Tracking Provenance in Swift

Ben Clifford! Luiz M. R. Gadelha J¥. Marta Mattosé

!Computation Institute
University of Chicago
Chicago, USA
benc@awaga. or g. uk

2Computer and Systems Engineering Program
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil
{gadel ha, martaj}@os. ufrj. br

Abstract

The objective of this technical report is to describe thevpnance recording and analysis capabilities of
Swift. Swift allows the specification, management, exezutnd analysis of large-scale scientific workflows
on parallel and distributed environments. To demonstitatse capabilities, we show the results of the Swift
Team participation at the Third Provenance Challenge (RC8)is tutorial style report. PC3 organizers chose
a workflow from the Pan-STARRS (The Panoramic Survey Tefgs@nd Rapid Response System) project that
should be implemented by the participating teams, and gexpa series of provenance activities. This reports
presents the data model used to record and query proverthedean-STARRS implementation in SwiftScript,
and an SQL implementation of the PC3 queries. Finally, imgneents to the Open Provenance Model and to
Swift's provenance recording are proposed.

1 Introduction

The management of large scale computational scientificrerpats is considerably facilitated by the use of sci-
entific workflow management systems. They allow the definiGbwhich processes compose an experiment as
well as the data and control dependencies that exist bettheem With the automation of the specification and
execution of an experiment, little effort is required toeneecute it with different input parameters or slightly dif-
ferent tasks. The analysis of these experiments can be hidpbvenance systems, which record the derivation
history of each dataset manipulated by a workflow. The OpemdPrance Model (OPM) [1] goal is to standardize
the way in which provenance information is representedefinés the entitieartifact, processandagentand the
relationsused(between an artifact and a processisGeneratedBfbetween a process and an artifastasCon-
trolledBy (between an agent and a procegs)sTriggeredBybetween two processesjasDerivedFron{between
two artifacts). One of the goals of OPM is to allow the intexmbility between different provenance systems.

The Swift scientific workflow management system [2] is a sasoe of the Virtual Data System (VDS) [3] and
allows the specification, management and execution of {acgée scientific workflows on parallel and distributed
environments. The SwiftScript language is used for higiellepecification of workflows, it has features such as
data types, data mappers, conditional and repetition flomtrols, and sub-workflow composition. Its data model
and type system is derived from XDTM [4], which allows the tabst definition of data types and objects without
refering to their physical representation. If some datdsets not reside in main memory, its materialization is
done through the use of data mappers. Procedures perforoall@gerations on input data, without modifying
them. Swiftscript also allows these procedures to be coetpimsorder to form complex workflows. By analyzing
the inputs and outputs of the procedures, the system detesntiata dependencies between procedures. This
information is used to execute procedures that have no rdaiteadependencies in parallel. Karajan [5] is used to
submit the computational tasks of a workflow to various cotaponal resources, it supports common execution
managers such as PBS [6] and Globus GRAM [7]. The system sauaé Falkon [8] as execution manager, which

provides high job execution throughput. Swift logs a varigtinformation about each workflow execution. This
information can be exported to a relational database trest aglata model that is very similar to OPM. Kickstart
[9] can be used in order to gather provenance informationfat@mote process executions.

The objective of this technical report is to describe thesprance recording and analysis capabilities of Swift. To
demonstrate these capabilities, we show the results ofiiliie Beam participation at the Third Provenance Chal-
lenge (PC3) in detail. PC3 organizers chose a workflow fraemthn-STARRS (The Panoramic Survey Telescope
and Rapid Response System) project that should be implechbgtthe participating teams, and proposed a series
of provenance related tasks to be performed after the ex@cnftthe workflow.

The remaining sections of this report are organized asvislld he data model used to record and query provenance
information in Swift is described in section 2. In sectiom@& describe LoadWorkflow, the workflow selected for
PC3 that is used in the Pan-STARRS project. In section 4, wgerite the implementation of LoadWorkflow in
SwiftScript. In section 5, we describe how we answered theriga proposed in PC3. Finally, in section 5, we
describe other tasks performed as part of PC3 and make sormkiding remarks.

2 Data Model

In the Swift runtime, data is represented by a DSHandle Jhjeco this includes data mapped to files, primitive
types such as ints and strings, arrays and structures. Off¢teare produced and consumed by processes in Swift:
invocations of external programs, and invocations of maéprocedures, functions and operators. In the persistent
Swift provenance model DSHandles and processes are re;aslare the relations between them (either a process
consuming a DSHandle as input, or a process producing a D8&las output). Each DSHandle and processes
is uniquely identified in time and space by a URI. This proveeis persistently stored in an SQL database. In
addition to SQL, other database layouts were experimenitbg &s detailed in appendix A. The two key tables of
the database that store the structure of the provenance,glafined in prov-init.sqgl, arpr ocesses, that stores
brief information about processesdescribed in tablesdatdset usage, that stores produced and consumed
relationships between processes and DSHandles. Both seelzkd in tables 2 and 2 respectively. Further tables
exist to record details about each process, dataset andret@gonships such as containment. Details of these can
be found inpr ov-i ni t. sql , in appendix B.

Consider this Swift program fragment:

app (file o) s(file i) {
sort stdin=@ stdout=@

file f <"inputfile">;
file g <'outputfile">;
g=s(f);

When this program is run, then processes will be recordeth®evaluation of the following expressions:
(A) s(f) atthe rootlevel, representing the application execution;

(B) @ insides, representing the evaluation of tt@i | enamne function;

(C) @ insides, again representing the evaluation of e | enane function.
DSHandles will be recorded for:

(Q) the string'i nputfile";
(R) the string' out putfile";
(S) the file variabléd ;

(T) the file variabley;

Row | Definition
id the URI identifying the process
type | the type of the process (execution, compound proceduretifum operator)

Table 1: Database tabjy ocesses.

