
Dynamic Adaptation of DAGs with Uncertainties in Execution
Times for Heterogeneous Computing Systems

Qin Zheng

Advanced Computing Programme, Institute of High Performance Computing, Agency for
Science, Technology and Research (A*STAR), Singapore 138632.

Abstract

In this paper, we consider the problem of schedule DAGs with uncertainties in task execution
times. Given an off-line planned schedule based on the estimated task execution times, we
first consider when the schedule should be adapted based on the current information about
the status of the system. The objective is to limit the number of runtime adaptations and
optimize the response time of the DAG. We also consider the case without off-line planned
schedules and discuss dynamic planning and adaptation of tasks. We conduct extensive
simulation experiments to quantify the performance of the proposed scheduling algorithms.

Keywords: Directed acyclic graphs, scheduling, adaptation, uncertainty, execution time,
response time

1



1 Introduction

Efficient scheduling of application tasks is critical to achieving high performance in parallel

and distributed systems [3]. We consider scheduling of workflow applications, which can

be represented as a direct acyclic graph (DAG). It is a NP-complete problem as given an

application consisting of a number of jobs, either independent jobs or DAGs, and a set

of heterogeneous resources, the problem of scheduling the jobs into the resources subject

to some criteria is a well-known NP-complete problem [14]. Various static and dynamic

heuristics have been developed to solve this problem and in [15] they are classified into list

scheduling, clustering, duplication-based algorithms and guided random search methods.

Dynamic scheduling assigns each ready task according to the current status of the system.

Each time, a dynamic scheduling algorithm is invoked and if a schedule is not available,

the whole DAG will not be able to complete. On the other hand, static heuristics plan

all tasks based on their expected execution times. However, in many cases, the actual

execution time of a task is different from the expected one [3] and this may greatly affect

the performance of static algorithms [4]. In [5], the authors point out that considering

their average case behavior is not safe, because execution overruns may cause other tasks to

miss their deadlines. Usually, in hard real-time feasibility analysis it is assumed the worst

case execution time as the task computation time. They comment that this would be too

pessimistic, and would cause a waste in processing power.

In [6], approaches to dealing with uncertainties in a scheduling environment are classified

into proactive scheduling and reactive scheduling. The goal of proactive scheduling [7, 8, 9, 3,

1] is to build (static) schedules that are likely to remain valid under different disturbances. In

other words, by considering the uncertainty information when producing a schedule, it aims

to generate a schedule that is more robust. In [3], a genetic algorithm is developed to schedule

DAGs with uncertain (no-deterministic) task execution times to optimize the response time

and the robustness. In [1], for independent tasks with uncertainties in processing times, the

uncertainties are modeled stochastically and the authors develop both greedy heuristics and

global search heuristics.

In reactive scheduling [2, 4, 11, 12], the scheduler decides when and where to execute a

task based on the current information about the status of the system and perhaps an existing

preliminary schedule. Therefore, a schedule is revised or modified as necessary when the

status of the system changes. All the above approaches have an off-line phase where an

initial schedule based on the estimated task execution times is generated. In [2], a DAG is

partitioned into a number of vertical blocks and tasks within a block are independent. In the

runtime phase, the remapper modifies schedules of tasks in a block k using run-time values

2



for task completion times while tasks in block k−1 or before are executing. [4] takes a similar

approach for scheduling independent task on the Grid [13]. Runtime information, such as

the variation in computation and communication costs and the early release of resources,

are taken into account in order to improve the performance of the initial schedule. In [11],

at run-time before each task starts execution, the starting time of each task against its

estimated start time is evaluated to make a rescheduling decision. In [12], an initial contract

that specifies the expected performance of tasks on the assigned resources is created. Due

to the uncertainty of the Grid environment, this contract will be probably violated, which

triggers the task to be migrated to other resources. Another cause of migration is that a

better resource for the task becomes available.

Our work belongs to reactive scheduling. Different from existing approaches in this

category, during runtime a task is considered for adaptation during the period from the

completion of its first parent to the completion of all its parents. A schedule may become

invalid if its parents overrun and the schedule is adapted timely when the timing information

from its parents becomes available. Further, on the other hand, when a parent completes

earlier than expected, its children are considered for adaptation in order to optimize the

response time of the DAG. The algorithms are designed to limit the number of adaptations

and will only do so when a schedule becomes invalid or the response time is likely to be

improved. We also discuss the inefficiency of off-line planned schedules under uncertainties

and present dynamic planning and adaptation of children.

