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ABSTRACT

The scientific computing landscape is becoming more and
more complex. Besides traditional supercomputers and clus-
ters, scientists can also apply grid and cloud infrastructures.
Moreover, the current integration of many-core technologies
such as GPUs with such infrastructures adds to the com-
plexity. To make matters worse, data distribution, hard-
ware availability, software heterogeneity, and increasing data
sizes, commonly force scientists to use multiple computing
platforms simultaneously : a true computing jungle.
In this paper we introduce Ibis/Constellation, a software

platform specifically designed for distributed, heterogeneous
and hierarchical computing environments. In Ibis/Constel-
lation we assume that applications consist of several distinct
(but somehow related) activities. These activities can be
implemented independently using existing, well understood
tools (e.g. MPI, CUDA, etc.). Ibis/Constellation is then
used to construct the overall application by coupling the
distinct activities. Using application defined labels in combi-
nation with context-aware work stealing, Ibis/Constellation
provides a simple and efficient mechanism for automatically
mapping the activities to the appropriate resources, taking
data locality and heterogeneity into account.
We show that an existing supernova detection application

can be ported to Ibis/Constellation with little effort. By
making small changes to the application defined labels, this
example application can run efficiently in three very different
HPC computing environments: a distributed set of clusters,
a large 48-core machine, and a GPU cluster.

Categories and Subject Descriptors

D.1.3 [Programming techniques]: Concurrent Program-
ming—Distributed Programming, Parallel Programming
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1. INTRODUCTION
High-performance computing (HPC) is used in more and

more disciplines. Although HPC has long been a trusted
workhorse for physicists and chemists, many other scientists
are only just discovering its potential. Recently, HPC has
been applied to a wide range of domains, such as multi-
media analysis [22], remote sensing [16], medical image pro-
cessing [11], and semantic web reasoning [26].

Unfortunately, the computing landscape is becoming more
complex. Next to traditional supercomputers and clusters,
scientists can also apply grid and cloud infrastructures. The
current integration of many-core technologies (e.g., GPUs [5])
with these infrastructures adds to the complexity.

While each of these systems in itself is reasonably straight-
forward to program (by using platform specific tools), creat-
ing applications that run on a combination of such systems is
notoriously difficult. Traditional tightly-coupled HPC tools,
such as MPI [10], are not particularly suited for distributed,
heterogeneous and hierarchical environments. To make mat-
ters worse, hardware availability, data distribution, software
heterogeneity, and the need for scalability, commonly force
scientists to use multiple computing platforms simultane-
ously : a true computing jungle [23].

In this paper we introduce Ibis/Constellation (from here
on referred to as Constellation), a lightweight software plat-
form that is specifically designed to support such Jungle
Computing. Constellation aims to efficiently run applica-
tions on complex combinations of distributed, heterogeneous
and hierarchical computing hardware. In addition, Constel-
lation makes the re-targeting of applications to completely
different computing environments very straightforward.

The programming paradigm offered by Constellation is
similar to that of scientific workflows [7] and many task com-
puting [19] (MTC). Constellation assumes that applications
consists of multiple distinct activities with certain depen-
dencies between them. These activities can be implemented
independently using the tools, and targeted at the (HPC)
architecture, that suit them best. Multiple implementations
of an activity may be created to support different hardware
architectures or problem instances. Existing legacy codes
can also be used.

This approach to application development vastly reduces
the programming complexity. Instead of having to create
a single application capable of running in a complex dis-
tributed and heterogeneous environment, it is sufficient to
create (or reuse) several independent activities targeted at
smaller and simpler homogeneous environments. Traditional
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HPC tools and libraries such as MPI [10] or CUDA [5] can
be used to create each of the separate activities.
Constellation offers a simple API to define activities and

the dependencies between them. In functionality it is sim-
ilar to a many task computing platform, which are often
regarded as HPC backends for workflow systems [15].
The focus of our current work is on creating a Constella-

tion run time system (RTS) that can efficiently execute ap-
plications on a wide range of distributed, heterogeneous and
hierarchical systems, and combinations of such systems. Un-
like other many task computing platforms, Constellation of-
fers a simple mechanism to express the heterogeneity present
in such applications and hardware.
Using application defined labels, Constellation allows an

application to tag different types of activities and hardware.
Using these labels, one can express that certain activities
need to be run in a specific context. For example, an ac-
tivity may need to be run in a specific location due to data
dependencies, or require a specific type of hardware (e.g.
a GPU). Using context-aware work stealing (a simple and
efficient matchmaking and load balancing mechanism), the
Constellation RTS ensures that each activity is executed in
a suitable computing environment.
Constellation is developed as part of the Ibis project [2].

The goal of Constellation is to provide a basic platform that
allows us to experiment with Jungle Computing, i.e, appli-
cations that run in complex distributed, heterogeneous and
hierarchical environments. In addition, we aim to use Con-
stellation as a basis for further development of a wide range
of high-level programming models (e.g., workflow, domain-
specific languages, divide-and-conquer).
In this paper we present the first results of our efforts.

We will first take a closer look at the Constellation API
and RTS. Next, we will show how an existing supernova
detection application can be ported to Constellation with
relatively little effort. By simply re-labeling the activities of
this application, it can be run efficiently in three very dif-
ferent hardware environments: a distributed set of clusters,
a single 48-core machine, and a GPU cluster.

2. RELATEDWORK
Constellation is closely related to workflow systems [7]

and many-task computing [19] (MTC). Although the dis-
tinction between these two concepts is vague, Ogasawara et
al [15] argues that workflow systems are often more focused
on giving support in workflow design, reuse, version con-
trol and provenance, while many-task computing systems
specialized in parallelizing workflow activities in large HPC
environments. As such, many task computing platforms can
be regarded as HPC backends for workflow systems. We re-
gard Constellation as a many task computing platform.
Research in the MTC field has mainly focused on very

large scale data intensive applications executing on very
large systems [20]. However, we believe that this model is
equally suitable for Jungle Computing. Jungle Computing
was first introduced in Seinstra et al. [23] where it is defined
as simultaneously using a combination of heterogeneous, hi-
erarchical, and distributed computing resources.
MUSE [17] is an example of a Jungle Computing system.