Row Definition

process._i d | a URI identifying the process end of the relationship.
dat aset i d | a URI identifying the DSHandle end of the relationship.
direction | whether the process is consuming or producing the DSHandle.
par amnane | the parameter name of this relation. |

Table 2: Database tabtkat aset _usage.

(V) the filename of ;

(V) the filename ob.
Input/output relations will be recorded as:

e (A) takes (S) as an input;
e (A) produces (T) as an output;
e (B) takes (S) as an input;
e (C) takes (T) as an input;
e (B) produces (U) as an output.

One of the main concerns with using an SQL model for repr@sgptrovenance is the need for querying over the
transitive relation expressed in that aset _usage table. For example, after executing the fragment:

b=p(a);
c=q(b);

It might be desirable to find all DSHandles that leactcte that beinga andb. However simple SQL queries
over the used relation can only go back one step, leadinget@atiswerb but not to the answeat. To address
this problem, a transitive closure table is generated byiaremental evaluation system as described in [10]. This
allows straightforward query over transitive relationsygsatural SQL syntax, at the expense of larger database
size and longer import time.

2.1 Comparison of model to OPM

The Swift model is very close to OPM, but there are some diffees.

2.1.1 DSHandles are almost OPM artifacts

DSHandles correspond closely with OPM artifacts as immatadpresentations of data. However they do not
correspond exactly. An OPM artifact has unique provenaldoeiever, a DSHandle can have multiple provenance
descriptions. Consider this SwiftScript program:

int a=17;
int b = 10;
int c[] =[a, b];

Then consider the expressiof 0] . This evaluates to a DSHandle, that is the DSHandle correlpg to the
variablea. That DSHandle has a provenance trace indicating it wagresgifrom the constant valde However,
that DSHandle now has additional provenance indicatingitiveas output by applying the array access operator
[] tothe arrayc and the numerical valu@.

In OPM, the artifact resulting from evaluatirgf 0] is distinct from the artifact resulting from evaluatiag
although they may be annotated with an isldenticalTo art [11

3 PC3 Workflow

Pan-STARRS is an astronomical survey of visible stars imtiréhern hemisphere, the Solar System, and potential
collisions of astronomical objects with the Earth. The isgre captured with a telescope operated by the Univer-
sity of Hawaii. Astronomical data is stored in an object danagement framework, where scientists may query
the information generated by the survey. The workflow pregdsr PC3, LoadWorkflow, is an intermediate step
between data acquisition with the telescope and its staretle object data management framework. It receives
as input a set of CSV files containing astronomical infororgtperforms a series of validation steps, and stores
the astronomical information in a relational database.

4 Workflow Implementation

In this section we describe how the PC3 workflow was impleegim Swift. A Java implementation of the
workflow’s activities was provided by Simmhan and is avdiadt the PC3 web site [12]. Our implementation is
available at the Swift team entry at the PC3 web site [13].hEtivity can be run using the Execute class in this
implementation, which is called with the activity name ahd #activity inputs as parameters. We implemented a
series of simple shell scripts to call the Execute classipgske appropriate parameters to it in order to execute
the workflow activities from Swift. These scripts were lt@ Swift's application catalog. Next we describe in
detail the LoadWorkflow implementation in SwiftScript.

Initially, the mapped types used in the workflow are declahddpped types refer to data objects that do not reside
in the main memory, which is the case for data files. Most ofitipeits and outputs of the Java implementation
of the workflow activities are files in XML format, represedti® our Swift implementation as xmlfile. In order
to manipulate the input and output values we had to converesaf these files into plain text files, represented as
textfile, and then read them using the readData SwiftSanipdtion.

type xmfile
type textfile;

The following part consists of using app declarations tordetfie workflow’s component applications. This allows
the invocation of executable applications of the Java imgletation of the workflow from Swift. They define the
applications’ inputs and outputs, which are XML files in thealdWorkflow case, and provide a reference that will
allow Swift to find the actual application executable by loakat its application catalog. These app declarations
are given byps | oad_execut abl e,ps_| oad_execut abl e_t hr eaded, ps_| oad_execut abl e_db, and
conpact _dat abase. ps_l oad_execut abl e_.db andconpact _dat abase also have a reference to the
LoadWorkflow database as input, which is given also by an XNH. flThe subsequent declarations are used to
manipulate an XML file in order to extract boolean values,rt@ntries, and extract entries. Finally, the stop app
declaration simply refer to a shell script that returns aonrezode and is used to halt the workflow execution.

(xm file output) ps_l oad_executabl e(xm file input, string s) {
app {
ps_| oad_execut abl e_app @nput s @ut put;
}
}

(xm file output) ps_|l oad_executabl e_threaded(xm file input, string s, external thread) {
app {

Activity

Input

Output

IsCSVReadyFileExists: Verifies i
the CSV root directory and th
csv_ready. csv file exist.

f string CSVRootPathlnput, contain
e ing the path to the CSV root direg
tory.

-boolean ISCSVReadyFileExis
-sOutput, which is true if the
verification succeeds, or falg
otherwise.

ReadCSVReadyFile: For each fi
listed incsv_r eady. csv, it cre-
ates a CSVFileEntry, which con
sists of the path to the CSV fil
to be loaded, the path to the CS
header file containing the list g
data columns, the number of row
in the file, the target database tab
and the MD5 hash function value ¢
the file. The columns names field
not populated by this activity.

estring CSVRootPathinput, contair
ing the path to the CSV root direg
-tory.

-list ReadCSVReadyFileOutput

csv_ready. csv.

IsMatchCSVFileTable: \Verifies if
the tables to be loaded have cort
sponding data files.

\Y
f
S
€,
f
s
list FileEntriesinput of CSV-
eFileEntry elements read fror

csv.ready. csv.

boolean IsMatchCSVFileTableg
n sOutput, which is true if the table
have corresponding CSV files, (
false otherwise.