2 Task and System Model

An application is represented by a directed acyclic graph (DAG) G = (V,E) where V is the

set of v tasks and E is the set of e directed edges that define precedence relationships among

the tasks. A v × v matrix denotes the amount of communication data to be transmitted

between any two tasks. For a task, we use predecessors to refer to tasks that it depends on

and descendants to refer to tasks that depend on it. We use parents to refer to its immediate

predecessors and children to refer to its immediate descendants.

The system has a finite set of n heterogeneous processors and these processors are as-

sumed to be fully connected. Further, inter-processor communications are performed with-

out contention and computation can be overlapped with communications. These assump-

tions have been used in [15, 3]. The data transfer rates between processors are represented

by a matrix of size n×n. Intra-processor communication cost is assumed to be zero. A v×n

matrix is used to give the estimated execution time to process each task on each processor,

3



as assumed in [2, 15].

3 Off-line Planning and Effective Dynamic Adaptation

Under Task Execution Time Uncertainties

This approach has two phases. In the off-line planning phase, all tasks in the DAG are

scheduled, for example using HEFT [15]. Note that expected (mean) execution times are

needed for off-line algorithms but we do not rely on them as adaptations will happen during

runtime if the expected value is inaccurate. As schedules are reserved beforehand, during

the runtime phase, the schedule for a task is adapted only when necessary. A schedule is

adapted in the following two cases:

1. The task overruns.

2. The schedule for the task becomes invalid when all its parents complete.

If Case 1 happens, the task is rescheduled as in [16]. This is called isolation so as not to

affect existing schedules on the same processor for other tasks. Note that it could be adapted

on the same processor (i.e., allowed to continue running as in some existing works) if it will

not affect other existing schedules. Note that in [16] only the remaining portion of the task

is rescheduled. In this paper, we can follow this assumption if it is feasible; otherwise, the

task is adapted with its worst-case execution time. Recall that usually, in hard real-time

feasibility analysis it is assumed the worst case execution time is known [5].

Case 2 is because some of its parents overrun and the task is not able to receive inputs

from them at its scheduled start time. Adaptation for these two cases may fail if a new

schedule is not available, which stops this DAG from completion. Also, a scheduling al-

gorithm needs to be invoked to find the new schedule, which takes time. Further, as the

adapted schedule is mostly likely to complete later than the initially planned schedule, it

results in longer response time for the DAG. To address these issues, we will not wait for

all the parents to complete (Case 2). Instead, we propose four cases (Cases 2A, 2B, 3A and

3B) when a schedule should be adapted. The objective is to increase the chance of finding

a new schedule and optimize the response time.

3.1 Adaptation of children considering the timings of its parents

Instead of adapting a schedule when all its parents complete (Case 2), the schedule is adapted

in the following two cases:

4



2A. Any of its parents overruns and makes the schedule invalid.

2B. The schedule is invalid at the time its last parent starts running.

Case 2A allows an invalid schedule to be adapted timely upon the completion of an

overrun parent. It increases the chance of finding a new schedule and gives time for the

scheduling algorithm to do so. The new schedule should be able to receive input from that

parent before it starts. Case 2B complements Case 2A and it is beneficial when i) the task

only has one parent, ii) only the last parent overruns and makes the schedule invalid, iii)

the last parent overruns and completes the latest (which determines the time that the task

can start), or iv) the complete times of its parents are very close. That is, the execution of

this last parent can be used as a “buffer”, which gives time for the scheduling algorithm to

find a new schedule if necessary. Further, it is a very good time to make adaptation decision

given that the completion times of some parents are known while for the other parents,

their actual start times are known. Note that these actual start times may be later than

their planned start times, which may cause them to complete later than expected (based

on their expected execution times). As the schedule under consideration is planned based

on the expected completion times of its parents, it is likely to become invalid. In this case,

the schedule is adapted and its start time is determined by the completion times and actual

start times of its parents.

Besides increasing the chance of finding a new schedule, by making timely adaptations

(once actual timing information is available) in the two cases, the schedule found could

complete earlier, which may also reduce the number of adaptation needed for its children.

