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Abstract—Divide-and-conquer is a well-known and impor-
tant programming model that supports efficient execution of
parallel applications on multi-cores, clusters, and grids. In a
divide-and-conquer system such as Satin or Cilk, recursive
calls are automatically transformed into jobs that execute
asynchronously. Since the calls are non-blocking, consecutive
calls are the source of parallelism. However, the programmer
has to manually enforce synchronization with sync statements
that indicate where the system has to wait for the result of the
asynchronous jobs.

In this paper, we investigate the possibility to automatically
insert sync statements to relieve the programmer of the
burden of thinking about synchronization. We investigate
whether correctness can be guaranteed and to what extent the
amount of parallelism is reduced. We discuss the code analysis
algorithms that are needed in detail.

To evaluate our approach, we have extended the Satin divide-
and-conquer system, which targets efficient execution on grids,
with a sync generator. The fact that Satin uses Java as a base
language helps the sync generator to reason about control
flow and aliasing of references to objects. Our experiments
show that, with our analysis, we can automatically generate
synchronization points in virtually all real-life cases: in 31 out
of 35 real-world applications the sync statements are placed
optimally. The automatic placement is correct in all cases, and
in one case the sync generator corrected synchronization errors
in an application (FFT).

Keywords-synchronization; divide-and-conquer; Java; Satin;
static analysis;

I. INTRODUCTION

Writing parallel programs is difficult in general. Writing
parallel programs that execute efficiently on multiple clusters
or clouds is even more demanding. Satin [1] makes cross-
grid computing accessible to programmers who are not
parallel programming experts. It allows programmers to
write parallel programs without much effort by offering a
sequential divide-and-conquer programming model.

In Satin, programmers annotate recursive methods to
indicate that calls to these methods are spawnable, which
means that they can be executed asynchronously. Con-
secutive spawnable method calls create parallelism in the
program. These method calls are transformed into jobs that
are executed efficiently on grids or clouds using the Ibis
platform [2].

However, since spawnable method calls are non-blocking,
programmers also have to annotate where in the program
the system has to block until the results of the jobs are
available. Programmers indicate this by carefully inserting
sync() statements. Placing sync() statements too soon
results in less parallelism than possible and placing them
too late gives incorrect results. Our goal is to make grid
computing even more accessible to programmers who are
not parallel programming experts by making sync insertion
automatic.

This would mean that programmers no longer have to
think about synchronization, but that a sync generator would
solve this. The following questions arise: whether syncs
can always be automatically inserted in such a way that
the resulting program is correct; how much parallelism can
be obtained; whether this can be done without complicated
analysis.

We found that the implementation of the sync generator
program is able to insert sync statements in such a way
that the resulting program is always correct, but alias and
control flow analysis are needed to do this. More extensive
analysis will not lead to optimal placement in all cases:
programmers sometimes deliberately use unsynchronized
variables for performance reasons. An automatic generator
cannot determine this.

In practice, our sync generator achieves excellent results.
We tested the sync generator on 35 pre-existing real-world
Satin applications. In 31 of them, the sync generator found
the optimal places for the sync statements. In all but one of
the remaining cases, the sync generator gave a warning that
the placement was likely suboptimal. In one case, it even
corrected an originally incorrect application (FFT).

Our contributions are three-fold:
∙ We make implementing parallel divide-and-conquer

applications even more effortless than before. Program-
mers only have to indicate parallel methods, but not the
synchronization points.

∙ We offer a good understanding of the problems involv-
ing automatically inserting synchronization statements.

∙ We provide a real implementation in the form of a
compilation pass for the Satin compiler that generates
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synchronization statements automatically.
The following section discusses the Satin programming

model and explains some basic concepts. Section III de-
fines the problem in detail and section IV discusses the
implementation of the sync generator. We evaluate the sync
generator in section V using 35 real-world Satin applications
and discuss the results in section VI. Section VII describes
related work after which the paper concludes.

