
Swift User Guide i

Swift User Guide

Swift User Guide ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Swift User Guide iii

Contents

1 Overview 1

2 Getting Started 1

2.1 Quickstart . 1

2.2 Tutorials . 1

3 The Swift Language 1

3.1 Language Basics . 1

3.2 Arrays and Parallel Execution . 4

3.3 Associative Arrays . 4

3.4 Ordering of execution . 5

3.5 Compound procedures . 5

3.6 More about types . 6

3.7 Data model . 7

3.8 More technical details about Swift script . 7

3.9 Variables . 7

3.10 Variable Declarations . 7

3.11 Assignment Statements . 8

3.12 Procedures . 8

3.12.1 Atomic procedures . 8

3.12.2 Compound procedures . 9

3.13 Control Constructs . 9

3.13.1 foreach . 9

3.13.2 if . 9

3.13.3 switch . 9

3.13.4 iterate . 10

3.14 Operators . 10

3.15 Global constants . 11

3.16 Imports . 11

3.17 Mappers . 11

3.17.1 The Single File Mapper . 12

3.17.2 The Simple Mapper . 12

3.17.3 Concurrent Mapper . 13

3.17.4 Filesystem Mapper . 14

3.17.5 Fixed Array Mapper . 14

3.17.6 Array Mapper . 15

3.17.7 Regular Expression Mapper . 15

Swift User Guide iv

3.17.8 Structured Regular Expression Mapper . 16

3.17.9 CSV Mapper . 16

3.17.10 External Mapper . 17

3.18 Executing app procedures . 19

3.18.1 Mapping of app semantics into unix process execution semantics . 19

3.19 How Swift implements the site execution model . 20

3.20 Technical overview of the Swift architecture . 21

3.20.1 Execution layer . 21

3.20.2 Swift script language compilation layer . 22

3.20.3 Swift/karajan library layer . 22

3.21 Function reference . 22

3.21.1 arg . 22

3.21.2 extractInt . 22

3.21.3 extractFloat . 22

3.21.4 filename . 23

3.21.5 filenames . 23

3.21.6 length . 23

3.21.7 readData . 23

3.21.8 readStructured . 23

3.21.9 regexp . 24

3.21.10 sprintf . 24

3.21.11 strcat . 24

3.21.12 strcut . 25

3.21.13 strjoin . 25

3.21.14 strsplit . 25

3.21.15 toInt . 25

3.21.16 toFloat . 25

3.21.17 toString . 25

3.21.18 trace . 26

3.21.19 tracef . 26

3.21.20 java . 26

3.21.21 writeData . 27

4 Configuration 27

4.1 Location of swift.properties . 27

4.2 Selecting a site . 28

4.3 Selecting multiple sites . 28

4.4 Run directories . 28

4.5 Using site templates . 29

Swift User Guide v

4.6 Backward compatability . 29

4.7 The swift.properties file format . 29

4.7.1 Site definitions . 29

4.8 Grouping site properties . 31

4.9 App definitions . 31

4.10 General Swift properties . 31

4.11 Using shell variables . 39

5 Debugging 39

5.1 Retries . 39

5.2 Restarts . 39

5.3 Monitoring Swift . 40

5.3.1 HTTP Monitor . 40

5.3.2 Swing Monitor . 40

5.3.3 TUI Monitor . 41

5.4 Log analysis . 42

Swift User Guide 1 / 43

1 Overview

Swift is a data-flow oriented coarse grained scripting language that supports dataset typing and mapping, dataset iteration, con-
ditional branching, and procedural composition.

Swift programs (or workflows) are written in a language called Swift.

Swift scripts are primarily concerned with processing (possibly large) collections of data files, by invoking programs to do that
processing. Swift handles execution of such programs on remote sites by choosing sites, handling the staging of input and output
files to and from the chosen sites and remote execution of programs.

2 Getting Started

This section will provide links and information to new Swift users about how to get started using Swift.

2.1 Quickstart

This section provides the basic steps for downloading and installing Swift.

• Swift requires that a recent version of Oracle Java is installed. More information about installing Java can be found at
http://www.oracle.com/technetwork/java.

• Download Swift 0.95 at http://swiftlang.org/packages/swift-0.95.tar.gz.

• Extract by running "tar xfz swift-0.95.tar.gz"

• Add Swift to $PATH by running "export PATH=$PATH:/path/to/swift-0.95/bin"

• Verify swift is working by running "swift -version"

2.2 Tutorials

There are a few tutorials available for specific clusters and supercomputers.

Swift on Clouds and Ad Hoc collections of workstations

Swift on OSG Connect

Swift on Crays

Swift on RCC Midway Cluster at UChicago / Slurm

3 The Swift Language

3.1 Language Basics

A Swift script describes data, application components, invocations of applications components, and the inter-relations (data flow)
between those invocations.

Data is represented in a script by strongly-typed single-assignment variables. The syntax superficially resembles C and Java. For
example, { and } characters are used to enclose blocks of statements.

Types in Swift can be atomic or composite. An atomic type can be either a primitive type or a mapped type. Swift provides
a fixed set of primitive types, such as integer and string. A mapped type indicates that the actual data does not reside in CPU
addressable memory (as it would in conventional programming languages), but in POSIX-like files. Composite types are further
subdivided into structures and arrays. Structures are similar in most respects to structure types in other languages. In Swift,

http://www.oracle.com/technetwork/java
http://swiftlang.org/packages/swift-0.95.tar.gz
http://swift-lang.org/tutorials/cloud/tutorial.html
http://swift-lang.org/tutorials/osgconnect/tutorial.html
http://swiftlang.org/tutorials/cray/tutorial.html
http://swiftlang.org/tutorials/midway/tutorial.html

Swift User Guide 2 / 43

structures are defined using the type keyword (there is no struct keyword). Arrays use numeric indices, but are sparse. They can
contain elements of any type, including other array types, but all elements in an array must be of the same type. We often refer
to instances of composites of mapped types as datasets.

Atomic types such as string, int, float and double work the same way as in C-like programming languages. A variable of such
atomic types can be defined as follows:

string astring = "hello";

A struct variable is defined using the type keyword as discussed above. Following is an example of a variable holding employee
data:

type Employee{
string name;
int id;
string loc;

}

The members of the structure defined above can be accessed using the dot notation. An example of a variable of type Employee
is as follows:

Employee emp;
emp.name="Thomas";
emp.id=2222;
emp.loc="Chicago";

Arrays of structures are allowed in Swift. A convenient way of populating structures and arrays of structures is to use the
readData() function.

Mapped type and composite type variable declarations can be annotated with a mapping descriptor indicating the file(s) that
make up that dataset. For example, the following line declares a variable named photo with type image. It additionally declares
that the data for this variable is stored in a single file named shane.jpg.

image photo <"shane.jpg">;

Component programs of scripts are declared in an app declaration, with the description of the command line syntax for that pro-
gram and a list of input and output data. An app block describes a functional/dataflow style interface to imperative components.

For example, the following example lists a procedure which makes use of the ImageMagick http://www.imagemagick.org/-
convert command to rotate a supplied image by a specified angle:

app (image output) rotate(image input) {
convert "-rotate" angle @input @output;

}

A procedure is invoked using the familiar syntax:

rotated = rotate(photo, 180);

http://www.imagemagick.org/
http://www.imagemagick.org/

Swift User Guide 3 / 43

While this looks like an assignment, the actual unix level execution consists of invoking the command line specified in the app
declaration, with variables on the left of the assignment bound to the output parameters, and variables to the right of the procedure
invocation passed as inputs.

The examples above have used the type image without any definition of that type. We can declare it as a marker type which has
no structure exposed to Swift script:

type image;

This does not indicate that the data is unstructured; but it indicates that the structure of the data is not exposed to Swift. Instead,
Swift will treat variables of this type as individual opaque files.

With mechanisms to declare types, map variables to data files, and declare and invoke procedures, we can build a complete (albeit
simple) script:

type image;
image photo <"shane.jpg">;
image rotated <"rotated.jpg">;

app (image output) rotate(image input, int angle) {
convert "-rotate" angle @input @output;

}

rotated = rotate(photo, 180);

This script can be invoked from the command line:

$ ls *.jpg
shane.jpg
$ swift example.swift
...
$ ls *.jpg
shane.jpg rotated.jpg

This executes a single convert command, hiding from the user features such as remote multisite execution and fault tolerance that
will be discussed in a later section.

