A Swift Tutorial

Abstract

Thisisan introductory tutoria on the use of Swift and its programming language SwiftScript.
$L astChangedRevision: 3336 $

Table of Contents

O 11 oo (1 T o T PPN 1
b (=1 o T4 4 o 1
3. LANQUAGE FEALUIES ... ettt et et e et e e e et e e e et e et e e e e ea e 2
O N T 4TSN = U= 10
L o L1 £ 15

1. Introduction

Thistutorial isintended to introduce new usersto the basics of Swift. It is structured as a series of small exercise/
examples which you can try for yourself as you read along. After the first 'hello world' example, there are two tracks
- the language track (which introduces features of the SwiftScript language) and the runtime track (which introduces
features of the Swift runtime environment, such as running jobs on different sites)

For information on getting an installation of Swift running, consult the Swift Quickstart Guide1, and return to this
document when you have successfully run the test SwiftScript program mentioned there.

Thereisalso a Swift User's Guide2 which contains more detailed reference material on topics covered in this manu-

al. All of the programsincluded in this tutorial can be found in your Swift distribution in the examples/swift direct-
ory.

2. Hello World

Thefirst example program, fi r st . swi f t , outputs a hello world message into afilecalled hel | o. t xt .

type nmessagefil e;

app (nmessagefile t) greeting () {
echo "Hello, world!" stdout=@il enane(t);
}

messagefile outfile <"hello.txt">;

outfile = greeting();

We can run this program as follows:

1 http://www.ci.uchicago.edu/swift/gui des/quickstartguide.php
2 http://www.ci.uchicago.edu/swift/guides/userguide.php

http://www.ci.uchicago.edu/swift/guides/quickstartguide.php
http://www.ci.uchicago.edu/swift/guides/quickstartguide.php
http://www.ci.uchicago.edu/swift/guides/userguide.php
http://www.ci.uchicago.edu/swift/guides/userguide.php

A Swift Tutorial

$ cd exanples/swift/
$ swift first.swift
Swift svn swift-r3334 (swift nodified |ocally) cog-r2752

Runl D: 20100526- 1925- 8z upqlb

Pr ogr ess:

Final status: Finished successfully:1
$ cat hello. txt

Hel | o, worl d!

The basic structure of this program is a type definition, an application procedure definition, a variable definition and
then acall to the procedure:

type nmessagefil e;

First we define a new type, called messagefile. In this example, we will use this messagefile type as the type for our
output message.

All datain SwiftScript must be typed, whether it is stored in memory or on disk. This example defines avery
simple type. Later on we will see more complex type examples.

app (nessagefile

t) eeting()
echo "Hello, wo
}

gr {
rid'" stdout=@il enane(t);

Next we define a procedure called greeting. This procedure will write out the "hello world" message to afile.

To achievethis, it executes the unix utility ‘echo’ with a parameter "Hello, world!" and directs the standard output
into the output file.

The actua file to use is specified by the return parameter, t.
nessagefile outfile <"hello.txt">;

Here we define avariable called outfile. The type of this variable is messagefile, and we specify that the contents of
this variable will be stored on disk in afile called hello.txt

outfile = greeting();

Now we call the greeting procedure, with its output going to the outfile variable and therefore to hello.txt on disk.

Over the following exercises, we'll extend this simple hello world program to demonstrate various features of Swift.

3. Language features

3.1. Parameters

A Swift Tutorial

Procedures can have parameters. Input parameters specify inputs to the procedure and output parameters specify
outputs. Our helloworld greeting procedure already uses an output parameter, t, which indicates where the greeting
output will go. In this section, we will add an input parameter to the greeting function.

The modified versionof fi rst. swi ft isdisplayed below.

type nmessagefil e;
app (messagefile t) greeting (string s) {
echo s stdout=@il enanme(t);
}
nessagefile outfile <"hello2.txt">;
outfile = greeting("hello world");
We have modified the signature of the greeting procedure to indicate that it takes a single parameter, s, of type
'string’.

We have modified the invocation of the 'echo’ utility so that it takes the value of s as a parameter, instead of the
string literal "Hello, world!".