II. THE SATIN PROGRAMMING MODEL

This section briefly introduces the Satin programming
model. Satin [1] is a divide-and conquer-framework similar
to Cilk [3]. The main differences are that programs are
written in Java instead of Cilk, a C derivative, and that
programs are deployed on a grid and not on shared memory
systems.

The Satin compiler will rewrite Satin programs in such a
way that they can run in parallel on grids and clouds using
Ibis [2]. Ibis is an environment that provides communication
primitives to compute nodes in a grid. Rewriting Satin
programs is performed with help of bytecode rewriting
library BCEL [4].

In order to create parallelism in a Satin program, program-
mers have to make some annotations. They have to indicate
which methods are spawnable to ensure that the Satin
compiler will rewrite those methods to versions that spawn
jobs on the grid. The second annotation the programmer
has to make is a special sync() statement which is a
barrier local to the method. The system will block at the
sync statement until all results of the spawnable calls in the
current method become available. A node that blocks in a
sync may execute jobs resulting from spawnable calls in the
meantime.

The Java type and class systems provide all
means to annotate Satin programs. Programmers
create spawnable classes by extending the class
ibis.satin.SatinObject, that provides methods
such as sync(). Programmers can also create an interface
that extends ibis.satin.Spawnable. The method
calls of the methods that are declared in this interface will
be rewritten by the Satin compiler and executed in parallel.

The procedure from writing to deploying a Satin program
is as follows: programmers write a sequential recursive
program in Java and annotate the (possibly recursive) calls
that have to be spawnable. They also place sync statements
in places where the program has to wait for the results of
the spawnable calls. The program is compiled to normal,
sequential Java bytecode. This serves as input for the Satin
compiler that rewrites the bytecode in such a way that
Satin jobs are spawned. The application is now ready to
be deployed on the grid.

The procedure in combination with the sync generator
differs slightly and is depicted in Fig. 1. Programmers again
write a sequential recursive program but leave out the sync

Figure 1. Compiler procedure with automatic sync generation.

statements. They compile the program to ordinary bytecode.
The Satin compiler takes the Java bytecode as input, and
generates sync statements as an extra compiler pass. Then
it rewrites the bytecode to make it grid aware. It is still
an option to insert sync statements manually. The sync
generator will ignore methods that already contain sync
statements.

Throughout the rest of the document the following terms
will be used: A spawning class is a class that contains
spawning methods. A spawning method is a method that
contains spawnable calls. A spawnable call is an invocation
of a method with a spawnable method signature. This is
the signature of the method annotated by the programmer to
be spawnable. A sync statement is a local barrier synchro-
nization primitive which makes sure that all spawnable calls
have returned their values.

Fig. 2 depicts a typical Satin program. On line 3
spawningMethod() is marked to be a spawnable
method as it is defined in an interface that extends
ibis.satin.Spawnable. The method on line 6 is a
spawning method, because it contains two spawnable calls
on line 9 and 10 (two recursive calls). These calls are non-
blocking and as a result the two calls run in parallel. The
system blocks on the sync() statement on line 12 until
the parallel calls have finished and returned their results into
result1 and result2. The method can now safely return
the sum of result1 and result2.

Besides returning values using the return statement, a
spawning method can also return using exceptions. Fig. 3
illustrates this. The non-blocking spawning method is called
on line 6 in the try block and the program continues
immediately beyond the catch clause. It executes the
second try block, calling the second spawnable call on line
13 in parallel. The program continues beyond the catch
clause and blocks on the sync(). When the spawnable calls
have finished, the results are thrown and stored into local
variables inside the catch block. Control flow returns from
the catch block for both the first and second call. Now that
the spawnable calls have finished and the results are stored
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1 interface SpawnProg extends
2 ibis.satin.Spawnable {
3 int spawningMethod();
4 }
5

6 int spawningMethod() {
7 if (stopCondition) return 0;
8

9 int result1 = spawningMethod();
10 int result2 = spawningMethod();
11

12 sync();
13 return result1 + result2;
14 }

Figure 2. A basic Satin program.