ISExistsCSVFileTable: Verifies i
CSV data file and CSV header e
ist.

CSVFileEntry FileEntrylnput.

X

boolean IsExistsCSVFileOutpu
which is true if the CSV data file
and CSV header files exist, or falg
otherwise.

ReadCSVFileColumnNames:
Reads the list of column namse
present in the CSV data file fron
the CSV header file.

CSVFileEntry FileEntryInput.
S
n

CSVFileEntry FileEntryOutput
which results from updating th
columns names field in the inpy
using the values listed in the CS
header file.

-CSVFileEntry elements read from

e

f

S
pr

ta

e

11%)

—

I

<

IsMatchCSVFileColumnNames:

Verifies if the columns expecte
for a target table are present in tf
CSV data file.

CSVFileEntry FileEntrylnput, with
dthe columns names field populate
ne

boolean IsMatchCSVFileColumn
dNamesOutput, which is true if col
umn names listed in the CSV da
files match the column names f
the target database table, or fal
otherwise.

fa
Dr

Table 3: LoadWorkflow Activities - Pre-Load Section

Activity

Input

Output

CreateEmptyLoadDB: Creates tf
database to which the CSV da
files will be loaded. It returns 3
DatabaseEntry, which is a referen
to the database containing its nan
and connection information.

estring JobID, a unique job identifigr
tefor the batch of CSV data files.
A
ce

ne

A DatabaseEntry CreateEmpt
LoadDBOutput.

LoadCSVFilelntoTable: Loads
CSV data file into the correspon
ing database table.

a DatabaseEntry DBEntry, contair
1-ing target table to load the CSV da
file into. CSVFileEntry FileEntry,
refering to the CSV data file to b
loaded.

-boolean
taOutput, which is true is the loa

LoadCSVFilelntoTablg-

was successful, or false otherwise.

UpdateComputedColumns:
dates the computed columns
the table that was loaded. The

columns are indicated by the valy

-999 in the CSV data file.

Up

-DatabaseEntry DBEntry, with th
ntarget table already loaded fro
s¢he CSV data file. CSVFileEntry
eFileEntry, containing the name d
target table in the database to u
date.

f or false otherwise.
p_

e
e boolean UpdateComputedColumpn-
msOutput, which is true if the

columns were successfully update

Table 4: LoadWorkflow Activities - Load Section

Activity

Input

Output

IsMatchTableRowCount: Checks
number of rows loaded into tab
matches the expected.

fDatabaseEntry DBEntry, where th
etarget table is loaded and updatg
CSVFileEntry FileEntry, contain
ing the expected number of row
in the CSV data file and the targ
database table name.

sthe expected number of rows in th
ptCSV data file.

ebool IsMatchTableRowCountOu
dout, which is true if the numbe

of rows in the target table matches

IsMatchTableColumnRanges:

Checks if the data loaded int
database table columns is with

the range of values expected.

DatabaseEntry DBEntry, where th
otarget table is loaded and update
NCSVFileEntry FileEntry, contain
ing the name of target table i
the database to validate colum
ranges.

ntable are within the expected rang
nor false otherwise.

ebool IsMatchTableColumnRange
dsOutput, which is true if the dat
values of the columns in the targ

CompactDatabase: Compacts t

database before concluding t
workflow.

h®atabaseEntry DBEntry, where g

heables are loaded and validated.

IINone.

Table 5: LoadWorkflow Activities - Post-Load Section

bool.
TsCSVReadyFilabed
sts Output

ReadCSVReadyFile

List<CSVFileEntry>
ReadCSvReadyFile
Outpurt

IsMatchCSVFileTables

IsMatchCSVFileTab
les Output

CreateEmptytood DB

DatabaseEntry
DBEntry

CSVFileEntry
FileEntry

IsExistsCSVFile

bool.
IsExistsCsVFile
Qutput

ReadCSVFileCalumn
Names

CSVFileEntry
FilzEntry

IsMatchCSVFHeColumn
Names

bool
IsMatchCSVFilacol
umniames Output

LoadCSVFilelntoTable

bool
LoadCSvfileIntaTa
ble Qutput

UpdateComputed
Columns:

boal
IpdateComputed
Colums Output

bool.
IsMatchTableRowCo
unt Qutput

IsMatch TableColumn
Ranges

bool
TsMatchTableColum
nRanges Output

CompactDatabase

- Data/Parameter
B Activity/Process s Dataflow
<@ Control Activity cenuennsy Contral flow

Figure 1: LoadWorkflow. Source: PC3 web site [12].

ps_| oad_execut abl e_app @nput s @ut put;
}
}

(xm file output) ps_|l oad_executable_db (xmfile db, xmfile input, string s, external thread) {

app {
ps_| oad_execut abl e_db_app @b @nput s @ut put;

}
}
conpact _dat abase (xm file db, external thread) {
app {
conpact _dat abase_app @lb;
}
}

(textfile output) parse_xm _bool ean_value(xmfile input) {

app {
parse_xm _bool ean_val ue_app @ nput @ut put;
}

}

(textfile output) count_entries(xmfile input) {

app {
count _entries_app @ nput @ut put;
}

}

(xm file output) extract_entry(xmfile input, int i) {

app {
extract_entry_app @nput i @utput;
}

}

stop() {
app {
st op_app;
}

}

The next part of the SwiftScript code is used for the dedanabf compound procedures, which invoke other
SwiftScript procedures instead of component programs. ébtter act _bool ean procedure reads a text file
and extracts the boolean value it contains. The checkvatidgolure simply tests a boolean value and halts the
workflow if it is false.ps_| oad_execut abl e_bool ean andps_l oad_execut abl e_db_bool ean are used

to execute a workflow activity, they return a boolean valuewtput. The remaining procedures implement actual
workflow activities by calling the other SwiftScript proages defined.