We have modified the output file definition to point to adifferent file on disk.
We have modified the invocation of greeting so that a greeting string is supplied.

The code for this section can be found in par anet er . swi f t . It can be invoked using the swift command, with
output appearinginhel | 02. t xt :

$ swift parameter.swift

Now that we can choose our greeting text, we can call the same procedure with different parameters to generate sev-
era output files with different greetings. The code isin manyparam.swift and can be run as before using the swift
command.

type nmessagefil e;

app (messagefile t) greeting (string s) {
echo s stdout=@1i | enanme(t);
}

nmessagefile english <"english.txt">;
nessagefile french <"francais.txt">;
english = greeting("hello");
french = greeting("bonjour");

nessagefil e japanese <"ni hongo. txt">;
j apanese = greeting("konnichiwa");
Note that we can intermingle definitions of variables with invocations of procedures.

When this program has been run, there should be three new files in the working directory (english.txt, francais.txt
and nihongo.txt) each containing a greeting in a different language.

In addition to specifying parameters positionally, parameters can be named, and if desired a default value can be
specified - see Named and optional parameters.

A Swift Tutorial

3.2. Adding another application

Now we'll define anew application procedure. The procedure we define will capitalise all the wordsin theinput file.
To do this, we'll usethe unix 'tr' (translate) utility. Here is an example of using tr on the unix command line, not us-
ing Swift:

$ echo hello | tr '[a-z]' '[A-Z]"
HELLO

There are several steps:

* transformation catalog

* application block

First we need to modify the transformation catalog to define alogical transformation for the tc utility. The trans-
formation catalog can befound inet ¢/ t c. dat a. There are already several entries specifying where programs can
be found. Add anew lineto the file, specifying where tr can be found (usually in/ usr/ bi n/ tr but it may differ
on your system), like this:

| ocal host tr fusr/bin/tr | NSTALLED | NTEL32: : LI NUX nul |

For now, ignore all of the fields except the second and the third. The second field 'tr' specifies alogical application
name and the third specifies the location of the application executable.

Now that we have defined where to find tr, we can useit in SwiftScript.

We can define a new procedure, capitalise which callstr.

app (nmessagefile o) capitalise(nmessagefile i
=@i l

tr "[a-z]" "[A-Z]" stdin=@il enane(i) st)dofj

t=@il enane(o0);

We can call capitalise like this:

nessagefile final <"capita

t CExt" >
final = capitalise(hellofi

I's
le);
So afull program based on the first exercise might look like this:

type nmessagefil e;

app (nmessagefile t) greeting (string s) {
echo s stdout=@ 1| enanme(t);
}

app (messagefile o) capitalise(nmessagefile i

tr "[a-z]" "[A-Z]" stdin=@il enane(i) st%ﬂo&

t=@il enane(o0);

A Swift Tutorial

nmessagefi |

e hellofile <"hello.txt">;
nmessagefile fi

I

inal <"capitals.txt">;
hellofile = greeting("hello fromSw ft");
final = capitalise(hellofile);

We can use the swift command to run this;

$ swift second_procedure. swift

[...
$ cat capitals.txt
HELLO FROM SW FT

3.3. Anonymous files

In the previous section, thefilehel | 0. t xt isused only to store an intermediate result. We don't really care about
which nameis used for the file, and we can let Swift choose the name.

To do that, omit the mapping entirely when declaring outfile:

type nmessagefil e;

app (nessagefile t) greeting (string s) {
echo s stdout=@1i | enanme(t);
}

app (messagefile o) capitalise(nmessagefile i

tr "[a-z]" "[A-Z]" stdin=@il enane(i) stzzloij

t=@il enane(o0);

nmessagefile hellofile <"hello.txt">
nessagefile final <"capitals.txt">

hellofile = greeting("hello fromSw ft");
final = capitalise(hellofile);

Swift will choose a filename, which in the present version will be in asubdirectory called _concurrent.

3.4. Datatypes

All datain variables and files has a data type. So far, we've seen two types:

* string - thisis abuilt-in type for storing strings of text in memory, much like in other programming languages

» messagefile - thisis a user-defined type used to mark files as containing messages

SwiftScript has the additional built-in types: boolean, integer and float that function much like their counterpartsin
other programming languages.