1 void spawningMethod() throws Result {
2 if (stopCondition) throw new Result();
3

4 int result1, result2;
5 try {
6 spawningMethod();
7 }
8 catch (Result r) {
9 result1 = r.result;

10 return;
11 }
12 try {
13 spawningMethod();
14 }
15 catch (Result r) {
16 result2 = r.result;
17 return;
18 }
19

20 sync();
21

22 Result finalResult = new Result();
23 finalResult.result = result1 + result2;
24 throw finalResult;
25 }

Figure 3. A basic Satin program throwing exceptions.

in the local variables, the main process continues and throws
the final result. Exceptions are used to asynchronously return
results, for instance with speculative parallelism.

III. PROBLEM DESCRIPTION

The implementation of the sync generator focuses first
of all on correctness. The main question is: is it possible
to create a sync generator compilation pass that inserts
sync statements in such a way that the resulting program
is guaranteed to be correct? Correctness in this sense means
that the placement of sync statements is such that the parallel
version delivers the same results as the sequential version.

The second issue is then: is it possible to find a place
for the sync statements in such a way that parallelism is
created? If this is true, then the question is how optimal the
placement is.

1 int spawningMethod() {
2 if (stopCondition) return 0;
3

4 int[] results = new int[NR_SPAWNS];
5 int finalResult;
6

7 for (int i = 0; i < results.length; i++) {
8 results[i] = spawningMethod();
9 }

10

11 sync();
12 for (int i = 0; i < results.length; i++) {
13 finalResult += results[i];
14 }
15

16 return finalResult;
17 }

Figure 4. A basic Satin program using loops.

Other questions are whether this can be achieved in a way
that does not require complicated analysis or places many
spurious sync statements.

The sync generator operates under the assumption that it
has as input all classes that are needed to determine which
classes are spawning classes. In addition, there are some
assumptions about spawnable calls. Figures 2, 3, and 4
show parts of typical Satin programs using return values,
exceptions, and loops respectively. A spawnable call can
return in three ways. The spawnable method signature can
be of type void. It then returns with a return statement.
The second way is by returning a value using the return
keyword. This happens in Fig. 2 and Fig. 4. Finally, it can
return using exceptions as in Fig. 3. Return values from
spawnable calls are likely to be stored in local variables to
allow parallelism, but this may not be the case. Also, these
local variables may not be loaded again. In this case and
if the spawnable call is of type void, the sync generator
needs to place a sync as last instruction of the spawning
method.

To conclude the boundaries for the sync generator, it is
not an issue when multiple syncs are placed behind each
other. The system will notice during the sync that there are
no spawnable calls running and will just continue without
any problem. It is also no problem to have sync statements
when no spawnable call will be called. The overhead of
these calls is negligible.

IV. IMPLEMENTATION

The first subsection describes the basic algorithm of the
sync generator compilation pass. The second subsection
discusses several analysis strategies and gives insight into
which problems need to be solved to automatically generate
sync statements.
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A. Basic algorithm

The basic algorithm of the sync generator is composed of
three phases, the recording phase, the analysis phase, and
the generator phase. During the recording phase, the sync
generator reads in all class files. Next, it finds all spawnable
method signatures from the interfaces. It then tries to create
spawning classes for every class file. This succeeds if the
class contains spawning methods.

For a spawning method, the recording phase records all
spawnable calls, and for every spawnable call, it keeps track
of:

∙ the invoke instruction of the spawnable call
∙ the load instruction of the object reference on which

the spawnable call is invoked
∙ the indices of the local variables in which the results

are stored
A spawnable call tracks multiple local variables in case an
exception is thrown. The catch block may store results in
multiple local variables and subsequent loads of these local
variables need a sync.

The analysis phase (discussed in detail in the following
subsection) takes as input a spawning method and proposes
one or more places to insert a sync statement. The generator
phase will then insert a sync statement at those places.