MUSE is a framework for large-scale simulations of dense
stellar systems. It couples existing codes for dynamics, stel-
lar evolution, and hydrodynamics. These codes require a
variety of hardware ranging from traditional clusters and

supercomputers to GPU and GRAPE [14] machines. Unlike
Constellation, MUSE is designed for a single domain. Its
successor, AMUSE1, is currently under active development.

The DIRAC [25] high-throughput system can run appli-
cations in a distributed and heterogeneous environment. It
assumes that each task in the application is run on a sin-
gle worker node. It uses a single centralized queue and
heavyweight matchmaking. Constellation also allows par-
allel tasks, supports multiple queues in different locations,
and uses very simple and efficient matchmaking mechanism.

Matchmaking [21], is one of the main problems in hetero-
geneous applications, i.e., getting the right activities to the
right resource. Although matchmaking is also performed by
traditional schedulers [3, 9, 24, 32], they are generally opti-
mized for long running tasks. As shown in Raicu et al. [18],
they therefore lack performance when scheduling the many
small tasks often present in MTC applications. Falkon [18]
has therefore deliberately dropped matchmaking in favor of
faster task scheduling. A multi-level glide-in approach is
used, as introduced in Condor [24]. With glide-in, the batch
queues are only used to start lightweight processes on the
resources. These processes are then used to directly start
application tasks on these resources, thereby completely cir-
cumventing the batch queues and significantly improving
both throughput and scalability.

Constellation uses a similar glide-in approach. Unlike
Falkon, however, Constellation still supports matchmaking,
as this is essential when running in heterogeneous environ-
ments. Unlike traditional schedulers, the matchmaking in
Constellation is intentionally kept simple to improve the ef-
ficiency. An additional advantage of the glide-in approach
is that it allows us to combine multiple unrelated resources
into a single compute pool for our applications. A similar
approach is used by Condor [24] and Walker et al. [30].

Pegasus [6] has been designed to map scientific workflows
onto grid systems. Pegasus does not uses a glide-in ap-
proach. Instead, tasks are submitted to the queuing systems
of the grid site that are used. Therefore, the applications
must be relatively course-grained to run efficiently. Sim-
ilarly, Nephele [31] maps scientific workflows onto clouds,
exploiting their dynamic nature to optimize for cost. Con-
stellation currently does not take cost into account.

StarPU [1] is a runtime system designed for heterogeneous
multi core architectures. Unlike Constellation, however, it
is designed to schedule heterogeneous tasks within a single
system (e.g., a multi core machine with a GPU).

In the Ibis project [2], we have investigated many of the
problems that arise when developing HPC applications for
distributed environments. Ibis offers a rich software stack
that provides various libraries for application deployment [8,
27], support for communication in restricted networks [13]
and many programming models [4,28,29]. Constellation uses
many of the software components developed in Ibis, but is
the first programming model in Ibis specifically designed to
run Jungle Computing applications.

3. CONSTELLATION
Constellation is a lightweight platform that is specifically

designed for distributed, heterogeneous and hierarchical com-
puting environments. In the following sections, we will give
an overview of the programming model offered by Constella-

1http://amusecode.org
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Figure 1: Example of a Constellation application.

tion. In addition, we briefly look at the programming API,
and describe the implementation of matchmaking and load
balancing mechanism based on context-aware work stealing.

3.1 Overview
In Constellation, a program consists of a set of loosely cou-

pled Activities that communicate using Events. The com-
plexity of a program may vary from a simple bag-of-tasks to
a complex workflow comprised of multiple interdependent
activities. Figure 1 (top) shows a simple example using four
activities. There, an initial activity (white) is started that
submits three additional activities (gray and black).
Each activity represents a distinct action that needs to be

performed by the application, e.g., process a piece of data
or run a simulation. As such, an activity usually represents
a combination of code, parameters, and data. Each activ-
ity may consist of a script, sequential C, CUDA, a parallel
application using OpenMP or MPI, etc.
Constellation uses Executors to represent hardware capa-

ble of running activities. An executor may represent a single
core of a machine, a single machine with multiple cores, a
specialized piece of hardware (e.g., a GPU), an entire cluster,
etc. The application is free to determine how the executors
should represent the hardware.
Constellation assumes a glide-in [18, 24, 30] approach is

used to start the executors on the available hardware, e.g. by
using IbisDeploy [2] or Zorilla [8]. In this paper we will not
describe how the necessary resources are obtained. Instead,
we assume that a heterogeneous set of resources capable of
running the necessary executors is available.
In Figure 1 (bottom), three executors are shown, one rep-

resenting a multi-core machine, one representing a machine
containing a GPU, and one representing a small cluster of
8 machines. Obviously, when such an heterogeneous set of
executors is used, not every activity will be able to run on
every executor. An activity consisting of GPU code will not
run on an MPI cluster, nor will an MPI application run on
a GPU. Therefore, it is essential for running the application
that the activities end up on a suitable executor. For this
purpose, Constellation uses the concept of context.
A context is an application defined label (or set of la-

bels) that can be attached to both activities and execu-
tors. A label can describe data dependencies ("dataset X"),
hardware capabilities ("GPU"), or problem and resource sizes
("large"). When an activity and executor use the same la-
bel, they match, i.e., the executor is assumed to offer the
right context for running the activity. Constellation plays

the role of matchmaker to ensure that each activity is for-
warded to a suitable executor. In Figure 1 this is illustrated
by the different shades used for the activities and executors.

Although the concept of context matching is similar to
the resource requirement matching used in traditional re-
source managers [3, 24], there is an important difference.
Resource managers often use a pre-defined list of attributes
describing both the hardware and software (e.g., libraries)
that are available on a machine. A feature can only be used
for matching if it was included in the list to begin with.
In addition, complex combinations of attributes often are
needed to describe a task’s requirements, thereby making
the matching procedure complicated and expensive.

In contrast, Constellation uses simple application defined
labels to describe what context an activity requires and an
executor has to offer. By using application specific knowl-
edge, the distinctions between the different activities and
executors are often easy to make. For example, for many
applications, simple labels such as "GPU" or "dataset X"

are sufficient to classify the executors. This makes context
matching simple and fast, allowing fine-grained applications
to be scheduled efficiently.

Events can be used for communication with activities.
When an activity is created, it is assigned a globally unique
ID. When sending an event to an activity, this ID can be
used as a destination address. Events are mainly used for
signaling between activities, for example, to indicate that
certain data is available or that certain processing steps have
finished. However, if necessary, they can also be used to
transfer data between activities.