It isalso possible to create user defined types with more structure, for example:

type details {
string nane;

A Swift Tutorial

i nt pies;

}
Each element of the structured type can be accessed using a. like this:

person. namre = "john";

The following complete program, types.swift, outputs a greeting using a user-defined structure type to hold paramet-
ers for the message:

type nmessagefil e;

type details {
string nane;
i nt pies;

app (messagefile t) greeting (details d) {
echo "Hello. Your nane is" d.name "and you have eaten" d.pies "pies." stdout=@il enane
}

detail s person;
per son. namne "

. ohn";
per son. pi es ;

31

nessagefile outfile <"ql5.txt>";

outfile = greeting(person);

Structured types can be comprised of marker types for files. See the later section on mappers for more information
about this.

3.5. Arrays

We can define arrays using the [] suffix in avariable declaration:

messagefile n{];

This program, g5.swift, will declare an array of message files.

type messagefil e;

app (messagefile t) greeting (string s[]) {
echo s[0] s[1] s[2] stdout=@il enanme(t);

nessagefile outfile <"qgbout.txt">;

string words[] = ["how',"are", "you"];

outfile = greeting(words);

Observe that the type of the parameter to greeting is now an array of strings, 'string §]', instead of a single string,

6

A Swift Tutorial

'string S, that elements of the array can be referenced numerically, for example §0], and that the array isinitialised

using an array literal, ["how","are","you"].

3.6. Mappers

A significant difference between SwiftScript and other languages is that data can be referred to on disk through vari-
ablesin avery similar fashion to datain memory. For example, in the above examples we have seen avariable
definition like this:

nmessagefile outfile <"qgl3greeting.txt">;

This means that 'outfile' is a dataset variable, which is mapped to afile on disk called 'g13greeting.txt'. Thisvariable
can be assigned to using = in asimilar fashion to an in-memory variable. We can say that 'outfile' is mapped onto the
disk file 'gl3greeting.txt' by a mapper.

There are various ways of mapping in SwiftScript. Two forms have already been seen in thistutorial. Later exercises
will introduce more forms.

The two forms of mapping seen so far are:

simple named mapping - the name of the file that a variable is mapped to is explictly listed. Like this:

nessagefile outfile <"greeting.txt">;

Thisis useful when you want to explicitly name input and output files for your program. For example, 'outfile' in ex-
ercisein section 2.

anonymous mapping - no name is specified in the source code. A name is automatically generated for thefile. This
isuseful for intermediate files that are only referenced through SwiftScript, such as 'outfile' in exercise in section
3.3. A variable declaration is mapped anonymously by ommitting any mapper definition, like this:

nessagefile outfile;

Later exercises will introduce other ways of mapping from disk filesto SwiftScript variables.

3.6.1. The regexp mapper

In this exercise, we introduce the regexp mapper. This mapper transforms a string expression using a regular expres-
sion, and uses the result of that transformation as the filename to map.

regexp. swi ft demonstrates the use of this by placing output into afile that is based on the name of the input
file: our input file is mapped to the inputfile variable using the simple named mapper, and then we use the regular
expression mapper to map the output file. Then we use the countwords() procedure to count the works in the input
file and store the result in the output file. In order for the countwords() procedure to work correctly, add the wc util-
ity (usually found in /usr/bin/wc) to tc.data.

Theimportant bit of r egexp. swi ft is:

messagefile inputfile <"ql6.txt">;

countfile c <regexp_mapper;

A Swift Tutorial

source=@nputfile,
match="(.*)txt",
transfornme"\\ 1count”

>

3.6.2. fixed_array_mapper

Thefixed array mapper maps alist of filesinto an array - each element of the array is mapped into one file in the
specified directory. Seef i xedarray. swift.

string i nputNanes = "one.txt two.txt three.txt";
string output Names = "one.count two.count three.count";

nmessagefile inputfiles[] <fixed_ array_mapper; fil es=i nput Names>;
countfile outputfiles[] <fixed_ array mapper; fil es=output Nanes>;

outputfiles[0] = countwords(inputfiles[0]);
outputfiles[1l] = countwords(inputfiles[1]);
outputfiles[2] = countwords(inputfiles[2]);
3.7. foreach

SwiftScript provides a control structure, foreach, to operate on each element of an array.

