Compiling Swift with Falkon support:

when you build Swift, add the -Dwith-provider-deef option:

cd ${FALKON_ROOT}/cog/modules/vdsk/

ant -Dwith-provider-deef redist

Security Note

BGexec supports no security

they connect back to the Falkon service and get work from there

they don't have any server sockets

so someone would have to hijack the connections and fake the service

for them to inject jobs to the workers...

if the workers would have had server sockets listening on some ports

then it would be different

but they are simple clients that only generate outgoing connections to a specific IP

the service IP

and the Falkon service can run on the same box with Swift

behind a firewall

with only 3 ports open

Java Needs

IA64 nodes require Java 1.4

work up to 1.6

Falkon Tarball

wget http://people.cs.uchicago.edu/~iraicu/source/falkon-r83.tgz

tar xfz falkon-r83.tgz

cd falkon-r83/

source falkon.env

if you want to re-build (not needed for this tar ball)

falkon-clean.sh

falkon-build.sh

Building Falkon

The SVN archive has grown rather large recently, and some of the directories (i.e. workloads and AstroPortal) make up the largest part of the contents. With its current organization, here is how you would do a minimal checkout (~43MB, Falkon User Guide, Section 2.1, http://dev.globus.org/images/0/0e/Falkon_User_Guide_v2.pdf), and compile:
export ANT_HOME=/home/wilde/ant/dist
svn co https://svn.globus.org/repos/falkon -N

cd falkon

svn co https://svn.globus.org/repos/falkon/bin

source falkon.env

falkon-checkout-minimal.sh

source falkon.env

falkon-build.sh

This checkout takes 62 seconds for me, and the compile takes 43 seconds.

BTW, the entire thing (including all .svn dirs and compiled) is 148MB after a clean checkout and compilation.

Starting Falkon

On screen 1:

cd falkon-r83

source falkon.env

falkon-service-stdout.sh 50001 config/Falkon-TCPCore.config

On screen 2:

cd falkon-r83

source falkon.env

falkon-worker-stdout.sh localhost 50001

at this point, you have the service running... press any key and enter at the worker to terminate

BGexec’s on sico:

The file: /home/iraicu/java/svn/falkon/worker/ServiceName.txt

points each BGexec to where the service is running

so you need to update that file prior to starting the BGexecs with the IP of the service

then to start them:

cd ~iraicu/java/svn/falkon/worker

./run.drp-slurm.sh 6 60

this would start 6 BGexecs for 60 minutes

you might need to copy over the BGexec source (1 file) and compile it on the SiCo itself

and the starting scripts (2 of them)

Testing:

create a 3rd screen

cd falkon-r83

source falkon.env

falkon-client.sh 140.221.37.30 50001 workloads/sleep/sleep_1x10

the IP can also be localhost at this point

Debugging and Logs

here are the logs you need to make sure you capture when running in debug mode:
cd ~/java/svn/falkon/config

cat Falkon-TCPCore.config

GenericPortalWS=falkon_task_submission_history.txt

GenericPortalWS_perf_per_sec=falkon_summary.txt

GenericPortalWS_taskPerf=falkon_task_perf.txt

GenericPortalWS_task=falkon_task_status.txt

When running in normal mode (when we know things work fine), we just need:

cd ~/java/svn/falkon/config

cat Falkon-TCPCore.config

GenericPortalWS_perf_per_sec=falkon_summary.txt

GenericPortalWS_taskPerf=falkon_task_perf.txt

In the event that we can't figure out things from the Swift and Falkon service logs, we might have to enable worker side logs as well, which you do from the run.worker-c.sh (or run.worker-c-ram.sh) script(s).