The complete set of activities does not have to be known
in advance. During the application’s lifetime, new activities
may be submitted to the Constellation RTS, either by some
external application, or spawned dynamically by activities
that are already running. Newly created activities are acti-
vated on a suitable executor to perform processing. When
finished, the activity may decide to either terminate, or sus-
pend and wait for events. Whenever an activity receives an
event, it is reactivated to allow it to process the event and
perform additional processing, if necessary. When finished,
the activity must again decide to terminate or suspend.

It is up to the Constellation RTS to ensure that all ac-
tivities in an application are run on suitable executors. In
addition, the RTS must route any events that are generated
to the correct destination. In the following sections we will
take a closer look at the Constellation API and then describe
the implementation in more detail.

3.2 Constellation API
In this section, we will describe the Constellation API.

Like most of the software developed in the Ibis project, Con-
stellation itself is implemented in Java, which provides both
portability and acceptable performance. In our current pro-
totype, we assume that the Constellation application (i.e.,
the glue code connecting the activities) is also a Java ap-
plication. Although a Java class is used to represent an
activity, the code performing the actual processing may be
implemented using scripts, C, CUDA, MPI, etc. To imple-
ment this, the Java activity class can execute an external
application or perform a library call when it is activated.

Pseudo code for the Constellation API is shown in Fig-
ure 2. An application can create its own activities by extend-
ing the Activity class. This class expects the application-
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class Activity {
// Constructor , invoked by subclass
Activity(Context c);

// Usable by subclass
AID submit(Activity a);
void send(Event e);

// Implemented by subclass
boolean initialize ();
boolean handleEvent(Event e);
void terminate ();

}
---------------------------------------------------
class Event {

Event(AID target , Object message);
}
---------------------------------------------------
class Context {

Context(String label , long rank);
}
class ContextList extends Context {

ContextList(Context [] c, bool priority );
}
---------------------------------------------------
class Executor {

enum Preference { BIGGEST ,SMALLEST ,RANGE ,ANY };

// Constructor , invoked by subclass
Executor(Context context , Preference p, ...)

// Usable by subclass
boolean processActivity ();
boolean processActivities ();

// May be overwritten by subclass
void run();

}
---------------------------------------------------
class Constellation {

// Factory method to create instance
static Constellation create(Properties p,

Executor [] e);
// Shut down instance
void done ();

// Submit an activity
AID submit(Activity act);

}

Figure 2: Constellation API

defined subclasses to provide a Context to its constructor
upon creation. This context is used by Constellation to per-
form matchmaking.
When an application extends the Activity class, it must

implement three methods, initial, handleEvent and ter-

minate. These methods will be invoked to perform the initial
processing when the activity is first activated, when event
handling is required, and when the activity is terminated,
respectively. The boolean result returned by initial and
handleEvent is used to indicate if the activity wishes to sus-
pend (true) or terminate (false). Two additional methods
submit and send are provided that can be used to submit
new activities and send events. When submitting an activ-
ity, a globally unique activity identifier (AID) is returned.
This activity identifier can be used as a target address when
an Event is send to the new activity.
Figure 2 also shows pseudo code for the Context API used

in Constellation. A Context is defined by two parameters.
First, a label must be specified, which ’defines’ the context.
All activities with the same label belong to the same class of
contexts. Second, an optional rank parameter may be pro-

vided. This allows a ranking to be imposed on the context
objects in single class. This can be used, for example, to
specify differences in data size or priority.

Using ContextList it is possible to define a list of contexts.
This way an executor can have multiple options for select-
ing activities, and an activity can indicate that it can run
on several types of executors. This list can be treated as a
regular ’or’, or as a priority list where the order of the con-
texts signifies a preference. Using this mechanism, executors
can specify that they prefer a certain type of activities, but
accept others if necessary.

The Executor class, as shown in Figure 2, does not have
to be extended by the application. The default behavior
of the executor is to repeatedly find and execute activities
that match the context that is provided to its constructor.
The Preference parameter specifies which activity should
be selected if multiple are available. This selection is done
based on the rank of the contexts. It is possible to select
the biggest, the smallest, any in a range, or any available
activity. When selecting a range, two additional parameters
are used to specify the lower and upper bound of the range.

The behavior of the executor can be changed by overriding
the run method. When doing so, the processActivity or
processActivities methods can be used to instruct the
executor to (attempt to) execute one or more activities.

Finally, Figure 2 also shows the Constellation class that
can be used to interact with the Constellation RTS. This
class contains a factory method create that can be used to
create a new instance of Constellation on the current ma-
chine. One or more executors can be started by providing
them as parameters. When finished, the done() method can
be used to terminate the Constellation instance.

The submit method can be used to submit activities to
Constellation. These activities may be executed by any suit-
able executors in the pool of Constellation instances. The
Constellation RTS will then use a context aware work steal-
ing algorithm to perform load balancing over the available
executors. This will be explained in the next section.

3.3 Constellation Run Time System
It is the task of the Constellation RTS to ensure that all

activities in an application are run on suitable executors. In
addition, load balancing should be performed to utilize the
available executors as fully as possible. In Constellation, a
single context aware work stealing algorithm is responsible
for both. Whenever an executor becomes idle, it selects an-
other executor and sends it a request for work that includes
its context. The executor receiving the request can then
perform context matching to find a suitable activity in its
queues. If one is found, it is returned. Otherwise the idle
executor is notified that no work is available. This process
is repeated until work is found.

There are several possibilities when selecting an executor
as a steal target. The most straightforward option is to des-
ignate a single executor as master and store all unprocessed
activities there. For many applications this master-worker
approach to load balancing is sufficient.

However, Constellation does not assume that the activities
are generated in a single location. Instead, any participating
Constellation instance may be used to submit activities to
the system. In addition, running activities may also submit
new activities. As a result, new activities may be generated
in a distributed fashion.
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1. prepare temporary directory and copy input files
2. detect candidate objects in image A
3. detect candidate objects in image B
4. match results of 2 and 3 to produce candidate list
5. equalize image A
6. equalize image B
7. divide results of 5 and 6 into tiles

for each tile
if there are enough candidates object in tile
compare tile A’ and B’

8. extract the coordinates of supernova candidates
9. cleanup the temporary directory

Figure 3: Sequence of activities used in supernova

detection application.