(bool ean output) extract_boolean(xm file input) {
textfile text_out = parse_xm _bool ean_val ue(input);
out put = readData(text_out);

}

(external out) checkvalid(bool ean b) {
if(tb) { stop(); }
}

(bool ean output) ps_| oad_execut abl e_bool ean(xm file input, string s) {
xm file xm _out = ps_| oad_execut abl e(i nput, s);
out put = extract_bool ean(xm _out);

}

(bool ean output) ps_| oad_execut abl e_db_bool ean(xm file db, xmfile input, string s, external thread) {
xm file xm _out = ps_| oad_executabl e_db(db, input, s, thread);
out put = extract_bool ean(xm _out);

}

(bool ean output) is_csv_ready file_ exists(xmfile input) {
out put = ps_| oad_execut abl e_bool ean(i nput, "IsCSVReadyFi | eExi sts");

}

(xm file output) read_csv_ready_file(xmfile input) {
out put = ps_|l oad_execut abl e(i nput, "ReadCSVReadyFile");

}
(bool ean output) is_match_csv_file_tables(xmfile input) {

out put = ps_| oad_execut abl e_bool ean(i nput, "IsMatchCSVFi | eTabl es");
}

(xm file output, external outthread) create_enpty |oad_db(xmfile input) {
out put = ps_| oad_execut abl e(i nput, "CreateEnptyLoadDB");

}
(bool ean output) is_exists_csv_ file(xmfile input) {

out put = ps_| oad_execut abl e_bool ean(i nput, "I|sExistsCSVFile");
}

(xm file output) read_csv_file_colum_nanes(xmfile input, external thread) {
out put = ps_| oad_execut abl e_t hreaded(i nput, "ReadCSVFil eCol ummNanes", thread);

}
(bool ean output) is_match_csv_file_colum_nanmes(xm file input) {

output = ps_|l oad_execut abl e_bool ean(i nput, "IsMat chCSVFi | eCol umNanes") ;
}

(bool ean output) load csv_file_into_table(xmfile db, xmfile input, external thread) {
string dbcontent = readData(db);
string inputcontent = readData(input);
out put = ps_| oad_execut abl e_db_bool ean(db, input, "LoadCSVFilelntoTable", thread);

}

(bool ean output) update_conputed_colums(xm file db, xmfile input, external thread) {
string dbcontent = readData(db);
string inputcontent = readData(input);
out put = ps_|l oad_execut abl e_db_bool ean(db, input, "UpdateConputedColums", thread);
}

(bool ean output) is_match_table_row count(xmfile db, xmfile input, external thread) {
string dbcontent = readData(db);
string inputcontent = readData(input);
out put = ps_| oad_execut abl e_db_bool ean(db, input, "IsMatchTabl eRowCount", thread);

}

(bool ean output) is_match_table _colum_ranges(xmfile db, xmfile input, external thread) {
string dbcontent = readData(db);
string inputcontent = readData(input);
out put = ps_| oad_execut abl e_db_bool ean(db, input, "IsMatchTabl eCol umRanges", thread);

}

The subsequent piece of Swiftscript code is used for vagidbtlarations. The workflow receives two files as input
arguments, one containing the path to the CSV root dire@odyanother one containing a job identifier. These val-
ues are received by tlessv _r oot _pat h_i nput _ar g andj ob_i d_ar g variables. Thesv _r oot _pat h_i nput
andj ob_i d mapped type variables are declared and their values arardddb be contained in the files given
as input arguments. The remaining variables declared snptleice of code are used to hold outputs of workflow
procedures.

string csv_root_path_input_arg = @rg("csvpath");
string job_id_arg = @rg("jobid");

xm file csv_root_path_input <single file_mapper;file=csv_root_path_input_arg>;
xmfile job_id <single_file_mapper;file=job_id_arg>;
bool ean is_csv_ready file_exists_output;

xmfile read_csv_ready_file_output;

bool ean is_match_csv_file_tabl es_output;

xm file create_enpty_| oad_db_out put;

textfile count_entries_output;

int entries;

xmfile split_list_output[];

The final part of the SwiftScript code is the actual procetipaation of the LoadWorkflow implementation in
Swift. It closely follows the LoadWorkflow logic since Swiftas native support for decision and loop controls.
Thesplit_list_output array holds the CSV file entries that will be processed in tloekflow, they are
extracted from the XML file generated by thead_csv_r eady fi | e procedure.

is_csv_ready_file_exists_output = is_csv_ready_file_exists(csv_root_path_input);
if(lis_csv_ready file_exists_output) { stop(); }
read_csv_ready_file_output = read_csv_ready_file(csv_root_path_input)
is_match_csv_file_ tables_output = is_match_csv_file_tables(read_csv_ready file_output)
if(is_match_csv_file_tables_output) {

external db_over _tine[];

external dbinit; // sone bug in analysis nmeans can’t use db_over_tinme for initial one

(create_enpty_l| oad_db_output, dbinit) = create_enpty_l oad_db(job_id)

count _entries_output = count_entries(read_csv_ready_file_output);

entries = readData(count _entries_output);

int entries_seq[] = [1l:entries];

foreach i in entries_seq {

split_list _output[i] = extract_entry(read_csv_ready_file_output, i)
}
foreach i in entries_seq {

bool ean is_exists_csv_file_output;

xm file read_csv_file_col utm_nanes_out put;
bool ean is_match_csv_file_col um_nanes_out put;
bool ean | oad_csv_file_into_tabl e_output;

bool ean updat e_conput ed_col utms_out put ;

bool ean i s_natch_tabl e_row _count _out put;

bool ean i s_match_tabl e_col um_ranges_out put;

is_exists_csv_file_ output = is_exists_csv_file(split_list_output[i]);

external thread6é = checkvalid(is_exists_csv_file_ output);

read_csv_file_col um_nanes_output = read_csv_file_colum_nanmes(split_list_output[i],
t hread6) ;

is_match_csv_fil e_col um_nanes_out put =
is_match_csv_file_colum_nanes(read_csv_file_col um_nanmes_out put)

external thread2 = checkvalid(is_match_csv_file_colum_nanes_out put)

if(i==1) { // first elenent...