Figure 1. shane.jpg

Figure 2. rotated.jpg

Swift User Guide 4 / 43

3.2 Arrays and Parallel Execution

Arrays of values can be declared using the [] suffix. Following is an example of an array of strings:

string pets[] = ["shane", "noddy", "leo"];

An array may be mapped to a collection of files, one element per file, by using a different form of mapping expression. For
example, the filesys_mapper maps all files matching a particular unix glob pattern into an array:

file frames[] <filesys_mapper; pattern="*.jpg">;

The foreach construct can be used to apply the same block of code to each element of an array:

foreach f,ix in frames {
output[ix] = rotate(f, 180);

Sequential iteration can be expressed using the iterate construct:

step[0] = initialCondition();
iterate ix {

step[ix] = simulate(step[ix-1]);
}

This fragment will initialise the 0-th element of the step array to some initial condition, and then repeatedly run the simulate
procedure, using each execution’s outputs as input to the next step.

3.3 Associative Arrays

By default, array keys are integers. However, other primitive types are also allowed as array keys. The syntax for declaring an
array with a key type different than the default is:

<valueType>[<keyType>] array;

For example, the following code declares and assigns items to an array with string keys and float values:

float[string] a;
a["one"] = 0.2;
a["two"] = 0.4;

In addition to primitive types, a special type named auto can be used to declare an array for which an additional append operation
is available:

int[auto] array;

foreach i in [1:100] {
array << (i*2) ;

}

foreach v in array {
trace(v);

}

Items in an array with auto keys cannot be accessed directly using a primitive type. The following example results in a compile-
time error:

int[auto] array;
array[0] = 1;

However, it is possible to use auto key values from one array to access another:

Swift User Guide 5 / 43

int[auto] a;
int[auto] b;

a << 1;
a << 2;

foreach v, k in a {
b[k] = a[k] * 2;

}

3.4 Ordering of execution

Non-array variables are single-assignment, which means that they must be assigned to exactly one value during execution. A
procedure or expression will be executed when all of its input parameters have been assigned values. As a result of such execution,
more variables may become assigned, possibly allowing further parts of the script to execute.

In this way, scripts are implicitly parallel. Aside from serialisation implied by these dataflow dependencies, execution of compo-
nent programs can proceed in parallel.

In this fragment, execution of procedures p and q can happen in parallel:

y=p(x);
z=q(x);

while in this fragment, execution is serialised by the variable y, with procedure p executing before q.

y=p(x);
z=q(y);

Arrays in Swift are more monotonic - a generalisation of being assignment. Knowledge about the content of an array increases
during execution, but cannot otherwise change. Each element of the array is itself single assignment or monotonic (depending
on its type). During a run all values for an array are eventually known, and that array is regarded as closed.

Statements which deal with the array as a whole will often wait for the array to be closed before executing (thus, a closed array
is the equivalent of a non-array type being assigned). However, a foreach statement will apply its body to elements of an array as
they become known. It will not wait until the array is closed.

Consider this script:

file a[];
file b[];
foreach v,i in a {

b[i] = p(v);
}
a[0] = r();
a[1] = s();

Initially, the foreach statement will have nothing to execute, as the array a has not been assigned any values. The procedures r
and s will execute. As soon as either of them is finished, the corresponding invocation of procedure p will occur. After both r and
s have completed, the array a will be closed since no other statements in the script make an assignment to a.

3.5 Compound procedures

As with many other programming languages, procedures consisting of Swift script can be defined. These differ from the pre-
viously mentioned procedures declared with the app keyword, as they invoke other Swift procedures rather than a component
program.

Swift User Guide 6 / 43

(file output) process (file input) {
file intermediate;
intermediate = first(input);
output = second(intermediate);

}

file x <"x.txt">;
file y <"y.txt">;
y = process(x);

This will invoke two procedures, with an intermediate data file named anonymously connecting the first and second procedures.

Ordering of execution is generally determined by execution of app procedures, not by any containing compound procedures. In
this code block:

(file a, file b) A() {
a = A1();
b = A2();

}
file x, y, s, t;
(x,y) = A();
s = S(x);
t = S(y);

then a valid execution order is: A1 S(x) A2 S(y). The compound procedure A does not have to have fully completed for its return
values to be used by subsequent statements.

3.6 More about types

Each variable and procedure parameter in Swift script is strongly typed. Types are used to structure data, to aid in debugging and
checking program correctness and to influence how Swift interacts with data.

The image type declared in previous examples is a marker type. Marker types indicate that data for a variable is stored in a single
file with no further structure exposed at the Swift script level.

Arrays have been mentioned above, in the arrays section. A code block may be applied to each element of an array using foreach;
or individual elements may be references using [] notation.

There are a number of primitive types:

type contains
int integers
string strings of text
float floating point numbers, that behave the same as Java

doubles
boolean true/false

Complex types may be defined using the type keyword:

type headerfile;
type voxelfile;
type volume {

headerfile h;
voxelfile v;

}

Members of a complex type can be accessed using the . operator:

volume brain;

Swift User Guide 7 / 43

o = p(brain.h);

Sometimes data may be stored in a form that does not fit with Swift’s file-and-site model; for example, data might be stored in
an RDBMS on some database server. In that case, a variable can be declared to have external type. This indicates that Swift
should use the variable to determine execution dependency, but should not attempt other data management; for example, it will
not perform any form of data stage-in or stage-out it will not manage local data caches on sites; and it will not enforce component
program atomicity on data output. This can add substantial responsibility to component programs, in exchange for allowing
arbitrary data storage and access methods to be plugged in to scripts.

type file;

app (external o) populateDatabase() {
populationProgram;

}

app (file o) analyseDatabase(external i) {
analysisProgram @o;

}

external database;
file result <"results.txt">;

database = populateDatabase();
result = analyseDatabase(database);

Some external database is represented by the database variable. The populateDatabase procedure populates the database with
some data, and the analyseDatabase procedure performs some subsequent analysis on that database. The declaration of database
contains no mapping; and the procedures which use database do not reference them in any way; the description of database is
entirely outside of the script. The single assignment and execution ordering rules will still apply though; populateDatabase will
always be run before analyseDatabase.

3.7 Data model

Data processed by Swift is strongly typed. It may be take the form of values in memory or as out-of-core files on disk. Language
constructs called mappers specify how each piece of data is stored.

3.8 More technical details about Swift script

The syntax of Swift script has a superficial resemblance to C and Java. For example, { and } characters are used to enclose blocks
of statements.

A Swift script consists of a number of statements. Statements may declare types, procedures and variables, assign values to
variables, and express operations over arrays.

3.9 Variables

Variables in Swift scripts are declared to be of a specific type. Assignments to those variables must be data of that type. Swift
script variables are single-assignment - a value may be assigned to a variable at most once. This assignment can happen at
declaration time or later on in execution. When an attempt to read from a variable that has not yet been assigned is made, the
code performing the read is suspended until that variable has been written to. This forms the basis for Swift’s ability to parallelise
execution - all code will execute in parallel unless there are variables shared between the code that cause sequencing.

3.10 Variable Declarations

Variable declaration statements declare new variables. They can optionally assign a value to them or map those variables to
on-disk files.

Declaration statements have the general form:

Swift User Guide 8 / 43

typename variablename (<mapping> | = initialValue) ;

The format of the mapping expression is defined in the Mappers section. initialValue may be either an expression or a procedure
call that returns a single value.

Variables can also be declared in a multivalued-procedure statement, described in another section.

3.11 Assignment Statements

Assignment statements assign values to previously declared variables. Assignments may only be made to variables that have not
already been assigned. Assignment statements have the general form:

variable = value;

where value can be either an expression or a procedure call that returns a single value.

Variables can also be assigned in a multivalued-procedure statement, described in another section.

3.12 Procedures

There are two kinds of procedure: An atomic procedure, which describes how an external program can be executed; and com-
pound procedures which consist of a sequence of Swift script statements.

A procedure declaration defines the name of a procedure and its input and output parameters. Swift script procedures can take
multiple inputs and produce multiple outputs. Inputs are specified to the right of the function name, and outputs are specified to
the left. For example:

(type3 out1, type4 out2) myproc (type1 in1, type2 in2)

The above example declares a procedure called myproc, which has two inputs in1 (of type type1) and in2 (of type type2) and two
outputs out1 (of type type3) and out2 (of type type4).

A procedure input parameter can be an optional parameter in which case it must be declared with a default value. When calling
a procedure, both positional parameter and named parameter passings can be passed, provided that all optional parameters are
declared after the required parameters and any optional parameter is bound using keyword parameter passing. For example, if
myproc1 is defined as:

(binaryfile bf) myproc1 (int i, string s="foo")

Then that procedure can be called like this, omitting the optional

parameter s:
binaryfile mybf = myproc1(1);

or like this supplying a value for the optional parameter s:

binaryfile mybf = myproc1 (1, s="bar");

3.12.1 Atomic procedures

An atomic procedure specifies how to invoke an external executable program, and how logical data types are mapped to command
line arguments.