For such scenarios, Constellation also supports random
work stealing, where idle executors send their steal requests
to randomly selected targets. As shown in [28], random
work stealing is well-suited to perform load balancing in a
distributed environment, provided that a reasonably up-to-
date list of executors is available.
Currently, these are the only two work stealing algorithms

supported by the Constellation RTS. However, the RTS can
easily be extended to support hierarchical work stealing [12]
or algorithms based on peer-to-peer techniques [8], for exam-
ple. When starting an application, the desired work stealing
algorithm can be selected by providing a parameter to the
Constellation RTS.

4. EXAMPLE APPLICATION
The example application that we will use is our winning

contribution to the International Data Analysis Challenge
(DACH) for Finding Supernovae, which was held in conjunc-
tion with the IEEE Cluster/Grid 2008 conference2. This is
one of the applications that inspired us to develop Constel-
lation. It is representative of many scientific data-analysis
applications, both in scale, form and requirements.
For the challenge, a large number of celestial images were

provided, based on data collected by the Subaru Telescope
(Hawaii), operated by the National Astronomical Observa-
tory of Japan3. A sequential supernova detection applica-
tion was also provided. The application takes two celes-
tial images of the same segment of the sky, taken about
a month apart. It aligns the images, compares them, and
uses the result to detect objects with varying light inten-
sity (so called supernova candidates). Since the object de-
tection is based on heuristics, the processing time required
varies significantly between image pairs. The resolution of
the images also varies, further increasing the variation in
processing time.
The goal of the challenge was to process all image pairs as

quickly as possible, using 11 different cluster sites in Japan.
Each cluster consisted of a homogeneous set of compute
nodes with either 2, 4 or 8 cores. As part of the challenge,
the input images were distributed over the sites. Although
individual image pairs were always stored together, no single
site contained the entire input data set. Instead, the data
set was both partitioned and partly replicated over the dif-
ferent locations. Therefore, coordination between the sites

2http://www.cluster2008.org/challenge
3http://subarutelescope.org
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Figure 4: Task graph of original and parallel version

of data challenge code.

was necessary in order to ensure that each image pair was
only processed once. The amount of data stored in each site
was not adapted to the processing capacity of the site. As
a result, some sites contained more data than they could
handle locally, while others ran short. For optimal load bal-
ancing, data had to be shipped between sites. This had be
reduced to a minimum.

The application did not consist of a single executable.
Instead, it was a sequence of several smaller activities, as
shown in Figure 3. Each of these activities used a separate
executable and/or script to perform some processing on the
output files of its predecessors. Of these activities, (7) was
by far the most compute intensive. While most activities
required 1 to 8 seconds of processing, (7) can take anywhere
between 5 and 20 minutes, depending on the resolution of
the input images, the hardware that was used, and the num-
ber of candidate objects identified by the heuristics.

In the original application, the activities were executed
in sequence (as shown in shown in Figures 3 and 4). As
a result, the processing time was dominated by the time a
single core required to process the largest inputs.

Our contribution to the data analysis challenge converted
the original sequential application into a parallel one, as is
shown in Figure 4. By running activities 2 and 3, and 5 and 6
in parallel and by exploiting the fact that activity 7 can be
split up into many smaller tasks, we could take advantage of
the multi-core properties of the machines in the testbed. Al-
though each image pair is still processed by a single machine,
several tasks in the graph can be processed in parallel.

For the challenge, we created an ad-hoc work scheduling
infrastructure to coordinate the computation between the
different sites. This infrastructure was one of the inspira-
tions for Constellation. Next, we will describe two ways
in which Constellation can be used to implement this dis-
tributed supernova detection application.

4.1 Monolithic Version
First, we will use Constellation to create a straightforward

implementation of the supernova detection application. This
implementation replicates the behavior of our original con-
tribution to the DACH. Pseudo code is shown in Figure 5.

The implementation presented here uses the supernovae
detection as a single monolithic activity. Each participat-
ing machine is represented by a single executor. We assume
that the necessary scripts and applications are pre-installed
on all participating machines. It is up to the supernova
detection code to detect how many cores are available on
the machine it executes on, and adjust its parallelism ac-
cordingly. Therefore, Constellation is only used to assign
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class DetectNova extends Activity {
String file1 , file2;
AID parent;

DetectNova(Context c, AID parent ,
String file1 , String file2) { ... }

boolean initial() {
String output = doDetection(file1 , file2);
send(new Event(parent , output ));
return false; // please terminate

}
}

class Main extends Activity {
String [] clusters;

Main(Context c, String [] clusters) { ... }

boolean initial() {
// Get list of files and their location
InputInfo info = getPairs(clusters );

for (Input i in info) {
Context c = new Context(i.location , 0);
submit(new DetectNova(c, myID ,

i.file1 , i.file2 ));
}

return true; // please suspend
}
boolean handleEvent(Event e) {

... // handle result here
boolean done = ... // determine if we are done
return done;

}
}

Figure 5: Pseudo code for activities used in the

monolithic supernova detection activity.

activities to machines. It has no control over how efficiently
each machines is then used.
Figure 5 shows the two activity classes needed to imple-

ment this application. Additional code needed to create the
executors and set up the pool of Constellation instances is
not shown. The Main activity is submitted once. It first
gathers a list of input image pairs and their locations, using
the getPairs method (implementation not shown). Next,
the main application creates a single NovaDetection activity
for each set of input files. Since we assume that the necessary
script and applications are pre-installed on all sites, only the
paths (or URIs) of the input files need to be provided. The
globally unique ID of Main is provided to NovaDetection to
allow the result to be returned.
The final parameter provided to DetectNova is the context

needed to match it with suitable executors. In this exam-
ple, we use the location where the input files can be found
as a label. A similar label is used by the executors which
describes the location in which they are running. By match-
ing these labels we can ensure that the activities will only be
run by executors that have the data available locally. Note
that this is just one example of how we can use contexts in
this application. In Section 4.3, several alternatives will be
shown.

4.2 Many-Task Version
The previous implementation treats the supernova detec-

tion as a single monolithic application that is applied to a
set of independent input files. However, as Figures 3 and 4

1
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4 8 971
73
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5 6 72 72 72 72

Figure 6: Task graph of the many-task version.

show, the supernova detection application internally consists
of a large number of tasks. Therefore, we can decompose the
application into separate activities for each processing step,
thereby transforming it into a many-task application.