Note that when a task overruns (Case 2A) and before it completes, schedules for some of its

children may become invalid. However, we will only adapt them when the overrunning parent

completes (Case 2B) as only then its actual completion time is known and the affected child

can be adapted with a new valid schedule with respect to this parent. Although children

could be adapted proactively according to the worst-case execution time of the overrunning

parent (as it is adapted), doing so may lead to “false alarms”, i.e., schedules for children

appear to be invalid may actually be valid as the overrunning parent is likely to complete

before its worst case. Note that we do not need to consider grandparents as even when

they overrun, the schedule of a task may still be valid if its parents complete earlier than

expected. The number of adaptations by these two cases for a task is at most the number

of its parents (which overrun and make the schedule invalid) plus one. In order to limit the

number of adaptations, we could allow adaptation for Case 2B only. Therefore, the schedule

for each task only needs to be adapted once, which is the same as in Case 2.

5



3.2 Adaptation of children to optimize the response time of the

DAG

In the previous section, a schedule is adapted only when it becomes (or is likely to be)

invalid. Therefore, the final response time of the DAG is mostly likely to be longer than the

initial one. In order to maintain or optimize the response time, a schedule should also be

considered for adaptation when its parents complete earlier than expected. This is because

in this case, the task may be able to complete earlier if adapted. However, recall that as all

schedules have been reserved beforehand, the objective at the runtime phase is to adapt as

less schedules as possible. Also, note that adapting a schedule when its parents complete

earlier does not necessarily reduce the response time. Therefore, in this section, a schedule

is adapted in the following two cases:

3A. Any of its parents completes earlier than expected and the task is on the critical path.

3B. Any of its parents completes earlier than expected and for that parent the task is the

child scheduled to complete the latest.

The objective of Case 3A is to make the task on the critical path complete earlier so

as to minimize the response time. By completing earlier, it also minimizes the number of

adaptation needed for its children. As a task may not have a child on the critical path,

when it completes earlier, Case 3B allows its critical child to be adapted. This child could

complete earlier, which may lead to reduced response time. Note that at most one child is

adapted when any task completes earlier. Therefore, the number of adaptations by these

two cases for the whole DAG is at most the number of its tasks that complete earlier.

Note that even if a parent completes earlier, its child may not be able to start earlier.

The start time of the child is determined by the completion times of its completed parents

and the expected completion times of other parents. Also, when a task completes earlier, we

do not need to adapt its grandchild even if it is on the critical path. Instead, the grandchild

is better to be adapted later as its parents may overrun.

3.3 Scheduling algorithm

A schedule is adapted when Cases 1, 2A, 2B, 3A or 3B happens. The objective of the

scheduling algorithm is to find a new schedule that completes the earliest. It benefits the

overrunning cases as the new schedule has better chance to complete timely so as to minimize

the impact on its children and the number of adaptations for them. It also benefits the

completing earlier case as the task on the critical path or the critical child could complete

6



the earliest leading to reduced response time. Note that for Cases 1, 3A and 3B, only

one task at a time needs to be adapted. However, in Cases 2A and 2B, multiple children

may need to be adapted. These children are adapted in the increasing order of the earliest

(scheduled) start time of their own children with the objective to minimize the number of

adaptations needed for their own children.

4 Efficient Dynamic Planning and Adaptation Under

Task Execution Time Uncertainties

This approach does not require off-line planned schedules. During the runtime phase, sched-

ules are planned for certain tasks, which will run in the near future. The rationales and

detailed explanation on this dynamic planning approach are given next. This approach can

reduce the number of adaptations due to task overrun (Case 1). We propose a generalized

Case of Case 3A and a new case for Case 3B to optimize the response time.

4.1 Inefficiency of off-line planned schedules

When task execution times are uncertain, off-line planned schedules may not be necessary

as they are likely to be violated often. In Figure 1, suppose that tasks 3, 4, 5, and 7 are

scheduled to run in 3, 4, 5, and 7 hours, respectively. When task 3 overruns by 2 hours, the

planned schedules for tasks 4 and 5 become invalid and the planned schedule for task 7 is

also likely to be invalid. Therefore, a task overrun could make the planned schedules for all

its descendants become invalid. Note that it leads to resource inefficiency as these scheduled

are reserved.

On the other hand, when a task completes earlier, in order to reduce the response time,

its descendants need to be adapted. For example, if task 1 completes earlier, in order to

optimize the response time, its dependents (tasks 2, 6 and 7) on the critical path need to

be rescheduled and hence their planned schedules are not utilized. Finally, note that during

runtime, either scenario (task 3 overruns or task 1 completes earlier) may cause the critical

path (for the remaining DAG) to change, as shown in the figure.