load_csv_file_into_table_output = load_csv_file_into_table(create_enpty_l oad_db_out put,
read_csv_file_col um_nanes_output, dbinit)
} else {
load_csv_file_into_table output = load_csv_file_into_table(create_enpty_| oad_db_output,

read_csv_file_col um_nanes_output, db_over_tine[i])

external thread3=checkvalid(load _csv_file_into_table_output);

updat e_conput ed_col uims_out put = updat e_conput ed_col ums(create_enpty_| oad_db_out put,
read_csv_file_colum_nanes_out put, thread3);

external thread4 = checkval i d(update_conputed_col ums_out put);

is_match_table row count_output = is_match_table_row count(create_enpty_| oad_db_out put,
read_csv_file_col um_nanes_out put, thread4);

external threadl = checkvalid(is_match_table_row count_output);

is_match_tabl e _col um_ranges_out put =
i s_match_tabl e_col uim_ranges(create_enpty_| oad_db_out put,
read_csv_file_colum_nanes_output, threadl);

db_over_tine[i+1] = checkvalid(is_match_tabl e_col um_ranges_out put)

}
conpact _dat abase(create_enpty_|l oad_db_out put, db_over_tinme[entries+1]);
}
el se {
stop();
}
4.1 Implementation Issues

In the first attempt to implement LoadWorkflow in Swift, theeusf the foreach loop was problematic because the
database routines are internal to the Java implementationtherefore, Swift has no control over them. Since
Swift tries to parallelize thé or each iterations it ended up incorrectly parallelizing the daisd operations of

the workflow. It was necessary to move the() andstop() statements into a separate procedure, called

10

checkval i d, which output is of type external, making sure databasessesehappen in sequence. That means
also that there is a dataset object for each "version” of titalthse, over time - previously there was no dataset
representing the database.

5 PC3 Queries

Most of the PC3 queries are for row-level database provenafis observed previously, the database operations
are internal to the workflow activities and therefore Swiismo control over them. Also, Swift has no native
support for making database connections. A workaroundhiisr groblem was implemented by modifying the
application database so that for every row inserted or nmemtjifin entry containing the execution identifier of the
Swift process that performed the corresponding databaseatipn is also inserted. In this section we show how
we answered the queries proposed in the PC3 workshop, ah@skas enabled by the workaround implemented.
Details on creating the database and importing provenaatesficom Swift’s log files can found in [14].

5.1 CoreQuery1l

The first query asks, for a given detection, which CSV filesibuted to it. The strategy used to answer this query
is to determine input CSV files that preceed, in the trarigjttable, the process that inserted the detection. Suppose
we want to determine the provenance of the detection thatheaslentifier261887481030000003, the first
query can be answered by first obtaining the Swift procestifier of the process that inserted the detection from
the annotations included in the application database:

> sel ect
provenancei d
from
i paw. p2det ect i onpr ov
wher e
detectid = 261887481030000003

> tag: benc@i . uchi cago. edu, 2008: swi ft | ogs: execut e2: pc3- 20090507- 1008- g4dpcnR8
. ps_| oad_execut abl e_db_app- b2bcl ga;

The identifier returned is amxecut e2 identifier, which means in this case that it refers to a sugfokexecution
attempt. In order to obtain the predecessors of this procethe transitivity table we need the actual execute
identifier of the process, which can we can get with the foll@\SQL query:

> sel ect
execute_id
from
execut e2s
wher e
id = "tag: benc@i . uchi cago. edu, 2008: swi ft1 ogs: execut e2: pc3-20090507- 1140- z7ebbr z0
: ps_| oad_execut abl e_db_app- 8d52pga;j’

> tag: benc@i . uchi cago. edu, 2008: swi f t | ogs: execut e: pc3- 20090507- 1140- z7ebbr z0: 0- 5- 5- 1-5-1-2-0

Finally, we determine the filenames of datasets that coi@&¥ inputs in the set of predecessors of the process
that inserted the detection:

> sel ect

filenane

from
trans, dataset_fil enanes

wher e
after="tag: benc@i . uchi cago. edu, 2008: swi ft| ogs: execut e

1 pc3-20090507- 1140- z7ebbr z0: 0- 5- 5- 1- 5- 1- 2- 0

and

bef ore=dataset _id and filenanme like ' %plit%;

11

> file://split_list_output-65fe229c-2da2-4054-997e-fbl67b8c30ed--array/elt-3
file://split_list_output-65fe229c-2da2-4054-997e-fbl67b8c30ed--array/elt-2
file://split_list_output-65fe229c-2da2-4054-997e-fbl67b8c30ed--array/elt-1

These files contain the filenames of the CSV files that werengigeinput to the workflow, and that will result in
the detection row insertion:

P2_J062941_B001_P2fits0_20081115_P2Det ecti on. csv,
P2_J062941_B001_P2fits0_20081115_P2l nageMet a. csv,
P2_J062941_B001_P2fits0_20081115_P2Fr aneMet a. csv

5.2 Core Query 2

The second query asks if the range check (IsMatchColumrg&mgas performed in a particular table, given that
a user found values that were not expected in it. This is implged in theg2. sh script in the Swift SVN
repository with the following SQL query:

> sel ect
dat aset _val ues. val ue
from
processes, invocation_procedure_nanes, dataset_usage, dataset_val ues
wher e

type=' conpound’ and
procedure_nane="is_match_tabl e_col um_ranges’ and

dat aset _usage. direction="O0 and

dat aset _usage. param nane="i nputcontent’ and

processes.id = invocation_procedure_nanes. execute_id and
dat aset _usage. process_id = processes.id and

dat aset _usage. dat aset _id = dataset _val ues. dataset _i d

This returns the input parameter XML for all IsMatchColunami@es calls. These are XML values, and it is
necessary to examine the resulting XML to determine if it wasked for the specific table. There is unpleasant
cross-format joining necessary here to get an actual yessut properly, although probably could usélaKE
clause to peek inside the value.