To do so, most of the 9 steps shown in Figure 3 need to be
converted into separate activities. Steps 2 and 3 represent
the same activity with a different input files, as do steps 5
and 6. Step 7 can be split further into three separate types
of activities, one that splits the input images into tiles (7.1),
one that processes a pair of tiles (7.2), and one that recom-
bines the results of the tiled processing (7.3). The exact
number of (7.2) activities required depends on the resolu-
tion of the image pair that is being processed. The resulting
chain of activities is shown in Figure 6.

Figure 7 shows pseudo code for the first two activities.
The subsequent activities can be implemented in a similar
fashion. As in the monolithic implementation, a Main activ-
ity submits a DetectNova activity for each image pair. When
activated, this DetectNova now submits two new Detect ac-
tivities which (in parallel) perform step 2 and 3 of the analy-
sis. DetectNova then suspends while waiting for the results
to be returned using events. Once the results are in, the
next activity Match (step 4, not shown) is submitted, after
which DetectNova terminates. Similarly, the Match activ-
ity will then proceed to submit step 5 and 6, wait for the
results, submit step 7 and terminate. This continues in a
similar fashion until the last activity (step 9) is finished and
sends the result back to Main.

If all activities in the many-task version of the supernova
detection are assumed to be sequential, we can use a sepa-
rate executor for each core. This is only one of the possibil-
ities, however. If certain activities require multiple cores, or
specialized hardware (such as GPUs), the configuration and
context of executors can be changed to reflect this. In the
next section, we will take a closer look at how contexts can
be used to change the run time behavior of the monolithic
and many-task applications.

4.3 Manipulating Application Behavior
The behavior of the supernova detection applications de-

scribed above can be manipulating by changing the set of
labels used for the activities and executors. This simple but
powerful mechanism allows us to adapt the behavior of an
application to the available hardware with very little effort.
Table 1 shows several options.

The first entry in Table 1 shows a example where no spe-
cial context is used to run the activities. If all activities
and executors in our supernova detection application use
the same label, in this case "anywhere", the activities will
be executed in random order and distributed randomly over
the executors. The label "anywhere" is an arbitrary choice.
Any label can be used, as long as the activities and executors
agree. For our application, this approach does require that
all input file data is available on all participating machines.
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class DetectNova extends Activity {
String file1 , file2;
AID main;

DetectNova(Context c, AID main ,
String file1 , String file2) { }

boolean initial() {
submit(new Detect(file1 , myID);
submit(new Detect(file2 , myID);
return true; // please suspend

}
boolean handleEvent(Event e) {

if (both results are in) {
// Submit next processing step
submit(new Match(file1 , file2 , main);
return false; // please terminate

} else {
... // store result here
return true; // please suspend

}
}

}
class Detect extends Activity {

String file;
AID parent;

Detect(String file , AID parent) { ... }

boolean initial() {
... // Retrieve input file if necessary
String result = execDetect(file);
send(new Event(parent , result ));
return false; // please terminate

}
}

Figure 7: Pseudo code for the first two activities of

the many-task supernova detection application.

Label Behavior
”anywhere” Random distribution
location Fixed location
location + size Fixed location + ordered
location list Choice of locations
location list + ”anywhere” Choice of locations + fallback
”CPU” or ”GPU” specialized hardware

Table 1: Several example contexts that can be used

with the supernova detection application.

Alternatively, a location can be used as a label. For the
activities, the label represents the location where the input
files can be found. For the executors the label contains the
location where they are running. As before, the exact con-
tent of the labels does not matter. We could, for example,
use network domain names (e.g. "cs.vu.nl") or institu-
tions names (e.g. "VU"). As long as the labels are used
consistently throughout the application, their exact content
is irrelevant. By using this location as a label for both ac-
tivities and executors, we can ensure that all activities are
run in the right context, i.e., the location where the data is
available. When the size of the image pair is added to the
location, the processing of the activities can be ordered, for
example, to process them largest first. As we will show in
the next section, ordering the activities by size can improve
the load balance in an application.
In DACH, the data was not only partitioned, but also

partly replicated. Therefore, for some activities there are
multiple locations where the data is available. To express
this, a context lists can be used (as explained in Section 3.2)

to create a location list of all locations where an activity
may be processed.

We can combine two of the previous approaches to create
a priority list context where preferred locations for an activ-
ity are listed first, followed by an "anywhere". Similarly, the
executors use a priority list context containing their location
and "anywhere". This way, the executors will first process
all activities for which data is available locally. Once this
set has been exhausted, other, non-local activities will be
selected. This prevents load balancing problems when the
data is distributed unevenly across the sites, while also keep-
ing the number of remote data transfers to a minimum.

The previous examples focus on using contexts to express
locality of the data. However, contexts can also be used
to describe other aspects, such as specific hardware require-
ments. For example, in Section 5.3 we will extend our ap-
plication with an Activity that requires GPU support. To
indicate what hardware is required by each activity, we at-
tach the label "GPU" to some activities, and "CPU" to oth-
ers. Similarly, the executors are labeled "GPU" or "CPU" (or
both) when they are started. To do so, they need to know
if a GPU is available locally. This information can be pro-
vided by an external source (e.g., the application user or the
batch scheduler) or it can be detected by adding code to the
application. Once both activities and executors are labeled,
the Constellation RTS has sufficient information to ensure
that all activities will be run on suitable hardware.

These examples illustrate that run time behavior of the
application can be changed radically by simply changing the
labels attached to activities and executors. It is important
to note that for all the examples described above, very lit-
tle changes to the application’s source code are necessary.
For most strategies, the only difference is in the code that
determines which labels to use. Even extending the appli-
cation with GPU support only requires the definition of an
additional new activity (provided that the actual GPU code
is available). In the next section, we show that this mecha-
nism can be used to almost effortlessly tune our supernova
detection application to run efficiently on three very differ-
ent hardware configurations.

5. EVALUATION
In this section, we will evaluate the effect of changing con-

text and executor configurations on the performance of the
supernova detection application. We explore three scenarios:
a distributed set of heterogeneous clusters, a large multi-core
machine, and a GPU cluster.