In this example, we will run the previous word counting example over each filein an array without having to expli-

citly list the array elements. The source code for thisexampleisinf or each. swi f t . Thethreeinput files

(one. txt,two. txt andt hree. t xt) are supplied. After you have run the workflow, you should see that there

arethree output files (one. count ,t wo. count andt hr ee. count) each containing the word count for the cor-
responding input file. We combine the use of the fixed_array mapper and the regexp_mapper.

string i nputNanes = "one.txt two.txt three.txt";

nessagefile inputfiles[] <fixed_ array_mapper; fil es=i nput Names>;

foreach f in inputfiles {
countfile c <regexp_nmapper;
source=@,
match="(.*)txt",
transform="\\lcount " >;
¢ = countwords(f);

3.8. If

Decisions can be made using 'if', like this:

i f(norning)
outfile = greeting("good norning");
} else {
outfile = greeting("good afternoon");

A Swift Tutorial

i f.swi ft containsasimple example of this. Compileand runi f . swi ft and seethat it outputs 'good morning'.
Changing the 'morning' variable from true to false will cause the program to output ‘good afternoon'.

3.9. Sequential iteration

A development version of Swift after 0.2 (revision 1230) introduces a sequential iteration construct.

The following example demonstrates a simple application: each step of theiteration is a string representation of the
byte count of the previous step's output, with iteration terminating when the byte count reaches zero.

Here's the program:

type counterfile;

app (counterfile t) echo(string m {
echo m stdout=@i |l enanme(t);

}

app (counterfile t) countstep(counterfile i) {
wel @ilenane(i) @il enanme(t);
}
counterfile a[] <sinple_napper; prefix="fol dout">;
a[0] = echo("793578934574893");
iterate v {
a[v+1l] = countstep(a[Vv]);

trace("extract int value ", @xtractint(a[v+l]));
} until (@xtractint(a[v+l]) <= 1);

echo isthe standard unix echo.
wcl isour application code - it counts the number of bytesin the one file and writes that count out to another, like
this:

$ cat ../wcl
#!/ bi n/ bash
echo -n $(wc -c < $1) > $2

$ echo -n hello > a

$wl ab
$cat b
5

Install the above wcl script somewhere and add a transformation catalog entry for it. Then run the example program
like this:

$ swift iterate.swift
Swift svn swift-r3334 cog-r2752

Runl D. 20100526- 2259-gt | z8zf 4

Progr ess:

SwiftScript trace: extract int value , 16.0
SwiftScript trace: extract int value , 2.0

9

A Swift Tutorial

SwiftScript trace: extract int value , 1.0
Final status: Finished successfully:4

$ |I's fol dout*
f ol dout 0000 fol dout 0001 f ol dout 0002 f ol dout 0003

4. Runtime features

4.1. Visualising the workflow as a graph

When running a workflow, its possible to generate a provenance graph at the same time:

$ swift -pgraph graph.dot first.swft
$ dot -ograph.png -Tpng graph. dot

graph.png can then be viewed using your favourite image viewer.

4.2. Running on a remote site

As configured by default, all jobs are run locally. In the previous examples, we've invoked 'echo’ and 'tr' executables
from our SwiftScript program. These have been run on the local system (the same computer on which you ran
'swift'). We can also make our computations run on a remote resource.

WARNING: This example is necessarily more vague than previous examples, because its requires access to remote
resources. Y ou should ensure that you can submit ajob using the globus-job-run (or globusrun-ws?) command(s).

We do not need to modify any SwiftScript code to run on another resource. Instead, we must modify another cata-
log, the 'site catalog'. This catalog provides details of the location that applications will be run, with the default set-
tings referring to the local machine. We will modify it to refer to aremote resource - the UC Teraport cluster. If you
are not a UC Teraport user, you should use details of a different resource that you do have access to.