Atomic procedures are defined with the app keyword:

app (binaryfile bf) myproc (int i, string s="foo") {
myapp i s @filename(bf);

}

which specifies that myproc invokes an executable called myapp, passing the values of i, s and the filename of bf as command
line arguments.

Swift User Guide 9 / 43

3.12.2 Compound procedures

A compound procedure contains a set of Swift script statements:

(type2 b) foo_bar (type1 a) {
type3 c;
c = foo(a); // c holds the result of foo
b = bar(c); // c is an input to bar

}

3.13 Control Constructs

Swift script provides if, switch, foreach, and iterate constructs, with syntax and semantics similar to comparable constructs in
other high-level languages.

3.13.1 foreach

The foreach construct is used to apply a block of statements to each element in an array. For example:

check_order (file a[]) {
foreach f in a {

compute(f);
}

}

foreach statements have the general form:

foreach controlvariable (,index) in expression {
statements

}

The block of statements is evaluated once for each element in expression which must be an array, with controlvariable set to the
corresponding element and index (if specified) set to the integer position in the array that is being iterated over.

3.13.2 if

The if statement allows one of two blocks of statements to be executed, based on a boolean predicate. if statements generally
have the form:

if(predicate) {
statements

} else {
statements

}

where predicate is a boolean expression.

3.13.3 switch

switch expressions allow one of a selection of blocks to be chosen based on the value of a numerical control expression. switch
statements take the general form:

switch(controlExpression) {
case n1:

statements2
case n2:

statements2

Swift User Guide 10 / 43

[...]
default:

statements
}

The control expression is evaluated, the resulting numerical value used to select a corresponding case, and the statements belong-
ing to that case block are evaluated. If no case corresponds, then the statements belonging to the default block are evaluated.

Unlike C or Java switch statements, execution does not fall through to subsequent case blocks, and no break statement is necessary
at the end of each block.

Following is an example of a switch expression in Swift:

int score=60;
switch (score){
case 100:

tracef("%s\n", "Bravo!");
case 90:

tracef("%s\n", "very good");
case 80:

tracef("%s\n", "good");
case 70:

tracef("%s\n", "fair");
default:

tracef("%s\n", "unknown grade");
}

3.13.4 iterate

iterate expressions allow a block of code to be evaluated repeatedly, with an iteration variable being incremented after each
iteration.

The general form is:

iterate var {
statements;

} until (terminationExpression);

Here var is the iteration variable. Its initial value is 0. After each iteration, but before terminationExpression is evaluated, the
iteration variable is incremented. This means that if the termination expression is a function of only the iteration variable, the
body will never be executed while the termination expression is true.

Example:

iterate i {
trace(i); // will print 0, 1, and 2

} until (i == 3);

Variables declared inside the body of iterate can be used in the termination expression. However, their values will reflect the
values calculated as part of the last invocation of the body, and may not reflect the incremented value of the iteration variable:

iterate i {
trace(i);
int j = i; // will print 0, 1, 2, and 3

} until (j == 3);

3.14 Operators

The following infix operators are available for use in Swift script expressions.

Swift User Guide 11 / 43

operator purpose
+ numeric addition; string concatenation
- numeric subtraction
* numeric multiplication
/ floating point division
%/ integer division
%% integer remainder of division
== != comparison and not-equal-to
< > ⇐ >= numerical ordering
&& || boolean and, or
! boolean not

3.15 Global constants

At the top level of a Swift script program, the global modified may be added to a declaration so that it is visible throughout the
program, rather than only at the top level of the program. This allows global constants (of any type) to be defined.

3.16 Imports

The import directive can be used to import definitions from another Swift file.

For example, a Swift script might contain this:

import "defs";
file f;

which would import the content of defs.swift:

type file;

Imported files are read from two places. They are either read from the path that is specified from the import command, such as:

import "definitions/file/defs";

or they are read from the environment variable SWIFT_LIB. This environment variable is used just like the PATH environment
variable. For example, if the command below was issued to the bash shell:

export SWIFT_LIB=${HOME}/Swift/defs:${HOME}/Swift/functions

then the import command will check for the file defs.swift in both "${HOME}/Swift/defs" and "${HOME}/Swift/functions" first
before trying the path that was specified in the import command.

Other valid imports:

import "../functions/func"
import "/home/user/Swift/definitions/defs"

There is no requirement that a module is imported only once. If a module is imported multiple times, for example in different
files, then Swift will only process the imports once.

Imports may contain anything that is valid in a Swift script, including the code that causes remote execution.

3.17 Mappers

Mappers provide a mechanism to specify the layout of mapped datasets on disk. This is needed when Swift must access files to
transfer them to remote sites for execution or to pass to applications.

Swift provides a number of mappers that are useful in common cases. This section details those mappers. For more complex
cases, it is possible to write application-specific mappers in Java and use them within a Swift script.

Swift User Guide 12 / 43

3.17.1 The Single File Mapper

The single_file_mapper maps a single physical file to a dataset.

Swift variable Filename
f myfile
f [0] INVALID
f.bar INVALID

parameter meaning
file The location of the physical file including path and file

name.

Example:

file f <single_file_mapper;file="plot_outfile_param">;

There is a simplified syntax for this mapper:

file f <"plot_outfile_param">;

3.17.2 The Simple Mapper

The simple_mapper maps a file or a list of files into an array by prefix, suffix, and pattern. If more than one file is matched, each
of the file names will be mapped as a subelement of the dataset.

Parameter Meaning
location A directory that the files are located.
prefix The prefix of the files
suffix The suffix of the files, for instance: ".txt"
padding The number of digits used to uniquely identify the mapped

file. This is an optional parameter which defaults to 4.
pattern A UNIX glob style pattern, for instance: "*foo*" would

match all file names that contain foo. When this mapper is
used to specify output filenames, pattern is ignored.

type file;
file f <simple_mapper;prefix="foo", suffix=".txt">;

The above maps all filenames that start with foo and have an extension .txt into file f.

Swift variable Filename
f foo.txt

type messagefile;

(messagefile t) greeting(string m) {.
app {

echo m stdout=@filename(t);
}

}

messagefile outfile <simple_mapper;prefix="foo",suffix=".txt">;

Swift User Guide 13 / 43

outfile = greeting("hi");

This will output the string hi to the file foo.txt.

The simple_mapper can be used to map arrays. It will map the array index into the filename between the prefix and suffix.

type messagefile;

(messagefile t) greeting(string m) {
app {

echo m stdout=@filename(t);
}

}

messagefile outfile[] <simple_mapper;prefix="baz",suffix=".txt", padding=2>;

outfile[0] = greeting("hello");
outfile[1] = greeting("middle");
outfile[2] = greeting("goodbye");

Swift variable Filename
outfile[0] baz00.txt
outfile[1] baz01.txt
outfile[2] baz02.txt

simple_mapper can be used to map structures. It will map the name of the structure member into the filename, between the prefix
and the suffix.

type messagefile;

type mystruct {
messagefile left;
messagefile right;

};

(messagefile t) greeting(string m) {
app {

echo m stdout=@filename(t);
}

}

mystruct out <simple_mapper;prefix="qux",suffix=".txt">;

out.left = greeting("hello");
out.right = greeting("goodbye");

This will output the string "hello" into the file qux.left.txt and the string "goodbye" into the file qux.right.txt.

Swift variable Filename
out.left quxleft.txt
out.right quxright.txt

3.17.3 Concurrent Mapper

The concurrent_mapper is almost the same as the simple mapper, except that it is used to map an output file, and the filename
generated will contain an extract sequence that is unique. This mapper is the default mapper for variables when no mapper is
specified.

Swift User Guide 14 / 43

Parameter Meaning
location A directory that the files are located.
prefix The prefix of the files
suffix The suffix of the files, for instance: ".txt" pattern A UNIX

glob style pattern, for instance: "*foo*" would match all
file names that contain foo. When this mapper is used to
specify output filenames, pattern is ignored.

Example:

file f1;
file f2 <concurrent_mapper;prefix="foo", suffix=".txt">;

The above example would use concurrent mapper for f1 and f2, and generate f2 filename with prefix "foo" and extension ".txt"

3.17.4 Filesystem Mapper

The filesys_mapper is similar to the simple mapper, but maps a file or a list of files to an array. Each of the filename is mapped
as an element in the array. The order of files in the resulting array is not defined.

TODO: note on difference between location as a relative vs absolute path w.r.t. staging to remote location - as mihael said: It’s
because you specify that location in the mapper. Try location="." instead of location="/sandbox/. . . "

parameter meaning
location The directory where the files are located.
prefix The prefix of the files
suffix The suffix of the files, for instance: ".txt"
pattern A UNIX glob style pattern, for instance: "*foo*" would

match all file names that contain foo.