5.1 Scenario 1: Distributed Processing
This first scenario closely resembles the original DACH

challenge: the supernova detection application needs to pro-
cess a data set of 1052 image pairs (73 GBytes in total) using
a distributed set of clusters. This data set is both partitioned
and replicated over the participating clusters.

As a testbed, we will use four clusters that are part of the
Distributed ASCI Supercomputer, DAS-3 and DAS-34, two
wide-area distributed systems for Computer Science research
in the Netherlands. Both systems consist of multiple clus-
ters located at different universities and research institutes
in the Netherlands. The wide-area interconnect between
the clusters is based on lightpaths, provided by SURFnet-6

4http://www.cs.vu.nl/das3, http://www.cs.vu.nl/das4
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cluster cores cores available image pairs
per node used

LU 2x 2.6 Ghz 40 105 (105 shared w. UvA)
UvA 4x 2.4 Ghz 80 210 (105 shared w. LU)
VU3 4x 2.4 Ghz 80 525 (105 shared w. VU4)
VU4 8x 2.4 Ghz 160 422 (105 shared w. VU3)

Table 2: Testbed used in scenario 1.

configuration processing time (s)
anywhere 1942
anywhere sorted 1721
location sorted 1774
location sorted + anywhere 1416

Table 3: Total processing time for each configuration

in scenario 1.

(the Dutch NREN). The DAS-3 consists of dual-CPU AMD
Opteron 280 (dual core) and AMD Opteron 252 (single core)
compute nodes with 4 GBytes memory each. DAS-4 con-
tains dual-CPU, quad core Intel Xeon E5620 compute nodes
with 24 GBytes memory each.
Details for the configuration used in this scenario are shown

in Table 2. For DAS-3 we use the abbreviations LU, UvA
and VU3 for the clusters at Leiden University, the Univer-
sity of Amsterdam and VU University, respectively. We use
VU4 for the DAS-4 cluster at VU University. We use 20
nodes on each cluster, resulting in a total of 80 nodes con-
taining 360 cores. Table 2 also shows how the 1052 image
pairs are distributed over the clusters. The total data set is
partly partitioned and partly replicated. As in the original
data challenge, the data is distributed in an arbitrary way.
The LU and UvA clusters contain 210 unique files, of which
they share 105, and 105 are only stored on UvA. The VU3
and VU4 clusters contain 842 unique files, of which 105 are
shared between the two clusters.
All data is stored on the cluster head nodes, and made

available to the compute nodes (both local and remote) us-
ing an http server. Because the clusters are geographically
quite close and connected via a high-speed optical intercon-
nect, file transfer between sites is generally not a bottleneck.
Therefore, to simulate the large geographical distance and
limited bandwidth we encountered in the original DACH
challenge, the http file transfers between clusters are artifi-
cially limited to 1 MByte/sec (per transfer). File transfers
within a cluster have no bandwidth limit.
We ran the monolithic version of the application described

in Section 4.1 on this testbed using four different configu-
rations, each using a different context for the activities and
executors. In all configurations, a node is represented by a
single executor, regardless of the number of cores a node has
available. It is up to the external supernova detection ap-
plication to use these cores efficiently. The total processing
time required for the entire data set is shown in Table 3. In
addition, Figure 8 provides a detailed view of the utilization
of the cores during single run of each experiment. While the
exact utilization may vary between experiments due to the
variation in work distribution, the overall trend is the same.
We will explain each configuration below.
The first configuration uses "anywhere" as a label (see

Section 4.3). As a result, the data is processed in arbitrary
order. The location of the data is not taken into account,
resulting in many expensive inter-cluster data transfers. It
takes 1942 seconds to process the entire data set.

 0

 20

 40

 60

 80

 100

 

(c) location aware and sorted by size (local jobs only)

executor
core

 0

 20

 40

 60

 80

 100

u
ti
liz

a
ti
o
n
 (

%
)

(b) sorted by size

executor
core

 0

 20

 40

 60

 80

 100

 

(a) random order

executor
core

 0

 20

 40

 60

 80

 100

500 1000 1500 2000 
time (s)

(d) location aware and sorted by size (fallback to remote jobs)

executor
core

Figure 8: Executor and core utilization of 4 config-

urations of the monolithic supernova detection ap-

plication running on 4 heterogeneous clusters.

Figure 8 (a) shows the utilization (in %) of the system
while the application is being run. Two lines are shown, the
executor utilization and the core (CPU) utilization. The ex-
ecutor utilization indicates the percentage of executors that
is busy at any given time. As the figure shows, executor
utilization is 100% for most of the run. Therefore, Constel-
lation is successful in balancing the load between executors.

Core utilization is much lower, however, generally around
40%. This difference can easily be explained. Whenever an
executor is running an activity, it registers as being fully
utilized. This does not mean, however, that the activity
is capable of fully utilizing all cores that are available to
the executor. The first stage of the supernova detection
performs (potentially expensive) file transfers, which require
little CPU time. In addition, the parallel task graph of the
supernova detection contains several sequential stages and
stages with limited parallelism (as explained in Section 4).
This further limits the core utilization.

As Figure 8 (a) shows, an interesting effect occurs at the
end of the execution. When most executors have finished, a
small set of executors remains that still requires a significant
amount of processing time. This is causing a ”tail” in the
utilization graph. Such stragglers are caused by the random
execution order of the activities. Because of this random
order, there is a chance that a few relatively large activities
are executed last, thereby extending the execution time sig-
nificantly. Fortunately, this problem can easily be solved by
sorting the activities according to there size.