The site catalog is located in etc/sites.xml and is arelatively straightforward XML format file. We must modify each
of the following three settings: gridftp (which indicates how and where data can be transferred to the remote re-
source), jobmanager (which indicates how applications can be run on the remote resource) and workdirectory
(which indicates where working storage can be found on the remote resource).

4.3. Writing a mapper

This section will introduce writing a custom mapper so that Swift is able to access datafiles laid out in application-spe-
cific ways.

An application-specific mapper must take the form of a Java class that implements the M appers interface.

Usually you don't need to implement thisinterface directly, because Swift provides a number of more concrete
classes with some functionality already implemented.

The hierarchy of helper classesis:

Mappers - Thisisthe abstract interface for mappersin Swift. Y ou must implement methods to provide access to
mapper properties, to map from a SwiftScript dataset path (such as foo[1].bar) to afile name, to check whether afile
exists. None of the default Swift mappers implement this interface directly - instead they use one of the following
helper classes.

3 http://www.ci.uchicago.edu/swift/javadoc/vdsk/org/griphyn/vdl/mapping/Mapper.html
4 http://www.ci.uchicago.edu/swift/javadoc/vdsk/org/gri phyn/vdl/mapping/Mapper.html

10

http://www.ci.uchicago.edu/swift/javadoc/vdsk/org/griphyn/vdl/mapping/Mapper.html
http://www.ci.uchicago.edu/swift/javadoc/vdsk/org/griphyn/vdl/mapping/Mapper.html
http://www.ci.uchicago.edu/swift/javadoc/vdsk/org/griphyn/vdl/mapping/Mapper.html
http://www.ci.uchicago.edu/swift/javadoc/vdsk/org/griphyn/vdl/mapping/Mapper.html

A Swift Tutorial

AbstractMappers - This provides hel per methods to manage mapper properties and to handle existance checking.
Examples of mappers which use this class are: array_mappers, csv_mapper7, fixed_array_mappers, regexp_mappero
and single file mapper10 .

AbstractFileMapperi1 - This provides a hel per class for mappers which select files based on selecting filesfrom a
directory listing. It is necessary to write some helper methods that are different from the above mapper methods. Ex-
amples of mappers which use this class are: simple_mapper12, filesys mapperi13 and the (undocumented) Structure-
dRegularExpressionM apper.

In general, to write a mapper, choose either the AbstractMapper or the AbstractFileMapper and extend those. If your
mapper will generally select thefilesit returns based on a directory listing and will convert paths to filenames using
some regular conversion (for example, in the way that simple_mapper maps files in a directory that match a particu-
lar pattern), then you should probably use the AbstractFileMapper. If your mapper will produce alist of filesin
some other way (for example, in the way that csv_mapper maps based on filenames given in aCSV file rather than
looking at which files are in adirectory), then you should probably use the AbstractMapper.

4.3.1. Writing a very basic mapper

In this section, we will write a very basic (almost useless) mapper that will map a SwiftScript dataset into a hard-
coded filecaled myfi | e. t xt, likethis:

Swi ft variable Fi | enane

var S L e R > nyfile.txt

We should be able to use the mapper we write in a SwiftScript program like this:

type file;
file f <nmy_first_mapper; >;
First we must choose a base class - AbstractMapper or AbstractFileMapper. We aren't going to use a directory list-

ing to decide on our mapping - we are getting the mapping from some other source (in fact, it will be hard coded).
So we will use AbstractMapper.

So now onto the source code. We must define a subclass of AbstractMapper and implement several mapper meth-
ods: isStatic, existing, and map. These methods are documented in the javadoc for the Mapper interface.

Here is the code implementing this mapper. Put thisin your source vdsk directory, make a directory sr c/
tutorial/ andputthisfileinsrc/tutorial/MFirstMpper.java
package tutorial;

i mport java.util.Arrays;

5 http://www.ci.uchicago.edu/swift/javadoc/vdsk/org/griphyn/vdl/mapping/AbstractM apper.html

6 http://www.ci.uchicago.edu/swift/gui des/userguide.php#mapper.array_mapper

7 http://www.ci.uchicago.edu/swift/gui des/userguide.php#mapper.csv_mapper

8 http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.fixed_array_mapper

9 http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.regexp_mapper

10 http://www.ci.uchi cago.edu/swift/gui des/userguide.php#mapper.single_file_mapper