Example:

file texts[] <filesys_mapper;prefix="foo", suffix=".txt">;

The above example would map all filenames that start with "foo" and have an extension ".txt" into the array texts. For example,
if the specified directory contains files: foo1.txt, footest.txt, foo__1.txt, then the mapping might be:

Swift variable Filename
texts[0] footest.txt
texts[1] foo1.txt
texts[2] foo__1.txt

3.17.5 Fixed Array Mapper

The fixed_array_mapper maps from a string that contains a list of filenames into a file array.

parameter Meaning
files A string that contains a list of filenames, separated by

space, comma or colon

Example:

file texts[] <fixed_array_mapper;files="file1.txt, fileB.txt, file3.txt">;

would cause a mapping like this:

Swift User Guide 15 / 43

Swift variable Filename
texts[0] file1.txt
texts[1] fileB.txt
texts[2] file3.txt

3.17.6 Array Mapper

The array_mapper maps from an array of strings into a file

parameter meaning
files An array of strings containing one filename per element

Example:

string s[] = ["a.txt", "b.txt", "c.txt"];

file f[] <array_mapper;files=s>;

This will establish the mapping:

Swift variable Filename
f[0] a.txt
f[1] b.txt
f[2] c.txt

3.17.7 Regular Expression Mapper

The regexp_mapper transforms one file name to another using regular expression matching.

parameter meaning
source The source file name
match Regular expression pattern to match, use
() to match whatever regular expression is inside the

parentheses, and indicate the start and end of a group; the
contents of a group can be retrieved with the

\\number special sequence (two backslashes are needed because the
backslash is an escape sequence introducer)

transform The pattern of the file name to transform to, use \number to
reference the group matched.

Example:

file s <"picture.gif">;
file f <regexp_mapper; source=s,

match="(.*)gif", transform="\\1jpg">;

This example transforms a file ending gif into one ending jpg and maps that to a file.

Swift variable Filename
f picture.jpg

Swift User Guide 16 / 43

3.17.8 Structured Regular Expression Mapper

The structured_regexp_mapper is similar to the regexp_mapper with the only difference that it can be applied to arrays while the
regexp_mapper cannot.

parameter meaning
source The source file name
match Regular expression pattern to match, use
() to match whatever regular expression is inside the

parentheses, and indicate the start and end of a group; the
contents of a group can be retrieved with the

\\number special sequence (two backslashes are needed because the
backslash is an escape sequence introducer)

transform The pattern of the file name to transform to, use \number to
reference the group matched.

Example:

file s[] <filesys_mapper; pattern="*.gif">;

file f[] <structured_regexp_mapper; source=s,
match="(.*)gif", transform="\\1jpg">;

This example transforms all files in a list that end in gif to end in jpg and maps the list to those files.

3.17.9 CSV Mapper

The csv_mapper maps the content of a CSV (comma-separated value) file into an array of structures. The dataset type needs to
be correctly defined to conform to the column names in the file. For instance, if the file contains columns: name age GPA then
the type needs to have member elements like this:

type student {
file name;
file age;
file GPA;

}

If the file does not contain a header with column info, then the column names are assumed as column1, column2, etc.

Parameter Meaning
file The name of the CSV file to read mappings from.
header Whether the file has a line describing header info; default is
true
skip The number of lines to skip at the beginning (after header

line); default is 0.
hdelim Header field delimiter; default is the value of the
delim parameter
delim Content field delimiters; defaults are space, tab and comma

Example:

student stus[] <csv_mapper;file="stu_list.txt">;

The above example would read a list of student info from file "stu_list.txt" and map them into a student array. By default, the file
should contain a header line specifying the names of the columns. If stu_list.txt contains the following:

name,age,gpa

Swift User Guide 17 / 43

101-name.txt, 101-age.txt, 101-gpa.txt
name55.txt, age55.txt, age55.txt
q, r, s

then some of the mappings produced by this example would be:

stus[0].name 101-name.txt
stus[0].age 101-age.txt
stus[0].gpa 101-gpa.txt
stus[1].name name55.txt
stus[1].age age55.txt
stus[1].gpa gpa55.txt
stus[2].name q
stus[2].age r
stus[2].gpa s

3.17.10 External Mapper

The external mapper, ext maps based on the output of a supplied Unix executable.

parameter meaning
exec The name of the executable (relative to the current

directory, if an absolute path is not specified)
* Other parameters are passed to the executable prefixed with

a - symbol

The output (stdout) of the executable should consist of two columns of data, separated by a space. The first column should
be the path of the mapped variable, in Swift script syntax (for example [2] means the 2nd element of an array) or the symbol
$ to represent the root of the mapped variable. The following table shows the symbols that should appear in the first column
corresponding to the mapping of different types of swift constructs such as scalars, arrays and structs.

Swift construct first column second column
scalar $ file_name
anarray[] [] file_name
2dimarray[][] [][] file_name
astruct.fld fld file_name
astructarray[].fldname [].fldname file_name

Example: With the following in mapper.sh,

#!/bin/bash
echo "[2] qux"
echo "[0] foo"
echo "[1] bar"

then a mapping statement:

student stus[] <ext;exec="mapper.sh">;

would map

Swift variable Filename
stus[0] foo
stus[1] bar
stus[2] qux

Swift User Guide 18 / 43

Advanced Example: The following mapper.sh is an advanced example of an external mapper that maps a two-dimensional array
to a directory of files. The files in the said directory are identified by their names appended by a number between 000 and 099.
The first index of the array maps to the first part of the filename while the second index of the array maps to the second part of
the filename.

#!/bin/sh

#take care of the mapper args
while [$# -gt 0]; do

case $1 in
-location) location=$2;;
-padding) padding=$2;;
-prefix) prefix=$2;;
-suffix) suffix=$2;;
-mod_index) mod_index=$2;;
-outer_index) outer_index=$2;;

*) echo "$0: bad mapper args" 1>&2
exit 1;;

esac
shift 2

done

for i in ‘seq 0 ${outer_index}‘
do
for j in ‘seq -w 000 ${mod_index}‘
do
fj=‘echo ${j} | awk ’{print $1 +0}’‘ #format j by removing leading zeros
echo "["${i}"]["${fj}"]" ${location}"/"${prefix}${j}${suffix}

done
done

The mapper definition is as follows:

file_dat dat_files[][] < ext;
exec="mapper.sh",
padding=3,
location="output",
prefix=@strcat(str_root, "_"),
suffix=".dat",
outer_index=pid,
mod_index=n >;

Assuming there are 4 files with name aaa, bbb, ccc, ddd and a mod_index of 10, we will have 4x10=40 files mapped to a
two-dimensional array in the following pattern:

Swift variable Filename
stus[0][0] output/aaa_000.dat
stus[0][1] output/aaa_001.dat
stus[0][2] output/aaa_002.dat
stus[0][3] output/aaa_003.dat
.
stus[0][9] output/aaa_009.dat
stus[1][0] output/bbb_000.dat
stus[1][1] output/bbb_001.dat
.
stus[3][9] output/ddd_009.dat

Swift User Guide 19 / 43

3.18 Executing app procedures

This section describes how Swift executes app procedures, and requirements on the behaviour of application programs used in
app procedures. These requirements are primarily to ensure that the Swift can run your application in different places and with
the various fault tolerance mechanisms in place.

3.18.1 Mapping of app semantics into unix process execution semantics

This section describes how an app procedure invocation is translated into a (remote) unix process execution. It does not describe
the mechanisms by which Swift performs that translation; that is described in the next section.

In this section, this example Swift script is used for reference:

type file;

app (file o) count(file i) {
wc @i stdout=@o;

}

file q <"input.txt">;
file r <"output.txt">;

The executable for wc will be looked up in tc.data.

This unix executable will then be executed in some application procedure workspace. This means:

Each application procedure workspace will have an application workspace directory. (TODO: can collapse terms application
procedure workspace and application workspace directory ?

This application workspace directory will not be shared with any other application procedure execution attempt; all application
procedure execution attempts will run with distinct application procedure workspaces. (for the avoidance of doubt: If a Swift
script procedure invocation is subject to multiple application procedure execution attempts (due to Swift-level restarts, retries
or replication) then each of those application procedure execution attempts will be made in a different application procedure
workspace.)

The application workspace directory will be a directory on a POSIX filesystem accessible throughout the application execution
by the application executable.

Before the application executable is executed:

• The application workspace directory will exist.

• The input files will exist inside the application workspace directory (but not necessarily as direct children; there may be
subdirectories within the application workspace directory).