5.3 Core Query 3

The third core query asks which operation executions weictlgtnecessary for the Image table to contain a par-
ticular (non-computed) value. This uses the additionab&ations made, that only store which process originally
inserted a row, not which processes have modified a row. Sonbe@ £xtent, rows are regarded a bit like artifacts
(though not first order artifacts in the provenance datghasel we can only answer questions about the prove-
nance of rows, not the individual fields within those rowsafis sufficient for this query, though. First find the
row that contains the interesting value and extradt MBCGEI D. Then find the process that created thdACGEI D

by querying the Derby database tab2l MAGEPROV:

> select *» fromipaw p2i mageprov where inmagei d=6294301

| MAGEI D | PROVENANCEI D

6294301 | tag: benc@i . uchi cago. edu, 2008: swi ft| ogs: execut e2: pc3- 20090519
| -2057d8dyi 909: ps_| oad_execut abl e_db_app- dpc8qlbj

Now we have a process ID for the process that created the raw dliery the transitive closure table for all
predecessors for that process (as in the first core querigwilhproduce all processes and artifacts that preceeded
this row creation. Our answer differs from the sample andveeause we have sequenced access to the database,
rather than regarding each row as a proper first-order etrtifthe entire database state at a particular time is a
successor to all previous database accessing operatmagsyprocess which led to any database access before

12

the row in question is regarded as a necessary operations.isTindesirable in some respects, but desirable in
others. For example, a row insert only works because prevdatabase operations which inserted other rows did
not insert a conflicting primary key - so there is data depangbetween the different operations even though they
operate on different rows.

5.4 Optional Query 1

The workflow halts due to failing an IsMatchTableColumnResgheck. How many tables successfully loaded
before the workflow halted due to a failed check? This couatg tmany load processes are known to the database
(over all recorded workflows):

> sel ect
count (*)
from
i nvocati on_procedur e_nanes
wher e
procedure_nane="|oad_csv_file_into_table’

This can be restricted to a particular workflow run like this:

> sel ect
count (process_i d)
from
i nvocati on_procedure_nanes, processes_in_workfl ows
wher e
procedure_nane='|load_csv_file_into_table’
and
wor kf | ow_i d="t ag: benc@i . uchi cago. edu, 2008: swi ft | ogs: execut e: pc3-20090519- 1659-j gc5o0d2f
run’
and
i nvocati on_procedure_nanes. execute_id = processes_i n_workfl ows. process_id

> 3

5.5 Optional Query 2

Which pairs of procedures in the workflow could be swapped thedsame result still be obtained (given the
particular data input)? In our Swift representation of trekflow, we control dataflow dependencies. So many of
the activities that could be commuted are in our impleméaun in parallel. One significant thing one cannot
describe in SwiftScript (and so cannot answer from the pramee database using this method) is commuting
operations on the database. From a Swift perspective sthifinitation of our SwiftScript language rather than in
the provenance implementation. The query lists which gair process executions (of which there are 50x50)
have no data dependencies on each other. There are 2082Tfwevisase SQL query is this:

> sel ect
L.id, Rid
from
processes as L, processes as R
wher e
L. type=" execute’
and
R. type=" execute
and
NOT EXI STS (select * fromtrans where before=L.id and after=R.id)

This answer is deficient in a few ways. We do not take into actoon-execute procedures (such as compound
procedures, function invocations, and operator execsltiothere are 253 processes in total, 50 being executes and
the remaineder being the other kinds of process. If we didrthigely, we would not take into account compound
procedures which contain other procedures (due to lack ofmesupport for nested processes - something like
OPM accounts) and would come up with commutations which daorake sense.

13

6 Additional PC3 Comments and Concluding Remarks

One of the main goals of PC3 was to evaluate OPM, therefoite teaen was asked to export its provenance data
about LoadWorkflow in the OPM format, to import the OPM gragmerated by the other teams, and to perform
the proposed queries on the imported data. The OPM outpuhétoadWorkflow run in Swift is available at
the the web page. Few teams were able to import OPM graph tnerother teams. Since OPM and the Swift
provenance database use similar data models it is faidigstiforward to build a tool to import data from an OPM
graphinto the Swift provenace database. However we obdéraethe OPM outputs from the various participating
teams, including Swift, carry many details of the LoadWarkfimplementation that are system specific, such as
auxiliary tasks that are not specifically related to the Vilovk To answer the same queries it would be necessary
to perform some manual interpretation of the imported OP&pgrin order to identify the relevant processes and
artifacts (datasets).

In order to address the divergence between OPM and Swifepance database data models the DSHandle im-
plementation could be modified so that it supported DSHaroéng aliases to other DSHandles, and so that any
provenance creating aliasing behavior made such alias bdieinstead of returning the original DSHandle.
The alias DSHandle would behave identically to the DSHatithe it aliases, except that it would have different
provenance reflecting both the provenance of the origindd&tlle, and subsequent operations made to retrieve
it. In the above example, thea[0] would return a newly created DSHandle that aliased thermldSHandle
fora.

6.1 Other Issues
6.1.1 Naming

OPM does not specify a naming mechanism for globally idgimif artifacts outside of an OPM graph. DSHandles
are given a URI. That fits in with a proposed OPM modificationsge a Dublin Core identifier to identify artifacts
[15].