11 http://www.ci.uchi cago.edu/swift/javadoc/vdsk/org/griphyn/vdl/mapping/fil e/ AbstractFileM apper.html
12 http://www.ci.uchi cago.edu/swift/gui des/userguide.php#mapper.simple_mapper

13 http://www.ci.uchi cago.edu/swift/gui des/userguide.php#mapper.filesys_mapper

11

http://www.ci.uchicago.edu/swift/javadoc/vdsk/org/griphyn/vdl/mapping/AbstractMapper.html
http://www.ci.uchicago.edu/swift/javadoc/vdsk/org/griphyn/vdl/mapping/AbstractMapper.html
http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.array_mapper
http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.csv_mapper
http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.fixed_array_mapper
http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.regexp_mapper
http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.array_mapper
http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.csv_mapper
http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.fixed_array_mapper
http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.regexp_mapper
http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.single_file_mapper
http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.single_file_mapper
http://www.ci.uchicago.edu/swift/javadoc/vdsk/org/griphyn/vdl/mapping/file/AbstractFileMapper.html
http://www.ci.uchicago.edu/swift/javadoc/vdsk/org/griphyn/vdl/mapping/file/AbstractFileMapper.html
http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.simple_mapper
http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.filesys_mapper
http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.simple_mapper
http://www.ci.uchicago.edu/swift/guides/userguide.php#mapper.filesys_mapper

A Swift Tutorial

i mport java.util.Collection;
i mport java.util.Collections;

i mport org.griphyn.vdl . mappi ng. AbsFi | e;

i mport org.griphyn.vdl.nmappi ng. Abstract Mapper;
i mport org.griphyn.vdl. mappi ng. Pat h;

i mport org.griphyn.vdl.nappi ng. Physi cal For mat ;

public class MFirstMapper extends Abstract Mapper {
AbsFile nyfile = new AbsFile("nyfile.txt");

public boolean isStatic() {
return false;

public Collection existing() {
if (nmyfile.exists())
return Arrays. asList(new Path[] {Path. EMPTY_PATH});
el se
return Col |l ections. EMPTY_LI ST;

publ i ¢ Physi cal Format map(Path p) ({
i f(p.equal s(Path. EMPTY_PATH))
return nyfile;
el se
return null;

Now we need to inform the Swift engine about the existence of this mapper. We do that by editing the MapperFact-
ory class definition, insr ¢/ or g/ gri phyn/ vdl / mappi ng/ Mapper Fact ory. j ava and adding are-
gisterMapper call alongside the existing registerMapper calls, like this:

regi sterMapper ("ny_first_mapper", tutorial.MFirstMpper.class);
Thefirst parameter is the name of the mapper that will be used in SwiftScript program. The second parameter isthe
new Mapper class that we just wrote.

Now rebuild Swift using the 'ant redist’ target.

This new Swift build will be aware of your new mapper. We can test it out with a hello world program:

type messagefil e;

{

app (nmessagefile t) greeting()
ilenane(t);

echo "hell 0" stdout=@i
}

nessagefile outfile <my_first_mapper; >;

outfile = greeting();

Run this program, and hopefully you will find the "hello" string has been output into the hard coded output file ny -
file. txt:

12

A Swift Tutorial

$ cat myfile.txt
hel | o

So that's afirst very simple mapper implemented. Compare the source code to the single file_mapper in Single-
FileMapper.javai4. Thereis not much more code to the single file_mapper - mostly code to deal with the file para-
meter.

4.4. Starting and restarting

Now we're going to try out the restart capabilities of Swift. We will make aworkflow that will deliberately fail, and
then we will fix the problem so that Swift can continue with the workflow.