• The input files will be those files mapped to input parameters of the application procedure invocation. (In the example, this
means that the file input.txt will exist in the application workspace directory)

• For each input file dataset, it will be the case that @filename or @filenames invoked with that dataset as a parameter will return
the path relative to the application workspace directory for the file(s) that are associated with that dataset. (In the example, that
means that @i will evaluate to the path input.txt)

• For each file-bound parameter of the Swift procedure invocation, the associated files (determined by data type?) will always
exist.

• The input files must be treated as read only files. This may or may not be enforced by unix file system permissions. They may
or may not be copies of the source file (conversely, they may be links to the actual source file).

During/after the application executable execution, the following must be true:

• If the application executable execution was successful (in the opinion of the application executable), then the application
executable should exit with unix return code 0; if the application executable execution was unsuccessful (in the opinion of the
application executable), then the application executable should exit with unix return code not equal to 0.

Swift User Guide 20 / 43

• Each file mapped from an output parameter of the Swift script procedure call must exist. Files will be mapped in the same way
as for input files.

• The output subdirectories will be precreated before execution by Swift if defined within a Swift script such as the location
attribute of a mapper. App executables expect to make them if they are referred to in the wrapper scripts.

• Output produced by running the application executable on some inputs should be the same no matter how many times, when or
where that application executable is run. The same can vary depending on application (for example, in an application it might
be acceptable for a PNG→JPEG conversion to produce different, similar looking, output jpegs depending on the environment)

Things to not assume:

• Anything about the path of the application workspace directory

• That either the application workspace directory will be deleted or will continue to exist or will remain unmodified after execu-
tion has finished

• That files can be passed between application procedure invocations through any mechanism except through files known to
Swift through the mapping mechanism (there is some exception here for external datasets - there are a separate set of assertions
that hold for external datasets)

• That application executables will run on any particular site of those available, or than any combination of applications will run
on the same or different sites.

3.19 How Swift implements the site execution model

This section describes the implementation of the semantics described in the previous section.

Swift executes application procedures on one or more sites.

Each site consists of:

• worker nodes. There is some execution mechanism through which the Swift client side executable can execute its wrapper
script on those worker nodes. This is commonly GRAM or Falkon or coasters.

• a site-shared file system. This site shared filesystem is accessible through some file transfer mechanism from the Swift client
side executable. This is commonly GridFTP or coasters. This site shared filesystem is also accessible through the posix file
system on all worker nodes, mounted at the same location as seen through the file transfer mechanism. Swift is configured
with the location of some site working directory on that site-shared file system.

There is no assumption that the site shared file system for one site is accessible from another site.

For each workflow run, on each site that is used by that run, a run directory is created in the site working directory, by the Swift
client side.

In that run directory are placed several subdirectories:

• shared/ - site shared files cache

• kickstart/ - when kickstart is used, kickstart record files for each job that has generated a kickstart record.

• info/ - wrapper script log files

• status/ - job status files

• jobs/ - application workspace directories (optionally placed here - see below)

Swift User Guide 21 / 43

Application execution looks like this:

For each application procedure call:

The Swift client side selects a site; copies the input files for that procedure call to the site shared file cache if they are not already
in the cache, using the file transfer mechanism; and then invokes the wrapper script on that site using the execution mechanism.

The wrapper script creates the application workspace directory; places the input files for that job into the application workspace
directory using either cp or ln -s (depending on a configuration option); executes the application unix executable; copies output
files from the application workspace directory to the site shared directory using cp; creates a status file under the status/ directory;
and exits, returning control to the Swift client side. Logs created during the execution of the wrapper script are stored under the
info/ directory.

The Swift client side then checks for the presence of and deletes a status file indicating success; and copies files from the site
shared directory to the appropriate client side location.

The job directory is created (in the default mode) under the jobs/ directory. However, it can be created under an arbitrary other
path, which allows it to be created on a different file system (such as a worker node local file system in the case that the worker
node has a local file system).

3.20 Technical overview of the Swift architecture

This section attempts to provide a technical overview of the Swift architecture.

3.20.1 Execution layer

The execution layer causes an application program (in the form of a unix executable) to be executed either locally or remotely.

Swift User Guide 22 / 43

The two main choices are local unix execution and execution through GRAM. Other options are available, and user provided
code can also be plugged in.

The kickstart utility can be used to capture environmental information at execution time to aid in debugging and provenance
capture.

3.20.2 Swift script language compilation layer

Step i: text to XML intermediate form parser/processor. parser written in ANTLR - see resources/VDL.g. The XML Schema
Definition (XSD) for the intermediate language is in resources/XDTM.xsd.

Step ii: XML intermediate form to Karajan workflow. Karajan.java - reads the XML intermediate form. compiles to karajan
workflow language - for example, expressions are converted from Swift script syntax into Karajan syntax, and function invoca-
tions become karajan function invocations with various modifications to parameters to accomodate return parameters and dataset
handling.

3.20.3 Swift/karajan library layer

Some Swift functionality is provided in the form of Karajan libraries that are used at runtime by the Karajan workflows that the
Swift compiler generates.

3.21 Function reference

This section details functions that are available for use in the Swift language.

3.21.1 arg

Takes a command line parameter name as a string parameter and an optional default value and returns the value of that string
parameter from the command line. If no default value is specified and the command line parameter is missing, an error is
generated. If a default value is specified and the command line parameter is missing, @arg will return the default value.

Command line parameters recognized by @arg begin with exactly one hyphen and need to be positioned after the script name.

For example:

trace(arg("myparam"));
trace(arg("optionalparam", "defaultvalue"));

$ swift arg.swift -myparam=hello
Swift v0.3-dev r1674 (modified locally)

RunID: 20080220-1548-ylc4pmda
Swift trace: defaultvalue
Swift trace: hello

3.21.2 extractInt

extractInt(file) will read the specified file, parse an integer from the file contents and return that integer.

3.21.3 extractFloat

Similar to extractInt, extractFloat(file) will read the specified file, parse a float from the file contents and return that float.

Swift User Guide 23 / 43

3.21.4 filename

filename(v) will return a string containing the filename(s) for the file(s) mapped to the variable v. When more than one filename
is returned, the filenames will be space separated inside a single string return value.

3.21.5 filenames

filenames(v) will return multiple values containing the filename(s) for the file(s) mapped to the variable v.

3.21.6 length

length(array) will return the length of an array in Swift. This function will wait for all elements in the array to be written before
returning the length.

3.21.7 readData

readData will read data from a specified file and assign it to Swift variable. The format of the input file is controlled by the type
of the return value. For scalar return types, such as int, the specified file should contain a single value of that type. For arrays
of scalars, the specified file should contain one value per line. For complex types of scalars, the file should contain two rows.
The first row should be structure member names separated by whitespace. The second row should be the corresponding values
for each structure member, separated by whitespace, in the same order as the header row. For arrays of structs, the file should
contain a heading row listing structure member names separated by whitespace. There should be one row for each element of
the array, with structure member elements listed in the same order as the header row and separated by whitespace. The following
example shows how readData() can be used to populate an array of Swift struct-like complex type:

type Employee{
string name;
int id;
string loc;

}

Employee emps[] = readData("emps.txt");

Where the contents of the "emps.txt" file are:

name id loc
Thomas 2222 Chicago
Gina 3333 Boston
Anne 4444 Houston

This will result in the array "emps" with 3 members. This can be processed within a Swift script using the foreach construct as
follows:

foreach emp in emps{
tracef("Employee %s lives in %s and has id %d", emp.name, emp.loc, emp.id);

}

3.21.8 readStructured

readStructured will read data from a specified file, like readdata, but using a different file format more closely related to that used
by the ext mapper.

Input files should list, one per line, a path into a Swift structure, and the value for that position in the structure:

Swift User Guide 24 / 43

rows[0].columns[0] = 0
rows[0].columns[1] = 2
rows[0].columns[2] = 4
rows[1].columns[0] = 1
rows[1].columns[1] = 3
rows[1].columns[2] = 5

which can be read into a structure defined like this:

type vector {
int columns[];

}

type matrix {
vector rows[];

}

matrix m;

m = readStructured("readStructured.in");

(since Swift 0.7, was readData2(deprecated))

3.21.9 regexp

regexp(input,pattern,replacement) will apply regular expression substitution using the Java java.util.regexp API http://java.sun.com/-
j2se/1.4.2/docs/api/java/util/regex/Pattern.html. For example:

string v = regexp("abcdefghi", "c(def)g","monkey");

will assign the value "abmonkeyhi" to the variable v.

3.21.10 sprintf

sprintf(spec, variable list) will generate a string based on the specified format.

Example: string s = sprintf("\t%s\n", "hello");

Format specifiers

%% % sign
%M Filename output (waits for close)
%p Format variable according to an internal format
%b Boolean output
%f Float output
%i int output
%s String output
%k Variable sKipped, no output
%q Array output

3.21.11 strcat

strcat(a,b,c,d,. . .) will return a string containing all of the strings passed as parameters joined into a single string. There may be
any number of parameters.