B. Analysis phase

On the basis of four strategies we employ in the analysis
phase, we discuss the problems involved in automatically
generating sync statements. The analysis phase takes as input
a spawning method and the spawnable calls with the infor-
mation provided by the recording phase. The analysis phase
returns the instructions in front of which sync statements
need to be inserted.

1) Fallback strategy: The fallback strategy is used when
all other analysis fails. It proposes sync statements im-
mediately behind the spawnable calls. This provides us
guaranteed correctness as the resulting program is equivalent
to the sequential program. However, this also means that
there is no parallelism.

2) On-first-load strategy: This strategy increases paral-
lelism by postponing the sync statement until the first load
of a variable in which one of the spawnable calls stores. In
Fig. 2 that would be exactly where the sync is now, on line
12, because result1 is loaded first.

Unfortunately, this places multiple syncs in case of loops.
In Fig. 4 this would mean that the sync statement is placed
inside the loop between lines 12 and 13. It is preferable to
put the sync in front of the for-loop, but it is not a problem,
since multiple syncs are allowed.

The strategy fails in the example in Fig. 5. When
someCondition evaluates to false, there would be no
sync and the result would be incorrect.

This can easily be solved by inserting sync statements in
front of all loads. However, there is a larger problem. The

1 result1 = spawnableMethod();
2 result2 = spawnableMethod();
3

4 if (someCondition) {
5 sync();
6 return result1;
7 } else {
8 return result2;
9 }

Figure 5. Jumping over sync().

correctness is based on the assumption that loads always
happen in the part of instructions behind the instruction
of the spawnable call. In many cases this will be true,
but there may be situations with a backward jump after a
spawnable call. The analysis has to be control-flow aware to
place sync statements in these situations. However, within
basic blocks, where no control flow occurs, the on-first-load
strategy suffices.

3) Control-flow-aware strategy: The problems discussed
above are solved with this strategy. It succeeds in placing
the sync in front of both loads in Fig. 5 and, for example,
just in front of a loop that accesses the result of a spawn
(Fig. 4).

With help of control flow information provided by the
BCEL library [4], a graph of basic blocks is constructed.
A basic block is a sequence of instructions with only one
entry and one exit point. So, within the basic block there
is no branch instruction other than the last instruction and
no instruction is targeted by any branch instruction. A basic
block keeps track of the basic blocks it targets and whether
the basic block is an ending basic block in the graph. This
is the case if the last instruction is a return or a throw
instruction.

A path is a sequence of basic blocks. An ending path is a
path where the last basic block is an ending basic block. For
every spawnable call in the method the following analysis
takes place: find all ending paths from the spawnable call
on. This includes all possible loops.

Then, for every ending path, the implementation of this
strategy tries to construct a store-to-load path for every local
variable index in which the spawnable call stores. Note that
there can be multiple local variable indices when dealing
with exceptions. A store-to-load path is a path from the
basic block of the spawnable call to a load of one of the
local variables in which the spawnable call stores.

In this stage all spawnable calls of the spawnable method
have been analyzed and every spawnable call is associated
with one or more paths from store to load. The implemen-
tation retrieves all these paths and removes duplicates. For
all these paths it tries to find a basic block from the end that
is not in a loop. The result is now one or more basic blocks
in which a sync needs to be placed.

For each of these basic blocks, the on-first-load strategy
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1 for (int i = 0; i < MAX_SPAWNS; i++) {
2 result[i] = spawnableMethod();
3 }
4

5 sync(); // placed by sync generator
6 for (int i = 0; i < MAX_SPAWNS; i++) {
7 readFirstTime(result[i]);
8 }
9

10 // sync left out by sync generator
11 for (int i = 0; i < MAX_SPAWNS; i++) {
12 readSecondTime(result[i]);
13 }

Figure 6. Multiple exclusive store-to-load paths.

finds the first load of a variable in which one of the
spawnable calls stores and this instruction is proposed as
an instruction in front of which a sync statement should be
inserted.