6.1.2 Collections

The Swift provenance implemenation has two models of remtasg containment for DSHandles contained inside
other DSHandles (arrays and complex types):

1. constructor/accessor model: in this model, there areiagarocesses called accessors and constructors cor-
responding to th¢] array accessor ar{dL, 2, 3] explicit construction syntax in SwiftScript. This model
is proposed in OPM. In the Swift implementation, this is aseaaf multiple provenances for DSHandles as
discussed in the alias section elsewhere;

2. container/contained model: relations are stored dyreetween DSHandles indicating that one is contained
inside the other, without intervening processes. Thesgiogls can always be inferred from the construc-
tor/accessor model.

6.1.3 Other OPM proposals

The Swift entry made a minor proposal to change the XML schienbetter reflect the perceived intentions of the
OPM authors [16]. It was apparent that the present reprasendf hierarchical processes in OPM is insufficiently
rich for some groups and that it would be useful to represiemalchy of individual processes and their containing
processes more directly. An OPM modification proposal fég th forthcoming. In Swift, this information is
often available through the karajan thread ID which clogabps to the Swift process execution hierarchy: a
Swift process contains another Swift process if its Kardjaead ID is a prefix of the second processes Karajan
thread ID. The Swift provenance database stores valuedifsfcés/DSHandles when those values exist in-core
(for example, when a DSHandle represents and int or a striffggre was some desire in the PC3 workshop for a
standard way to represent this, and a modification propoaglba forthcoming.

14

6.1.4 Missing Swift provenance

Some control-flow based provenance is not collected. A stumtrived example illustrates this, by laundering the
provenance of a boolean value using iti€) language construct:

boolean b = ...input...;
bool ean cl eanb;

if(b) {

cleanb = true;
} else {

cleanb = fal se;
}

In the present implementation, the provenancelafanb is recorded as an assignment from a constant, with link
to the value ofo and its associated provenance. Whilst the above examptntsived, similar situations may
affect real applications. Two proposals for dealing witis tre:

1. More functional language constructs, for example like@*: trinary operator or the Haskellf expres-
sion, which require expressions to more explicitly incledatrol-flow influences on their value. In such a
model, the above example would be writtercbhg®anb = b ? true : fal seandthd f construct
is represented as an operator process.

2. Make DSHandles that influence control flow be recorded pstinto everything that runs inside the influ-
enced scope. This would not need syntax or semantic cham@esiftScript.

6.1.5 Voluminous amounts of data

The present model stores very large amounts of data. It malesieable for Swift to optionally store less data,
leading to a smaller provenance database with reducedamcusome thought would need to be given to the
meaningful options to be made available here.

References

[1] L. Moreau, J. Freire, J. Futrelle, R. McGrath, J. Myersd&. Paulson. The Open Provenance Model.
Technical report, University of Southampton, December7200

[2] Y. Zhao, M. Hategan, B. Clifford, |I. Foster, G. LaszewdkiRaicu, T. Stef-Praun, and M. Wilde. Swift: Fast,
Reliable, Loosely Coupled Parallel Computation.Pimceedings of the First IEEE International Workshop
on Scientific Workflows (SWF 200ppges 199-206, 2007.

[3] I. Foster, J. Vockler, M. Wilde, and Y. Zhao. Chimera: Arijial Data System for Representing, Querying
and Automating Data Derivation. IRroceedings of the 14th International Conference on Sifiersnd
Statistical Database Management (SSDBM;@&lges 37—46, 2002.

[4] L. Moreau, Y. Zhao, I. Foster, J. Voeckler, and M. WildeDXM: XML Dataset Typing and Mapping for
Specifying Datasets. European Grid Conference (EGC 2Q08p.

[5] G. Laszewski, M. Hategan, and D. Kodeboyina. Java CoGA&tkflow. In I. Taylor, E. Deelman, D. Gan-
non, and M. Shields, editorg/orkflows for e-Sciengpages 340-356. Springer, 2007.

[6] R. Henderson. Job Scheduling Under the Portable Batste8y InJob Scheduling Strategies for Parallel
Processing - IPPS '95 Workshpmlume 949 ol.NCS pages 279-294. Springer, 1995.

[7] K. Czajkowski, |. Foster, N. Karonis, C. Kesselman, S.rig W. Smith, and S. Tuecke. A Resource
Management Architecture for Metacomputing Systemslolm Scheduling Strategies for Parallel Processing
- IPPS/SPDP '98 Workshopolume 1459 of NCS pages 62—82. Springer, 1998.

15

[8] I. Raicu, Y. Zhao, C. Dumitrescu, |. Foster, and M. Wildealkon: A Fast and Lightweight Task Execution
Framework. InProceedings of the ACM/IEEE Conference on High Performadetevorking and Computing
(Supercomputing 200,72007.

[9] J. Voeckler, G. Mehta, Y. Zhao, Ewa Deelman, and M. Wildé&kstarting Remote Applications. I8econd
International Workshop on Grid Computing Environme21306.

[10] G. Dong, L. Libkin, Jianwen Su, and Limsoon Wong. Maintag transitive clo-
sure of graphs in sql International Journal of Information Technology 5, 1999.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi£1048.53.

[11] Support for Collections. Proposal distributed durihg Third Provenance Challenge, 2009.
[12] Third Provenance Challenge. http://twiki.ipaw.ifdm/view/Challenge/ThirdProvenance-Challenge, 2009.

[13] B. Clifford and L. Gadelha. Swift Team Entry at the ThirdProvenance Challenge.
http:/itwiki.ipaw.info/bin/view/Challenge/SwiftPc2009.

[14] B. Clifford. Provenance Working Notes. http://wwwiethicago.edu/"benc/provenance.html, 2009.

[15] B. Clifford. Dublin Core identifier naming proposal, ©p Provenance Model Wiki.
http://twiki.ipaw.info/bin/view/OPM/ChangeProposaDaming, 2009.