The + operator concatenates two strings: strcat(a,b) is the same as a + b

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

Swift User Guide 25 / 43

3.21.12 strcut

strcut(input,pattern) will match the regular expression in the pattern parameter against the supplied input string and return the
section that matches the first matching parenthesised group.

For example:

string t = "my name is John and i like puppies.";
string name = strcut(t, "my name is ([^]*) ");
string out = strcat("Your name is ",name);
trace(out);

This will output the message: Your name is John.

3.21.13 strjoin

strjoin(array, delimiter) will combine the elements of an array into a single string separated by a given delimiter. The array passed
to strjoin must be of a primitive type (string, int, float, or boolean). It will not join the contents of an array of files.

Example:

string test[] = ["this", "is", "a", "test"];
string mystring = strjoin(test, " ");
tracef("%s\n", mystring);

This will print the string "this is a test".

3.21.14 strsplit

strsplit(input,pattern) will split the input string based on separators that match the given pattern and return a string array.

Example:

string t = "my name is John and i like puppies.";
string words[] = strsplit(t, "\\s");
foreach word in words {

trace(word);
}

This will output one word of the sentence on each line (though not necessarily in order, due to the fact that foreach iterations
execute in parallel).

3.21.15 toInt

toInt(input) will parse its input string into an integer. This can be used with arg() to pass input parameters to a Swift script as
integers.

3.21.16 toFloat

toFloat(input) will parse its input string into a floating point number. This can be used with arg() to pass input parameters to a
Swift script as floating point numbers.

3.21.17 toString

toString(input) will parse its input into a string. Input can be an int, float, string, or boolean.

Swift User Guide 26 / 43

3.21.18 trace

trace will log its parameters. By default these will appear on both stdout and in the run log file. Some formatting occurs to
produce the log message. The particular output format should not be relied upon.

3.21.19 tracef

tracef(spec, variable list) will log its parameters as formatted by the formatter spec. spec must be a string. Checks
the type of the specifiers arguments against the variable list and allows for certain escape characters.

Example:

int i = 3;
tracef("%s: %i\n", "the value is", i);

Specifiers:

%s
Format a string.

%b
Format a boolean.

%i
Format a number as an integer.

%f
Format a number as a floating point number.

%q
Format an array.

%M
Format a mapped variable’s filename.

%k
Wait for the given variable but do not format it.

%p
Format variable according to an internal format.

Escape sequences:

\n
Produce a newline.

\t
Produce a tab.

Known issues:
Swift does not correctly scan certain backslash sequences such as \\.

3.21.20 java

java(class_name, static_method, method_arg) will call a java static method of the class class_name.

Swift User Guide 27 / 43

3.21.21 writeData

writeData will write out data structures in the format described for readData. The following example demonstrates how one can
write a string "foo" into a file "writeDataPrimitive.out":

4 Configuration

Swift uses a single configuration file called swift.properties. The swift.properties file is responsible for:

1. Defining how to interface with schedulers

2. Defining app names and locations

3. Defining various other swift settings and behavior

Here is an example swift.properties file.

Define a site named sandyb
site.sandyb {

tasksPerWorker=16
taskWalltime=00:05:00
jobManager=slurm
jobQueue=sandyb
maxJobs=1
workdir=/scratch/midway/$USER/work
filesystem=local

}

Define sandyb apps
app.sandyb.echo=/bin/echo

Define other swift properties
sitedir.keep=true
wrapperlog.always.transfer=true

Select which site to run on
site=sandyb

The details of this file will be explained more later. Let’s first look at an example of running Swift. Using the swift.properties the
new Swift command a user would run is:

$ swift script.swift

That is all that is needed. Everything Swift needs to know is defined in swift.properties.

4.1 Location of swift.properties

Swift searches for swift.properties files in multiple locations:

1. The etc/swift.properties file included with the Swift distribution.

2. $SWIFT_SITE_CONF/swift.properties - used for defining site templates.

3. $HOME/.swift/swift.properties

4. swift.properties in your current directory.

Swift User Guide 28 / 43

5. Any property file you point to with the command line argument "-properties <file>"

Settings get read in this order. Definitions in the later files will override any previous definitions. For example, if you have
execution.retries=10 in $HOME/.swift/swift.properties, and execution.retries=0 in the swift.properties in your current directory,
execution.retries will be set to 0.

To verify what files are being read, and what values will be set, run:

$ swift -listconfig

4.2 Selecting a site

There are two ways Swift knows where to run. The first is via swift.properties. The site command specified which site entries
should be used for a particular run.

site=sandyb

Sites can also be selected on the command line by using the -site option.

$ swift -site westmere script.swift

The -site command line argument will override any sites selected in swift.properties.

4.3 Selecting multiple sites

To use multiple sites, use a list of site names separated by commas. In swift.properties:

site=westmere,sandyb

The same format can be used on the command line:

$ swift -site westmere,sandyb script.swift

Note
You can also use "sites=" in swift.properties, and "-sites x,y,z" on the command line.

4.4 Run directories

When you run Swift, you will see a run directory get created. The run directory has the name of runNNN, where NNN starts at
000 and increments for every run.

The run directories can be useful for debugging. They contain: .Run directory contents

apps An apps generated from swift.properties
cf A configuration file generated from swift.properties
runNNN.log The log file generated during the Swift run
scriptname-runNNN.d Debug directory containing wrapper logs
scripts Directory that contains scheduler scripts used for that run
sites.xml A sites.xml generated from swift.properties
swift.out The standard out and standard error generated by Swift

Swift User Guide 29 / 43

4.5 Using site templates

Swift recognizes an environmnet variable called $SWIFT_SITE_CONF, which points to a directory containing a swift.properties
file. This swift.properties can contain multiple site definitions for the various queues available on the cluster you are using.

Your local swift.properties then does not need to define the entire site. It may contain only differences you need to make that are
specific to your application, like walltime.

4.6 Backward compatability

New users are encouraged to use the configuration mechanisms described in this documentation. However, if you are migrating
from an older Swift release to 0.95, the older-style configurations using sites.xml and tc.data should still work. If you notice an
instance where this is not true, please send an email to swift-support@ci.uchicago.edu.

4.7 The swift.properties file format

4.7.1 Site definitions

Site definitions in the swift.properties files begin with "site".

The second word is the name of the site you are defining. In these examples we will define a site called westmere.

The third word is the property.

For example:

site.westmere.jobQueue=fast

Before the site properties are listed, it’s important to understand the terminology used.

A task, or app task is an instance of a program as defined in a Swift app() function.

A worker is the program that launches app tasks.

A job is related to schedulers. It is the mechanism by which workers are launched.

Below is the list of valid site properties with brief explanations of what they do, and an example swift.properties entry.

Table 1: swift.properties site properties

Property Description Example
condor Pass parameters directly through to the

submit script generated for the condor
scheduler. For example, the setting
"site.osgconnect.condor.+projectname=Swift"
will generate the line "+projectname =
Swift".

site.osgconnect.condor.+projectname=Swift

filesystem Defines how files should be accessed site.westmere.filesystem=local
jobGranularity Specifies the granularity of a job, in

nodes
site.westmere.jobGranularity=2

jobManager Specifies how jobs will be launched.
The supported job managers are
"cobalt", "slurm", "condor", "pbs",
"lsf", "local", and "sge".

site.westmere.jobManager=slurm

jobProject Set the project name for the job
scheduler

site.westmere.project=myproject

jobQueue Set the name of the scheduler queue to
use.

site.westmere.jobQueue=westmere

mailto:swift-support@ci.uchicago.edu

Swift User Guide 30 / 43

Table 1: (continued)

Property Description Example
jobWalltime The maximum number amount of

time allocated in a scheduler job, in
hh:mm:ss format.

site.westmere.jobWalltime=01:00:00

maxJobs Maximum number of scheduler jobs
to submit

site.westmere.maxJobs=20

maxNodesPerJob The maximum number of nodes to
request per scheduler job.

site.westmere.maxNodesPerJob=2

pe The parallel environment to use for
SGE schedulers

site.sunhpc.pe=mpi

providerAttributes Allows user to pass attributes through
directly to scheduler submit script.
Currently only implemented for sites
that use PBS.

site.beagle.providerAttributes=pbs.aprun;pbs.mpp;depth=24

slurm Pass parameters directly through to
the submit script generated for the
slurm scheduler. For example, the
setting "site.midway.slurm.mail-
user=username" generates the line
"#SBATCH --mail-user=username".