First we have the program in working form, restart.swift.

type file;
app (file f) touch() {
touch @;

app (file f) processL(file inp) {
echo "processL" stdout=@;
}

app (file f) processR(file inp) {
br oken "process" stdout=@;

}

app (file f) join(file left, file right) {
echo "join" @eft @ight stdout=@;

}

file f = touch();

file g = processL(f);

file h = processR(f);

filei =join(g,h);

We must define some transformation catalog entries:

| ocal host touch /usr/bin/touch | NSTALLED | NTEL32: : LI NUX nul |
| ocal host broken /bin/true | NSTALLED | NTEL32: : LI NUX nul |

Now we can run the program:

$ swift restart.swift

Swift 0.9 swift-r2860 cog-r2388
Runl D: 20100526- 1119- 3kgzzi 15

Pr ogr ess:
Final status: Finished successfully:4

14 http://www.ci.uchi cago.edu/trac/swift/browser/trunk/src/org/griphyn/vdl/mapping/file/SingleFileM apper.java

13

http://www.ci.uchicago.edu/trac/swift/browser/trunk/src/org/griphyn/vdl/mapping/file/SingleFileMapper.java
http://www.ci.uchicago.edu/trac/swift/browser/trunk/src/org/griphyn/vdl/mapping/file/SingleFileMapper.java
http://www.ci.uchicago.edu/trac/swift/browser/trunk/src/org/griphyn/vdl/mapping/file/SingleFileMapper.java

A Swift Tutorial

Four jobs run - touch, echo, broken and afina echo. (note that broken isn't actually broken yet).

Now we will break the 'broken’ job and see what happens. Replace the definition in tc.data for ‘broken’ with this:

| ocal host br oken / bin/fal se | NSTALLED | NTEL32: : LI NUX nul |

Now when we run the workflow, the broken task fails:

$ swift restart.swft
Swift 0.9 swift-r2860 cog-r2388

Runl D: 20100526- 1121-tssdcljg
Pr ogr ess:
Progress: Stage in:1 Finished successfully:?2
Execution fail ed:
Exception in broken:
Arguments: [process]
Host: | ocal host
Directory: restart-20100526-1121-tssdcljg/jobs/ 1/ broken-1i 6ufi sj
stderr.txt:
stdout . txt:

From the output we can see that touch and the first echo completed, but then broken failed and so swift did not at-
tempt to execute the final echo.

There will be arestart log with the same name as the RuniD:

$ |'s *20100526-1121-tssdcljg*rlog
restart-20100526-1121-tssdcljg.0.rlog

This restart log contains enough information for swift to know which parts of the workflow were executed success-
fully.

We can try to rerun it immediately, like this:

$ swift -resune restart-20100526-1121-tssdcljg.0.rlog restart.swft
Swift 0.9 swift-r2860 cog-r2388

Runl D: 20100526- 1125- 7yx0zi 6d
Pr ogr ess:
Execution fail ed:
Exception in broken:
Argunents: [process]
Host: | ocal host
Directory: restart-20100526-1125-7yx0zi 6d/j obs/ nl br oken-nmsnlgi sj
stderr.txt:
stdout.txt:

Caused by:
Exit code 1

14

A Swift Tutorial

Swift tried to resume the workflow by executing 'broken’ again. It did not try to run the touch or first echo jobs, be-
cause the restart log says that they do not need to be executed again.

Broken failed again, leaving the original restart log in place.
Now we will fix the problem with 'broken' by restoring the original tc.data line that works.

Remove the existing 'broken’ line and replace it with the successful tc.data entry above:
| ocal host br oken /bin/true | NSTALLED I NTEL32: : LI NUX null
Now run again:

$ swift -resune restart-20100526-1121-tssdcljg.0.rlog restart.sw ft
Swift 0.9 swift-r2860 cog-r2388
Runl D: 20100526- 1128- a2gf uxhg

Pr ogr ess:
Final status: Initializing:2 Finished successfully:?2

Swift triesto run 'broken’ again. Thistime it works, and so Swift continues on to execute the final piece of the work-
flow asif nothing had ever gone wrong.

5. bits

5.1. Named and optional parameters

In addition to specifying parameters positionally, parameters can be named, and if desired a default value can be
specified:

app (nmessagefile t) greeting (string s="hello") {
echo s stdout=@1 ! enanme(t);
}

When we invoke the procedure, we can specify values for the parameters by name. The following code can be found
in g21.swift.

french = greeting(s="bonjour");

or we can let the default value apply:

english = greeting();

15