[16] B. Clifford. Change Proposal: Date Time in XML Schema,ped Provenance Model Wiki.
http://twiki.ipaw.info/bin/view/OPM/ChangeProposali@ Time, 2009.

A Other databases experimented with

The present Swift implementation of provenance uses an Sifdbdse. A number of other forms were briefly
experimented with during development. The two most devedamnd interesting models were XML and Prolog.
XML provides a semi-structured tree form for data. A bendfihis is that new data can be added into the database
without needing an explicit schema to be known to the daldasaddition, when used with a query language such
as Xpath, certain transitive queries become straightfadwath the use of Xpath’s // operator which has specific
benefits to provenance queries. Representing the data g Ruples is a very different representation than a
traditional database, but provides a very different quetgrface which can express interesting queries flexibly.

B prov-init.sql

- this is the schena definition used for the main rel ational provenance
- inplementation (in both sqlite3 and postgres)

DROP TABLE processes;

DROP TABLE execut es;

DROP TABLE execut eZ2s;

DROP TABLE dat aset _usage;

DROP TABLE i nvocati on_procedur e_nanes;
DROP TABLE dat aset _cont ai nnent ;
DROP TABLE dat aset_fil enanes;
DROP TABLE execut es_i n_wor kf | ows;
DROP TABLE dat aset _val ues;

DROP TABLE known_wor kf | ows;

DROP TABLE wor kf | ow_events;

DROP TABLE extrai nf o;

- executes_in_workflow is unused at the nmonent, but is intended to associate
- each execute with its containing workflow
CREATE TABLE execut es_i n_wor kf | ows
(wor kflow_ id char(128),
execute_id char(128)

16

)

-- processes gives information about each process (in the OPM sense)
-- it is augnented by information in other tables
CREATE TABLE processes
(id char(128) PRI MARY KEY, -- a uri
type char(16) -- specifies the type of process. for any type, it
-- nust be the case that the specific type table
-- has an entry for this process.
-- Having this type here seens poor nornalisation, though?

)

-- this gives informati on about each execute.
-- each execute is identified by a unique URI. other infornmation from
-- swift logs is also stored here. an execute is an OPM process.
CREATE TABLE execut es

(id char(128) PRI MARY KEY, -- actually foreign key to processes

starttime nuneric,

duration nuneric,

final state char(128),

app char(128),

scratch char (128)

)

-- this gives informati on about each execute2, which is an attenpt to
-- performan execution. the execute2 id is tied to per-execution-attenpt
-- information such as w apper |ogs

CREATE TABLE execut e2s
(id char(128) PRI MARY KEY,
execute_id, -- secondary key to executes and processes tables
starttime nuneric,
duration nuneric,
final state char(128),
site char(128)
)

-- dataset _usage records usage rel ationshi ps between processes and dat asets;
-- in SwiftScript terns, the input and output paraneters for each

-- application procedure invocation; in CPMterns, the artificts which are
-- input to and output fromeach process that is a Swift execution

-- TODO no primary key here. should probably index both on execute_id and on
-- dataset_id for common queries? maybe add arbitrary ID for sake of it?

CREATE TABLE dat aset _usage

(process_id char(128), -- foreign key but not enforced because nmaybe process
-- doesn’t exist at tinme. same type as processes.id

direction char(1), -- | or Ofor input or output

dataset _id char(128), -- this will perhaps key agai nst dataset table

param nanme char (128) -- the nane of the paraneter in this execute that

-- this dataset was bound to. sonetines this nust
-- be contrived (for exanple, in positional varargs)

)

-- invocation_procedure_nanme maps each execute IDto the nanme of its
-- SwiftScript procedure

-- TODO probably desirable that this is part of executes table
-- but for nowthis is the easiest to pull data from]l ogs.

TODO primary key shoul d be execute_id
CREATE TABLE i nvocati on_procedur e_nanes
(execute_id char(128),
procedur e_nane char (128)

)

17

-- dataset_contai nnent stores the contai nment hierarchy between
-- container datasets (arrays and structs) and their contents.

-- outer_dataset_id contains inner_dataset_id

-- TODO this should perhaps be replaced with a nore OPM I i ke nodel of
-- constructors and accessors, rather than, or in addition to
-- a containnent hierarchy. The relationship (such as array index or
-- structure nmenber nane) should also be stored in this table
CREATE TABLE dat aset _cont ai nnent
(outer_dataset_id char(128),
i nner _dataset _id char(128)

)

-- dataset_filenanes stores the filename napped to each dataset. As sone
-- datasets do not have filenanes, it should not be expected that
-- every dataset will have a rowin this table

-- TODO dataset _id should be primry key
CREATE TABLE dat aset _fil enanes

(dataset_id char(128)
filenane char(128)

)

-- dataset_val ues stores the value for each dataset which is known to have
-- avalue (which is all assigned primtive types). No attenpt is nade here
-- to expose that value as an SQL type other than a string, and so (for
-- exanple) SQ nunerical operations should not be expected to work, even
-- though the user knows that a particul ar dataset stores a nuneric val ue
CREATE TABLE dat aset _val ues

(dataset_id char(128), -- should be primary key
val ue char (128)
)i

-- known_wor kfl ows stores sone information about each workflow | og that has
-- been seen by the inporter: the log filenane, swift version and inport
-- status.
CREATE TABLE known_wor kf | ows
(
wor kfl ow_i d char (128)
wor kfl ow_| og_fil enane char (128)
version char(128),
i mportstatus char(128)
)

-- workfl ow events stores the start tinme and duration for each workfl ow
-- that has been successfully inported
CREATE TABLE wor kf |l ow_events
(workflow_id char(128)
starttime nuneric
duration nuneric

)

-- extrainfo stores lines generated by the SWFT_EXTRA I NFO feature
CREATE TABLE extrainfo

(execute2id char(128)
extrai nfo char(1024)

);

18