site.midway.slurm.mail-
user=username

stagingMethod When provider staging is enabled, this
option will specify the staging
mechanism for use for each site. If set
to file, staging is done from a
filesystem accessible to the coaster
service (typically running on the head
node). If set to proxy, staging is done
from a filesystem accessible to the
client machine that swift is running
on, and is proxied through the coaster
service. If set to sfs (short for "shared
filesystem"), staging is done by
copying files to and from a filesystem
accessible by the compute node (such
as an NFS or GPFS mount)

site.osg.stagingMethod=file

taskDir Tasks will be run from this directory.
In the absence of a taskDir definition,
Swift will run the task from workdir.

site.westmere.taskDir=/scratch/local/$USER/work

tasksPerWorker The number of tasks that each worker
can run simultaneously.

site.westmere.tasksPernode=12

taskThrottle The maximum number of active tasks
across all workers.

site.westmere.taskThrottle=100

taskWalltime The maximum amount of time a task
may run, in hh:mm:ss.

site.westmere.taskWalltime=01:00:00

site Name of site or sites to run on. This is
the same as running with swift -site
<sitename>

site=westmere

userHomeOverride Sets the Swift user home. This must
be a shared filesystem. This defaults to
$HOME. For clusters where $HOME
is not accessible to the worker nodes,
you may override the value to point to
a shared directory that you own.

site.beagle.userHomeOverride=/lustre/beagle/username

Swift User Guide 31 / 43

Table 1: (continued)

Property Description Example
workdir The workdirectory element specifies

where on the site files can be stored.
This directory must be available on all
worker nodes that will be used for
execution. A shared cluster filesystem
is appropriate for this. Note that you
need to specify absolute pathname for
this field.

site.westmere.workdir=/scratch/midway/$USER/work

4.8 Grouping site properties

The example swift.properties in this document listed the following site related properties:

site.westmere.provider=local:slurm
site.westmere.jobsPerNode=12
site.westmere.taskWalltime=00:05:00
site.westmere.queue=westmere
site.westmere.initialScore=10000
site.westmere.filesystem=local
site.westmere.workdir=/scratch/midway/$USER

However, you can also simplify this by grouping site properties together with curly brackets.

site.westmere {
provider=local:slurm
jobsPerNode=12
taskWalltime=00:05:00
queue=westmere
initialScore=10000
filesystem=local
workdir=/scratch/midway/$USER/work

}

4.9 App definitions

In 0.95, applications wildcards will be used by default. This means that $PATH will be searched and pathnames to application
do not have to be defined.

In the case where you have multiple sites defined, and you want control over where things run, you will need to define the location
of apps. In this scenario, you will can define apps in swift.properties with something like this:

app.westmere.cat=/bin/cat

When an app is defined in swift.properties for any site you are running on, wildcards will be disabled, and all apps you want to
use must be defined.

4.10 General Swift properties

Swift behavior can be configured through general Swift properties. Below is a list of properties:

Swift User Guide 32 / 43

Name Valid Values Default Value Description
config.rundirs true, false true By default, Swift will

generate a run directory that
contains logs, scheduler
submit scripts, debug
directories, and other files
associated with a particular
Swift run. Setting this value
to false disables the creation
of run directories and
causes all logs and
directories to be created in
the current working
directory.

execution.retries Positive integer 2 The number of time a job
will be retried if it fails
(giving a maximum of 1 +
execution.retries attempts at
execution)

file.gc.enabled true, false true Files mapped by the
concurrent mapper (i.e.
when you don’t explicitly
specify a mapper) are
deleted when they are not in
use any more. This property
can be used to prevent files
mapped by the concurrent
mapper from being deleted.

foreach.max.threads Positive integer 1024 Limits the number of
concurrent iterations that
each foreach statement can
have at one time. This
conserves memory for swift
programs that have large
numbers of iterations
(which would otherwise all
be executed in parallel)

Swift User Guide 33 / 43

Name Valid Values Default Value Description
lazy.errors true, false false Swift can report application

errors in two modes,
depending on the value of
this property. If set to false,
Swift will report the first
error encountered and
immediately stop execution.
If set to true, Swift will
attempt to run as much as
possible from a Swift script
before stopping execution
and reporting all errors
encountered. When
developing Swift scripts,
using the default value of
false can make the program
easier to debug. However in
production runs, using true
will allow more of a Swift
script to be run before Swift
aborts execution.

swift.home String Points to the Swift
installation directory
($SWIFT_HOME). In
general, this should not be
set as Swift can find its own
installation directory, and
incorrectly setting it may
impair the correct
functionality of Swift.

Swift User Guide 34 / 43

Name Valid Values Default Value Description
pgraph true, false false Swift can generate a

Graphviz
http://www.graphviz.org/
file representing the
structure of the Swift script
it has run. If this property is
set to true, Swift will save
the provenance graph in a
file named by concatenating
the program name and the
instance ID (e.g.
helloworld-
ht0adgi315l61.dot). If set to
false, no provenance graph
will be generated. If a file
name is used, then the
provenance graph will be
saved in the specified file.
The generated dot file can
be rendered into a graphical
form using Graphviz
http://www.graphviz.org/,
for example with a
command-line such as: $
swift -pgraph graph1.dot
q1.swift $ dot -ograph.png
-Tpng graph1.dot

pgraph.graph.options String splines="compound",
rankdir="TB"

This property specifies a
Graphviz
http://www.graphviz.org
specific set of parameters
for the graph.

pgraph.node.options String color="seagreen",
style="filled"

Used to specify a set of
Graphviz
http://www.graphviz.org
specific properties for the
nodes in the graph.

provenance.log true, false false This property controls
whether the log file will
contain provenance
information enabling this
will increase the size of log
files, sometimes
significantly.

provider.staging.pin.swiftfiles true, false false When provider staging is
enabled and
provider.staging.pin.swiftfiles
is set, cache some small
files needed by Swift to
avoid the cost of staging
more than once.

http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org
http://www.graphviz.org

Swift User Guide 35 / 43

Name Valid Values Default Value Description
sitedir.keep true, false false Indicates whether the

working directory on the
remote site should be left
intact even when a run
completes successfully.
This can be used to inspect
the site working directory
for debugging purposes.

status.mode files, provider files Controls how Swift will
communicate the result
code of running user
programs from workers to
the submit side. In files
mode, a file indicating
success or failure will be
created on the site shared
filesystem. In provider
mode, the execution
provider job status will be
used. provider mode
requires the underlying job
execution system to
correctly return exit codes.

tcp.port.range none <start>,<end> where start
and end are integers

A TCP port range can be
specified to restrict the ports
on which GRAM callback
services are started. This is
likely needed if your submit
host is behind a firewall, in
which case the firewall
should be configured to
allow incoming connections
on ports in the range.

throttle.file.operations <int>, off 8 Limits the total number of
concurrent file operations
that can happen at any
given time. File operations
(like transfers) require an
exclusive connection to a
site. These connections can
be expensive to establish. A
large number of concurrent
file operations may cause
Swift to attempt to establish
many such expensive
connections to various sites.
Limiting the number of
concurrent file operations
causes Swift to use a small
number of cached
connections and achieve
better overall performance.

Swift User Guide 36 / 43

Name Valid Values Default Value Description
throttle.host.submit <int>, off 2 Limits the number of

concurrent submissions for
any of the sites Swift will
try to send jobs to. In other
words it guarantees that no
more than the value of this
throttle jobs sent to any site
will be concurrently in a
state of being submitted.

throttle.score.job.factor <int>, off 4 The Swift scheduler has the
ability to limit the number
of concurrent jobs allowed
on a site based on the
performance history of that
site. Each site is assigned a
score (initially 1), which
can increase or decrease
based on whether the site
yields successful or faulty
job runs. The score for a
site can take values in the
(0.1, 100) interval. The
number of allowed jobs is
calculated using the
following formula: 2 +
score*throttle.score.job.factor
This means a site will
always be allowed at least
two concurrent jobs and at
most 2 + 100*throt-
tle.score.job.factor. With a
default of 4 this means at
least 2 jobs and at most
402. This parameter can
also be set per site using the
jobThrottle profile key in a
site catalog entry.