In the case that a spawnable method signature is of type
void, results of a spawnable call are not read, or exceptions
are not handled (there is no catch block), it is not possible
to create a store-to-load path. In this case sync statements
will be placed at the ends of all ending paths. This means
that on every exit from the method, a sync will be placed.

The control-flow-aware strategy contains two additional
optimizations:

Unnecessary sync statements: It is possible that a
spawning method contains multiple exclusive store-to-load
paths, but where the sync statement is placed in such a
way that it syncs the other paths as well. In this case it is
not necessary to insert later sync statements. An example is
Fig. 6. There is a path without the first read on line 7 and then
with the second read on line 12, which is exclusive from the
path with the first read and without the second read. Without
this optimization, the sync generator would also place a sync
before the third for-loop on line 10. However, because there
is already a sync before the second for-loop, this sync is left
out.

Array stores and object putfield: If a spawnable call
stores into an object, the load in a store-to-load path is based
on the load of the object reference. In many cases, the load is
used to read from the object, which needs a sync statement.
However, there are situations in which the load of an object
reference is used to store into the object, for example a store
into an array or to store something in a field of an object.
This does not need a sync statement.

Fig. 7 shows a store into an array on line 8. The object
reference for result needs to be loaded. Because of this,
without optimization, the sync generator would insert a sync
in front of the load. However, this optimization recognizes
that the load of the object references is used for a store into
an array or object field and places it beyond the load of the
object reference on line 10.

1 for (int i = 1; i < MAX_SPAWNS; i++) {
2 result[i] = spawnableMethod();
3 }
4

5 // the reference to object result is loaded,
6 // but sync is not placed here, because it
7 // is a store into an array
8 result[0] = someValue;
9

10 sync(); // by sync generator
11 for (int i = 0; i < MAX_SPAWNS; i++) {
12 read(result[i]);
13 }

Figure 7. Ignoring array stores.

1 class Result {
2 int v;
3 }
4

5 int spawningMethod() {
6 if (stopCondition) return 0;
7

8 Result r1 = new Result();
9 Result r2 = new Result();

10 Result a1 = r1;
11 Result a2 = r2;
12

13 r1.v = spawnableMethod();
14 r2.v = spawnableMethod();
15

16 int sum = a1.v + a2.v;
17 sync(); // incorrect, should be on line 15.
18 return sum;
19 }

Figure 8. Incorrect sync placement due to aliasing within a spawning
method.

4) Alias-aware strategy: The previous strategy places
sync statements optimally in many cases, but the analysis
is incorrect when aliases to object references are loaded
instead of the original object references. Fig. 8 illustrates
this. On line 8 and 9, two result objects are created, and
on line 10 and 11 new references are pointing to the same
objects. The results are stored using references r1 and r2,
but the results are loaded using the aliases a1 and a2. The
sync() on line 17 is incorrectly placed.

Alias analysis is typically imprecise [5], but aliasing
within a spawning method is not so common in the Satin
programming model. Therefore, we take a pragmatic ap-
proach and try to detect situations where aliasing can occur.

The alias-aware strategy uses the control flow graph to
check whether the object references in which spawnable
calls store, are loaded or stored before the spawnable call
is executed. A load or store of such an object may mean
that an alias has been created. If the sync generator detects
such a load or store, it will revert to the fallback strategy
described above, and will issue a warning that indicates that
the sync generator cannot place sync statements optimally.

!222333666!222333222!222333222



The programmer may override the placement of the sync
generator by placing sync statements manually.

Aliases introduced after the spawnable call is executed,
can only be introduced by loading the original object refer-
ence. The implementation detects this as a load and will
insert a sync before the load. Therefore, aliases that are
introduced after the spawnable call is executed, do not need
special treatment.

Spawnable calls that store into parameters of the spawning
method also pose a problem. Aliases to these parameters
could have been created before the spawning method was
called, and since the implementation has no knowledge
about these aliases, it reverts back to the fallback strategy
and issues a warning.