The second configuration still uses using "anywhere" as a
label, but adds a rank to each context equal to the size of the
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input image pair. In addition, the executors are configured
to prefer activities with the largest rank they can find. As
a result, the largest activities will be processed first. Their
location is not taken into account, so file transfer between
clusters are still required.
By processing the largest image pairs first, the ”tail” effect

appearing in the first configuration is removed, as is shown
in Figure 8 (b). This reduces the overall processing time by
11%, from 1942 to 1721 seconds. The core utilization is still
low, however. As explained above, this is partly caused by
expensive file transfers.
To reduce this file transfer overhead, the third configura-

tion uses a context list for each activity containing all cluster
names where the input images can be found. As before, a
rank is added based on the size of the image pair. The execu-
tors are labeled with the name of their local cluster and have
a preference for larger activities. As a result, executors will
only process activities for which the image pair can be found
locally, thus preventing remote file transfers altogether.
As Figure 8 (c) shows, this approach initially increases

core utilization to over 80%. This slowly drops as the ac-
tivities become smaller. After approximately 500 seconds,
the UvA and LU clusters run out of work prematurely and
become idle, thereby causing a sharp drop in executor uti-
lization. After approximately 800 seconds, VU4 also runs
out of work. Despite this severe load imbalance, the overall
processing time of 1774 seconds is close to the previous con-
figuration. This indicates that the performance degradation
caused by the load imbalance is canceled out by a perfor-
mance gain caused by a reduction in file transfers times.
In the fourth configuration we again label the activities

with list clusters name where their input can be found.
In addition, we also add "anywhere" as a fallback. Sim-
ilarly, the executor will use their local cluster name and
"anywhere" as a label. As a result, executors will first pro-
cess all activities for which image pairs are available locally.
When this set is exhausted, they will fall back to processing
remote image pairs in random order. As Figure 8 (d) shows,
this approach ensures that all clusters remain active until
the end of the application, thereby reducing the processing
time to 1416 seconds.
As the experiments in this scenario show, Constellation al-

lows the behavior of applications to be altered significantly
by simply changing the context labels used for the activities
and executors. Using this mechanism, applications can al-
most trivially be made size-aware, location-aware, or both.
The performance of an application can be improved signif-
icantly by simply labeling the activities and executors in a
way that is suitable for the environment in which the appli-
cation is run. In this scenario, the performance difference
between the first and last configuration is 27%. Note that
only the labels were changed. No other changes where made
to the application.
However, the experiments in this scenario also show that

the external supernova detection application itself is not
capable of fully utilizing all cores, even if expensive inter-
cluster file transfers are reduced to a minimum. In the next
scenario, we take a closer look at this problem.

5.2 Scenario 2: Multi-core processing
The previous scenario has shown that the utilization of the

cores in a machine may be suboptimal, even if Constellation
fully utilizes all executors. The core utilization was reduced
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Figure 9: Processing time required for a data set of

the 30 largest image pairs using various configura-

tions of the supernova detection application running

on an 48-core machine.

by the lack of parallelism in the existing supernova detection
application. This is unfortunate, as there is a current trend
towards machines with more instead of faster cores.

In this scenario we will take a closer look at how we can
solve this problem, either by reconfiguring the number of
executors used by Constellation, or by giving Constellation
more control over the individual activities that constitute
the supernova detection application.

As a testbed, we will use a Dell PowerEdge R815 con-
taining four 2.1 Ghz AMD Opteron 6172 (Magny Cours)
processors (12 cores each) and 128 GBytes of memory. As
this machine has a total of 48 cores, it is unlikely that the
existing application will scale sufficiently.

Instead of processing the entire data set, we have cre-
ated a subset of the 30 largest images pairs. Together, they
represent about 10% of the entire data set. Their sequen-
tial processing time ranges from 65 seconds to 1040 seconds,
with an average of 820 seconds. All data is available locally.

First, we ran the monolithic version of the supernova de-
tection application described in 4.1 on the 48-core machine
with various executor configurations. These configurations
range from 1 executor offering 48 cores (referred to as 1/48),
to 48 executors offering 1 core each (48/1), with other config-
urations such as 2/24 and 6/8 in between. When an execu-
tor starts a supernova detection, it informs the application
of the maximum number of cores it is allowed to use.

The results are shown in Figure 9. Since locality is not an
issue, the application simply uses an "anywhere" label for
activities, with a rank equal to the size of the image pair.
The executors will execute the largest activities first.

As Figure 9 shows, using a single executor does not per-
form well. As expected, the limited scalability of the detec-
tion application reduces the core utilization significantly, as
Figure 10(a) shows. In this figure, a repeating pattern can
be seen. Whenever an image pair is being analyzed, much
of the time is spent in pre and post processing, which offers
only limited parallelism. The machine is only fully utilized
when the individual image tiles are being processed.

When using the opposite approach, 48 executors of 1 core
each, the performance is improved. However, as there are
only 30 activities available, part of the cores remain idle.
This can clearly be seen in Figure 10(b), where the utiliza-
tion is limited to 65%. In addition, since each supernova
detection now runs sequentially, the total processing time
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Figure 10: Core utilization of 4 configurations of

the supernova detection application running on an

48-core machine.

depends on the longest running activity, causing a small
”tail” effect we also saw in the previous scenario.
By selecting an intermediate number of executors, we can

configure how many supernova detections we wish to run in
parallel, and how many cores each of these detections may
use. Figure 9 shows that an optimum is reached when using
6 executors. When using more executors, the increase in pro-
cessing time per activity caused by the reduced number of
cores per executor outweighs the benefit of processing mul-
tiple images pairs simultaneously. Figure 10(c) shows the
core utilization when using 6 executors. Although the uti-
lization has increased significantly, there is still some room
for improvement.
As explained in Section 4.2, one approach to further im-

prove the performance is to decompose the application into
separate activities for each processing step. This gives Con-
stellation more control over the individual activities which
improves the load balancing during the computation.
Figure 9 shows that the many-task version of the appli-

cation outperforms the best performing monolithic config-
uration (6/8) by 20%. When looking at Figure 10(d) it
immediately becomes clear why. Unlike the previous ver-
sions, the many-task version is capable of maintaining 100%
core utilization for most of the execution time. Unlike the
monolithic version, the individual activities that comprise a
single supernova detection are not forced to run on a fixed
set of cores. Instead, the activities of multiple supernova
detections are mixed in order to obtain an optimal load bal-
ance between the cores.
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Figure 11: Core and GPU utilization of 2 configura-

tions of the supernova detection application running

on a GPU cluster.

Finally, when using the 48-core machine to process the entire
data set of 1052 image pairs, the many-task version outper-
forms the 6/8 monolithic configuration by 42% (5243 vs.
9043 seconds). This performance difference is larger than
in the previous experiment due to the many smaller image
pairs in the data set. In the monolithic version, a smaller im-
age pair generally leads to a lower core utilization and thus
a longer processing time. Due to superior load-balancing
properties of the many-task version, the core utilization re-
mains high during the entire application run.