Swift User Guide 37 / 43

Name Valid Values Default Value Description
throttle.submit <int>, off 4 Limits the number of

concurrent submissions for
a run. This throttle only
limits the number of
concurrent tasks (jobs) that
are being sent to sites, not
the total number of
concurrent jobs that can be
run. The submission stage
in GRAM is one of the
most CPU expensive stages
(due mostly to the mutual
authentication and
delegation). Having too
many concurrent
submissions can overload
either or both the submit
host CPU and the remote
host/head node causing
degraded performance.

throttle.transfers <int>, off 4 Limits the total number of
concurrent file transfers that
can happen at any given
time. File transfers
consume bandwidth. Too
many concurrent transfers
can cause the network to be
overloaded preventing
various other signaling
traffic from flowing
properly.

ticker.date.format String Describes how to format the
ticker date output. The
format of this string is
documented in the Java
SimpleDateFormat class, at
http://docs.oracle.com/-
javase/6/docs/api/java/text/-
SimpleDateFormat.html

ticker.disable true, false false When set to true,
suppresses the output
progress ticker that Swift
sends to the console every
few seconds during a run

ticker.prefix String Progress: String to prepend to ticker
output

tracing.enabled true, false true Enables tracing of
procedure invocations,
assignments, iteration
constructs, as well as
certain dataflow events such
as data intialization and
waiting. This is done at a
slight decrease in
performance. Traces will be
available in the log file.

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Swift User Guide 38 / 43

Name Valid Values Default Value Description
use.wrapper.staging true, false false Determines if the Swift

wrapper should do file
staging.

use.provider.staging true, false false If true, files will be staged
by Swift over the network.

wrapper.invocation.mode absolute, relative absolute Determines if Swift remote
wrappers will be executed
by specifying an absolute
path, or a path relative to
the job initial working
directory. In most cases,
execution will be successful
with either option.
However, some execution
sites ignore the specified
initial working directory,
and so absolute must be
used. Conversely on some
sites, job directories appear
in a different place on the
worker node file system
than on the filesystem
access node, with the
execution system handling
translation of the job initial
working directory. In such
cases, relative mode must
be used.

wrapper.parameter.mode args,files args Controls how Swift will
supply parameters to the
remote wrapper script. args
mode will pass parameters
on the command line. Some
execution systems do not
pass commandline
parameters sufficiently
cleanly for Swift to operate
correctly. files mode will
pass parameters through an
additional input file. This
provides a cleaner
communication channel for
parameters, at the expense
of transferring an additional
file for each job invocation.

wrapperlog.always.transfer true, false false This property controls when
output from the Swift
remote wrapper is
transfered back to the
submit site. When set to
false, wrapper logs are only
transfered for jobs that fail.
If set to true, wrapper logs
are transfered after every
job is completed or failed.

Swift User Guide 39 / 43

4.11 Using shell variables

Any value in swift.properties may contain environment variables. For example:

workdir=/scratch/midway/$USER/work

Environment variables are expanded locally on the machine where you are running Swift.

Swift will also define a variable called $RUNDIRECTORY that is the path to the run directory Swift creates. In a case where
you’d like your work directory to be in the runNNN directory, you may do something like this:

workdir=$RUNDIRECTORY

5 Debugging

5.1 Retries

If an application procedure execution fails, Swift will attempt that execution again repeatedly until it succeeds, up until the limit
defined in the execution.retries configuration property.

Site selection will occur for retried jobs in the same way that it happens for new jobs. Retried jobs may run on the same site or
may run on a different site.

If the retry limit execution.retries is reached for an application procedure, then that application procedure will fail. This will
cause the entire run to fail - either immediately (if the lazy.errors property is false) or after all other possible work has been
attempted (if the lazy.errors property is true).

With or without lazy errors, each app is re-tried <execution.retries> times before it is considered failed for good. An app that has
failed but still has retries left will appear as "Failed but can retry".

Without lazy errors, once the first (time-wise) app has run out of retries, the whole run is stopped and the error reported.

With lazy errors, if an app fails after all retries, its outputs are marked as failed. All apps that depend on failed outputs will also
fail and their outputs marked as failed. All apps that have non-failed outputs will continue to run normally until everything that
can proceed completes.

For example, if you have:

foreach x in [1:1024] {
app(x);

}

If the first started app fails, all the other ones can still continue, and if they don’t otherwise fail, the run will only terminate when
all 1023 of them will complete.

So basically the idea behind lazy errors is to run EVERYTHING that can safely be run before stopping.

Some types of errors (such as internal swift errors happening in an app thread) will still stop the run immediately even in lazy
errors mode. But we all know there are no such things as internal swift errors :)

5.2 Restarts

If a run fails, Swift can resume the program from the point of failure. When a run fails, a restart log file will be left behind in the
run directory called restart.log. This restart log can then be passed to a subsequent Swift invocation using the -resume parameter.
Swift will resume execution, avoiding execution of invocations that have previously completed successfully. The Swift source
file and input data files should not be modified between runs.

Normally, if the run completes successfully, the restart log file is deleted. If however the workflow fails, swift can use the restart
log file to continue execution from a point before the failure occurred. In order to restart from a restart log file, the -resume logfile
argument can be used after the Swift script file name. Example:

$ swift -resume runNNN/restart.log example.swift.

Swift User Guide 40 / 43

5.3 Monitoring Swift

Swift runs can be monitored for progress and resource usage. There are three basic monitors available: Swing, TUI, and http.

5.3.1 HTTP Monitor

The HTTP monitor will allow for the monitoring of Swift via a web browser. To start the HTTP monitor, run Swift with the -ui
http:<port> command line option. For example:

swift -ui http:8000 modis.swift

This will create a server running on port 8000 on the machine where Swift is running. Point your web browser to http://<ip_address>:8000
to view progress.

5.3.2 Swing Monitor

The Swing monitor displays information via a Java gui/X window. To start the Swing monitor, run Swift with the -ui Swing
command line option. For example:

swift -ui Swing modis.swift

http://<ip_address>:8000

Swift User Guide 41 / 43

This will produce a gui/X window consisting of the following tabs:

• Summary

• Graphs

• Applications

• Tasks

• Gantt Chart

5.3.3 TUI Monitor

The TUI (textual user interface) monitor is one option for monitoring Swift on the console using a curses-like library.

The progress of a Swift run can be monitored using the -ui TUI option. For example:

swift -ui TUI modis.swift

Swift User Guide 42 / 43

This will produce a textual user interface with multiple tabs, each showing the following features of the current Swift run:

• A summary view showing task status

• An apps tab

• A jobs tab

• A transfer tab

• A scheduler tab

• A Task statistics tab

• A customized tab called Ben’s View

Navigation between these tabs can be done using the function keys f2 through f8.

5.4 Log analysis

Swift logs can contain a lot of information. Swift includes a utility called "swiftlog" that analyzes the log and prints a nicely
formatted summary of all tasks of a given run.

swiftlog usage

$ swiftlog run027
Task 1

App name = cat
Command line arguments = data.txt data2.txt
Host = westmere
Start time = 17:09:59,607+0000
Stop time = 17:10:22,962+0000
Work directory = catsn-run027/jobs/r/cat-r6pxt6kl
Staged in files = file://localhost/data.txt file://localhost/data2.txt

Swift User Guide 43 / 43

Staged out files = catsn.0004.outcatsn.0004.err

Task 2
App name = cat
Command line arguments = data.txt data2.txt
Host = westmere
Start time = 17:09:59,607+0000
Stop time = 17:10:22,965+0000
Work directory = catsn-run027/jobs/q/cat-q6pxt6kl
Staged in files = file://localhost/data.txt file://localhost/data2.txt
Staged out files = catsn.0010.outcatsn.0010.err

home

http://swift-lang.org/docs/index.php

	Overview
	Getting Started
	Quickstart
	Tutorials

	The Swift Language
	Language Basics
	Arrays and Parallel Execution
	Associative Arrays
	Ordering of execution
	Compound procedures
	More about types
	Data model
	More technical details about Swift script
	Variables
	Variable Declarations
	Assignment Statements
	Procedures
	Atomic procedures
	Compound procedures

	Control Constructs
	foreach
	if
	switch
	iterate

	Operators
	Global constants
	Imports
	Mappers
	The Single File Mapper
	The Simple Mapper
	Concurrent Mapper
	Filesystem Mapper
	Fixed Array Mapper
	Array Mapper
	Regular Expression Mapper
	Structured Regular Expression Mapper
	CSV Mapper
	External Mapper

	Executing app procedures
	Mapping of app semantics into unix process execution semantics

	How Swift implements the site execution model
	Technical overview of the Swift architecture
	Execution layer
	Swift script language compilation layer
	Swift/karajan library layer

	Function reference
	arg
	extractInt
	extractFloat
	filename
	filenames
	length
	readData
	readStructured
	regexp
	sprintf
	strcat
	strcut
	strjoin
	strsplit
	toInt
	toFloat
	toString
	trace
	tracef
	java
	writeData

	Configuration
	Location of swift.properties
	Selecting a site
	Selecting multiple sites
	Run directories
	Using site templates
	Backward compatability
	The swift.properties file format
	Site definitions

	Grouping site properties
	App definitions
	General Swift properties
	Using shell variables

	Debugging
	Retries
	Restarts
	Monitoring Swift
	HTTP Monitor
	Swing Monitor
	TUI Monitor

	Log analysis