In the Satin programming model, it often happens that
results are stored in a result object, similar to r1 and r2 on
lines 8 and 9 of Fig. 8. The class is defined on line 1. Another
situation is storing the results of a spawnable call into an
array, for instance similar to Fig. 7. Creating these result
objects or arrays means that the object references need to
be loaded before the spawnable calls are called. However,
creating an array can never introduce aliases. Creating an
object can, but only if a reference to the new object escapes
the constructor.

The alias-aware strategy detects these two cases. Array
creation (one- or multi-dimensional) is recognized and al-
lowed. For new objects, we perform a simple escape analysis
on the called constructor to confirm that no reference to the
new object escapes the constructor. Fig. 8 shows on line 8
and 9 creation of two new object with the default constructor.
These two statements do not introduce aliasing.

To summarize: the alias-aware strategy cannot optimally
place sync statements when a spawnable call stores into
object references, except for new arrays and new simple
objects as described above. However, it can detect possible
aliasing and warn for non-optimal sync placement. This
gives the programmer the opportunity to either restructure
the code to reduce possible aliasing, or insert sync statements
manually.

V. EVALUATION

The sync generator is evaluated using 35 pre-existing real-
world Satin applications, amongst others a SAT solver [6],
N–body simulation [1], Grammar-based text analysis [6],
Grammar induction [7], Gene sequence alignment [1], FFT,
and Game-tree search [8].

To evaluate the performance of the sync generator, the
applications are stripped from sync statements. The appli-
cations are recompiled with the Satin compiler that runs
the sync generator pass. The resulting bytecode is care-
fully examined and compared to the original bytecode. The
placement of sync statements is compared in relation to the
control flow and variables on which the correctness and
amount of parallelism depends.

The placement is said to be optimal, if it is as late as
possible in the control flow and allows all spawnable calls
to run in parallel. The placement by the sync generator
may be later in the control flow than the placement of the
programmer (but still correct). The sync generator may also
place sync statements in such a way that sync is called
multiple times. This has a negligible performance effect.

Table I shows the results. The first column shows the name
of the application. Column two shows whether the generated
syncs are inserted at an optimal place. In the case that
sync statements are not placed optimally, the third column
indicates whether the programmer receives a warning, due
to aliasing. Column four shows some additional notes.

The table does not show whether the applications are
correct, because this is true for all the applications. Correct
means that the applications with automatically inserted sync
statements give the same result as the original applications.

The overall result is that the sync generator is able to
compute an optimal sync placement for 31 out of the 35 ap-
plications. In the application FFT, the sync generator inserted
correct sync statements that were missing in the original
incorrect application. We also tested the sync generator on
12 additional test applications, for example a Fibonacci
application. Because the placement is optimal in all cases
and these applications are not real-world applications, we
do not discuss these applications.

A. Evaluation per application

To get more insight in the results, we discuss the appli-
cations separately. The applications that have optimal sync
placement and no further problems are omitted.

Adaptive integration, Binomial coefficients, Fifteen puz-
zle: In these applications the programmer placed syncs
where the sync generator leaves them out. The sync gen-
erator is correct and these syncs can be safely left out. This
shows that unnecessary sync insertion is no problem.

Checkers (negamax version): This application is the
only application that does not have optimal placement and
has no warning. Fig. 9 shows the cause. The method
srch() has a variable beta_cutoff that has value 0
initially. Depending on this value the control flow breaks out
of the for loop (line 19). The programmer knows that this
variable is not important for the result, only for performance.
The sync generator must regard the variable beta_cutoff
as a variable in which some value is stored inside the catch
block. This means that before this variable is loaded there
should be a sync statement. Unfortunately, this leads to
sync placement right behind the try and catch blocks of the
spawnable call spawn_srch() within the for loop on line
18, resulting in sequential execution of this application.