5.3 Scenario 3: Heterogeneous processing
In the previous section, the application assumed that each

activity could be run on any of the available executors.
Therefore, a simple "anywhere" context label was used. There
is a trend, however, towards incorporating many-core tech-
nologies, such as GPUs, into the computing infrastructure.
Therefore, many recent applications consist of a combination
of generic CPU code and code that is specifically targeted
at a many-core accelerator. Constellation is well suited to
express such applications, as we will show in this scenario.

As a testbed, we use 18 compute nodes of the DAS-4 clus-
ter at VU University (see 5.1). Each node contains two quad
core Intel Xeon E5620 CPUs (8 cores in total). In addition,
16 of the compute nodes contain a single NVidia GTX480
GPU, while two contain an Nvidia C2050 Tesla GPU. All
image pairs are initially stored on the head node of the clus-
ter. Before a compute node starts processing an image pair,
the required data is first copied to its local scratch disk.

Figure 11(a) shows the CPU utilization of the testbed
when running the many-task version of the application using
the entire dataset of 1052 image pairs. For each machine, a
separate executor is used for each its 8 cores. The results
are similar to those shown in Figure 10(d), which used a
smaller 30 image pair dataset. After a small start-up delay
caused by the initial copying of the input data, the CPU
utilization remains close to a 100% for most of the run. The
application completes in 1740 seconds.

Compared to Figure 10(d), Figure 11(a) does show more
load imbalance at the end of the run. Currently, the ap-
plication does not allow individual activities belonging to a
single image pair to leave a machine, as that would require
transferring a large number of temporary files stored on the
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machine’s local scratch disk. Therefore, for a single image
pair, load balancing is only performed between the cores of a
single machine. In the previous section this did not influence
our performance, as we used a single 48-core machine. When
running on 18 machines, however, this limitation does cause
a slight load imbalance at the end of the run. To reduce
this problem, we are planning to extend the application to
support the transfer of temporary files.
To use the GPUs available in our testbed, we have ported

one of the application’s activities to CUDA. As explained in
Sections 4, activity (7.2) (see Figure 6) is by far the most
compute intensive. Only a small part of the code of this
activity needs to be ported, as most code performs file I/O,
initialization and pre-processing of the data. We have there-
fore split this activity into two separate activities: one that
will run on the CPU and contains most file I/O, initializa-
tion and pre-processing, and one that runs on the GPU and
contains the compute intensive image processing. Only the
second type of activity will be labeled "GPU". All other ac-
tivities will use the "CPU" label.
As before, each machine uses 8 executors, 7 labeled "CPU",

and one labeled "GPU". Each machine will therefore have
a single executor responsible for running the GPU activi-
ties. Note that a single CPU core is allocated for managing
the GPU. This is the best fit for our scenario, as the ma-
chines only contain a single GPU. To run the application
on multi-GPU compute nodes it would be sufficient to mark
an additional executor as "GPU". No further changes to the
application are required.
Figure 11(b) shows the CPU and GPU utilization of the

testbed when running the heterogeneous application. As be-
fore, after a short delay, the utilization increases to about
100% for both CPUs and GPUs. After some 300 seconds
however, the CPU utilization starts dropping. At that time,
the pre-processing for most image pairs is done and the
CPUs start running out of work. The GPU utilization re-
mains high however. Some 500 seconds into the experiment,
the GPUs also start running out of work. This is caused
by the same load imbalance we saw in the CPU-only ver-
sion. Despite this load imbalance, the application completes
after 765 seconds, less then half of the time needed by the
CPU-only version.
This experiment shows that when alternative implementa-

tions of certain activities are available, very little program-
ming effort is required to use them in an application. After
tagging the activities and executors with the appropriate
labels, Constellation automatically map all activities to the
appropriate hardware. Further extending the application for
execution on an even more heterogeneous Jungle Computing
system would be just as easy.

6. CONCLUSIONS AND FUTUREWORK
In this paper we have introduced Ibis/Constellation, a

light-weight many-task computing platform specifically tar-
geted at running applications on a distributed and hetero-
geneous set of resources. The key advantage of the MTC
paradigm is that applications consists of distinct activities
which can be implemented separately using the tools, and
targeted at the HPC architecture, that suit them best.
Constellation allows for a simple definition of activities

and the relationships between them. In addition Constel-
lation uses contexts, application-defined labels that can be
attached to both activities and executors (i.e., hardware).

These contexts provide the application programmer with a
simple mechanism to express which activities can be exe-
cuted where. A context can be used the describe data local-
ity, hardware capabilities, problem and resource sizes, etc.
Constellation provides a simple and efficient matchmaking
and load balancing mechanism, based on context aware work
stealing, that ensures that each activity is forwarded to a
suitable resource.

We have shown that an existing supernova detection ap-
plication can be ported to Constellation with relatively little
effort. By simply changing the context definition of the ac-
tivities and the executor configuration, this application can
run efficiently in three very different HPC computing en-
vironments: a distributed set of clusters, a large 48 core
machine, and a GPU cluster. By only changing the context
used, a 360 core distributed application can almost trivially
be made size-aware, location-aware, or both, improving the
performance significantly in the process. By changing the
executor configuration, the same application can be opti-
mized to run efficiently on a large 48-core machine.

The performance was improved even further by decompos-
ing the application into separate activities, and giving Con-
stellation full control over the load balancing. By replacing
a single activity in the application with a GPU version, and
using the appropriate contexts and executors, we created
a heterogeneous application that ran efficiently on 18 node
GPU cluster (144 cores, 18 GPUs), more than doubling the
performance compared to a CPU-only version.

The work we have presented in this paper are just the
first steps toward Jungle Computing. As future work, we
are planning to evaluate Constellation with more complex
applications that require combinations of different types of
hardware (GPUs, FPGAs, Cells, etc.) to be used simulta-
neously. In addition, we would like to experiment with ap-
plications that provide several alternative implementations
of activities thereby giving Constellation a choice of what
hardware to use.

We would also like extend Constellation to allow for dy-
namically changing sets of executors. By allowing the set
of executors to grow, shrink or change their context on de-
mand, we can tune the set of resources used to the (possibly
dynamic) needs of the application. This would also required
Constellation to do its own resource management instead
of expecting the user to reserve the necessary resources in
advance. In the Ibis project, we have ample experience in
this area [2,8]. We are also planning to further evaluate the
efficiency of Constellation’s work stealing algorithms when
running very fine grained applications. Finally, we aim to
use Constellation as a basis for further development of high
level domain specific programming models.
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