createMPIIO("QE.dat", 'r', COMM_WORLD)
QE.load(viewerQE)
viewerL = pet.Viewer().createMPIIO("L.dat", 'r', COMM_WORLD)
L.load(viewerL)
viewerMf = pet.Viewer().createMPIIO("Mf.dat", 'r', COMM_WORLD)
Mf.load(viewerMf)
QE.assemble()
L.assemble()
KSPs = []
# Useful solvers (here to put options for computing a smart R)
for Mat in [L,L.hermitianTranspose()]:
KSP = pet.KSP().create()
KSP.setOperators(Mat)
KSP.setFromOptions()
KSPs.append(KSP)
class LHS_class:
def mult(self,A,x,y):
w=pet.Vec().createMPI([m_local,m],comm=COMM_WORLD)
z=pet.Vec().createMPI([m_local,m],comm=COMM_WORLD)
QE.mult(x,w)
KSPs[0].solve(w,z)
KSPs[1].solve(z,w)
QE.multTranspose(w,y)
# Matrix free operator
LHS=pet.Mat()
LHS.create(comm=COMM_WORLD)
LHS.setSizes([[n_local,n],[n_local,n]])
LHS.setType(pet.Mat.Type.PYTHON)
LHS.setPythonContext(LHS_class())
LHS.setUp()
# Eigensolver
EPS = slp.EPS(); EPS.create()
EPS.setOperators(LHS,Mf) # Solve QE^T*L^-1H*L^-1*QE*x=lambda*Mf*x
EPS.setProblemType(slp.EPS.ProblemType.GHEP) # Specify that A is hermitian
(by construction), and B is semi-positive
EPS.setWhichEigenpairs(EPS.Which.LARGEST_MAGNITUDE) # Find largest
eigenvalues
EPS.setFromOptions()
EPS.solve()
Quentin CHEVALIER – IA parcours recherche
LadHyX - Ecole polytechnique
__________
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.mcs.anl.gov/pipermail/petsc-users/attachments/20220505/7863029d/attachment.html>
More information about the petsc-users
mailing list