FFT: The sync generator inserts more statements than
were inserted by the programmer. Surprisingly, the original
application was incorrect. The sync generator corrected it.
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Table I
AUTOMATIC SYNC STATEMENT GENERATION IN REAL-WORLD SATIN APPLICATIONS.

application optimal alias warning notes
Adaptive integration yes - programmer placed unnecessary syncs
Awari: game tree search with the mtdf algorithm [8]

Reference version with transposition tables yes -
Pre-allocated transposition tables yes -
Transposition tables as structure of arrays yes -
Replicated transposition tables with Java RMI yes -
Replicated transposition tables with sockets yes -
No speculative parallelism yes -
Shared objects version yes -

Binomial coefficients yes - programmer placed unnecessary syncs
Checkers

Reference version yes -
Negamax search with alpha-beta pruning no no based on false dependency

Fast Fourier Transform (FFT) yes - originally incorrect, corrected by sync generator
Fifteen puzzle, iterative deepening A* algorithm yes - programmer placed unnecessary syncs
Gene sequence alignment [1] yes -
Grammar induction [7] yes -
Grammar-based text analysis [6] yes -
Knapsack yes -
Matrix multiplication

Standard version no yes writing into parameter
shared objects version no yes writing into parameter

N-body simulation (Barnes-Hut) [1] yes -
N-Queens problem

Reference version yes -
Using exceptions yes -
Using speculative parallelism and aborts yes -
Using speculative parallelism, aborts and thresholing yes -
Non-speculative version, counting total number of solutions yes -
2nd prize winner in the Grids@work 2005 contest [9] no yes writing into object reference, writing into parameter

Othello: game tree search with the mtdf algorithm [8] yes -
Prime factorization yes -
Raytracer yes -
SAT solver [6] yes -
Text indexing yes -
Traveling Salesman Problem

Reference version yes -
Shared objects version yes -
Young-brothers-wait version yes -

VLSI cell router (LocusRoute) [10], [11] yes -

Matrix multiplication (both versions), N-Queens (con-
test version): These three applications are affected by possi-
ble aliasing. The two matrix multiplication applications write
into a parameter of the spawning method. Therefore, only
the first four of eight calls of the application are executed in
parallel. The N-Queens (contest version) application stores
into an object that is used by a different spawn and that is
also a parameter. Because the sync generator cannot assure
that there are no aliases, syncs are placed conservatively
taking away much of the parallelism. However, the sync
generator warns for non-optimal sync placement in all three
cases. This allows the programmer to restructure the code
or insert sync statements manually. Methods that already
contain sync statements are ignored by the sync generator.

VI. DISCUSSION

The analysis can be made more precise by extending
analysis to methods that are called from the spawning
method. Fig. 10 illustrates this. Due to possible aliasing

and loading of result1 on line 6, the sync generator will
not place the sync on line 10 where we want it. We could
extend the analysis to verify that no aliases are created in
createResult() on lines 2 and 3. We could also analyze
doSomethingHarmless() on line 6 to verify that it
does not load variable x.

However, this more precise analysis will never solve the
problem in Fig. 9. The beta_cutoff variable depends
amongst others on what happens in the catch block. An
analyzer will never find out whether this is relevant for a
correct result or not.

The evaluation of the applications revealed that some
execution time measurements became incorrect, because the
sync generator postponed sync statements beyond the time
measurements of the programmer. To place time measure-
ments correctly, programmers have to either first load one of
the results of the spawnable calls, or insert sync statements
themselves, which is still possible.

In principle, the analysis we describe in this paper can
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1 void srch() throws Result {
2 int beta_cutoff = 0;
3

4 for(x = 0; x < count; x++) {
5 // sequential work
6 try {
7 spawn_srch();
8 }
9 catch (Result res) {

10 killer[p.ply] = move_list[res.choice_ix];
11 // other stuff
12 if (-res.score >= p.beta) {
13 beta_cutoff = 1;
14 abort();
15 }
16 return;
17 }
18 // sync generator’s sync
19 if (beta_cutoff != 0) break;
20 }
21 // programmers sync
22 }

Figure 9. Skeleton of method srch() in Checkers (negamax version).

1 int spawningMethod() {
2 Result result1 = createResult();
3 Result result2 = createResult();
4

5 result1.x = spawningMethod();
6 result1.doSomethingHarmless();
7

8 result2.x = spawningMethod();
9

10 //sync(); preferred place
11 return result1.x + result2.x;
12 }

Figure 10. Situation not optimally analyzed.

be used to analyze Cilk [3] programs. However, due to
the use of C as a base language, the implementation needs
to take into account unrestricted aliasing (aliasing to basic
types, casting) and global variables which are more common
on shared memory. In addition, our analysis operates on
bytecode and does not need the source code. A similar binary
rewriting approach would be difficult with Cilk code.

VII. RELATED WORK

Satin [1] is closely related to Cilk by Blumofe et al. [3].
Both systems provide a divide-and-conquer programming
model with asynchronous spawnable calls and a local barrier
synchronization primitive called sync. Cilk differs from
Satin in the base language. Where Cilk extends C and C++
with keywords such as spawn and sync, Satin uses the
Java type and class systems to make similar annotations.
As a result, a Satin program is still a valid Java program,
whereas a Cilk program is not a valid C or C++ program.
Another difference is that Cilk targets multi-core archi-
tectures, whereas Satin targets execution on clusters and

grids using the Ibis system [2] that provides communication
primitives to nodes on a grid.

We are unaware of any previous work on trying to make
sync statements implicit in a divide-and-conquer model.
Implicit sync statements show resemblance with implicit
futures, introduced by Baker and Hewitt [12]. A future
evaluates an expression in a separate thread or process.
The original process can perform other work and blocks
when it tries to use the expression of the future until the
result is computed. Flow Java [13] is a variant of Java that
implements futures through the use of single assignment
variables. The difference between implicit syncs and implicit
futures is that a future can block on a specific spawn,
whereas a sync blocks for all spawns in the method.

The sync generator uses several well known techniques to
decide where to place sync statements. We are interested in
which variables a spawnable call stores and where these are
loaded again. The analysis can be incorrect due to aliasing
of variables before a spawnable call is called. We perform
simple alias detection, but the analysis could be made more
precise through more advanced alias analysis, for example
with help of the Spark framework [14]. We also perform
a simple escape analysis that can also be more precise, for
example by implementing work of Whaley and Rinard [15]
or Blanchet [16].

VIII. CONCLUSION

Satin provides a divide-and-conquer programming model
to execute applications efficiently on clouds and grids.
Programmers annotate recursive calls to be spawnable to
make sure that these calls are executed in parallel on the
grid. Sync statements indicate where the system has to block
to wait for the result. In this paper we discussed a sync
generator that automatically inserts these sync statements
for the programmer.

We conclude that it is possible to automatically insert
sync statements in Satin code in such a way that every
resulting program is correct. Correctness in this sense is
that the resulting program that is run on a grid will deliver
the same result as the sequential version. The fact that
we provide correctness is well illustrated by a previously
incorrect application (FFT) that was corrected by the sync
generator.

In many cases the sync generator will be able to place
sync statements optimally. An optimal place in this sense is
that as many independent asynchronous spawnable calls as
possible are called within a spawning method. To perform
the analysis, the sync generator needs to be control flow and
alias aware.

We evaluated the sync generator using 35 pre-existing
real-world applications, and an additional 12 test applica-
tions. The sync generator finds an optimal place in all tests,
and in 31 out of 35 real-world applications. For three appli-
cations, the sync generator does not place syncs optimally
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due to possible aliasing. However, these applications still
have some parallelism and the sync generator also warns
for non-optimal placement. One application is completely
sequentialized by the sync generator due to a false de-
pendency, deliberately introduced by the programmer, that
does not affect the result of the computation, but only the
performance. However, no analyzer can dismiss this false
dependency and place sync statements in such a way that
more parallelism is enabled.

The current analysis could be made more precise by
extending the analysis to methods that are called from
the spawning method. However, this analysis also cannot
disregard false dependencies as above.
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