4.2 Dynamic planning of children

Instead of off-line planned schedules, tasks are dynamically planned for the near future.

Specifically, a task is planned when any of its parents completes or its last parent starts,

whichever is earlier. That is, a task is planned only after its parents start running. After

7



0

3

4

5

7

1

2

6

The original
critical path

The new
critical path

Figure 1: Inefficiency of off-line planned schedules for a DAG and dynamics of the critical
path.

all its parents complete, this task will become one of the next set of tasks to run. When a

parent completes or the last parent starts, there may be a number of unplanned children.

These children are scheduled one by one according to their potential impact on the response

time. This impact can be determined based on the expected start time of the child (based on

available information on the actual completion time of the parent or the actual start times

of all its parents) and its upward rank [15]. The former is similar to the downward rank [15],

which is the longest distance from the entry task to this child (exclusive), but is updated

with actual (computing and communication) time values of completed tasks and hence is

accurate. The upward rank is the length of the critical path from this child (inclusive) to

the exit task. Therefore, the child is scheduled according to the expected completion time

of the critical path from it to the exit task. Note that the upward ranks only need to be

calculated once in off-line and they remain fixed in the runtime phase.

A task is planned based on available timing information of its parents and its schedule

may adapted in the next section when more such timing information becomes available

(i.e., its parents overrun or complete earlier). It is scheduled according to its maximum

(worst-case) running time while the resource will be released/reclaimed if (in most cases) it

8



completes earlier than the worst case. The objective is to reduce the Case 1 adaptation as

when a task overruns, it is less affordable in time to find a new schedule. It is different from

Case 2A and Case 2B adaptations where a task may have chances to be adapted a few times

before it actually runs. Therefore, by planning according to the worst-case running time, we

could minimize Case 1 adaptations which may fail or delay the execution of the DAG. We

will demonstrate its effectiveness in simulations. Finally, note that schedules are reserved to

the maximum execution times for tasks whose parents are running and these schedules will

be executed soon and released upon their completions. In contrary, in the off-line planning,

schedules are reserved (to the mean running times) for all tasks and these schedules will be

released depending on when they will complete. Further, if robustness against uncertainties

is provided in the off-line planning, schedules may have to be reserved to the maximum

running times for all tasks. As a result, much more resources are needed and the response

time for the DAG is increased significantly.

4.3 Adaptation of children

A schedule is adapted upon Cases 2A or 2B. In the following, we generalize Case 3A to

take into account the dynamics of the critical path. In order to optimize the response time,

the dynamics of the critical path should be watched closely and tasks on the (new) critical

path should be adapted if they could complete earlier. Case 3A only applies to the fixed

critical path scenario and it allows a task on the critical path to be adapted if one of its

parents completes earlier. If none of its parents completes earlier, a critical task will not be

adapted even if other tasks complete earlier and release their resources. Instead, children

on these tasks, which are not on the critical path, are adapted. Also, even if a parent of a

task completes earlier, the task is not adapted if it is not on the critical path at that time.

However, later it may be on the critical path but will not have chance to be adapted.

Given the above considerations, a schedule is adapted if

3A-G. The task is on the critical path when another task (say j) completes earlier than

expected.

Here the (critical) task may be on the critical path before task j completes or it is on

the (new) critical path after task j completes. Task j may or may not be a parent of the

task under consideration. Note that at most one critical task (who has parents running

or j is its last parent) is adapted when any task completes earlier. Therefore, the number

of adaptations by Case 3A-G for the whole DAG is at most the number of its tasks that

9



complete earlier than expected. Note that we could further reduce this number by restricting

the adaption to happen only when the critical path changes.

Next, we propose a new case for Case 3B and a schedule is adapted if

3B-N. Any of its parents completes earlier than expected and for that parent the task is

the child with the largest potential impact on the response time.

Case 3B-N will happen if the task completing earlier (task j) does not have a child on

the critical path. It is different from Case 3B as it takes into account the expected start

time of a child (based on available information on the actual start times and/or completion

times of its parents) and its upward rank. If the critical child completes earlier, the response

time could be reduced. Note that for Case 3B-N, at most one child is adapted when any

task completes earlier. Therefore, the number of adaptations required for the whole DAG is

at most the number of its tasks that complete earlier.

4.4 Scheduling algorithm

A schedule is adapted when Cases 1, 2A, 2B, 3A-G or 3B-N happens. The scheduling

algorithm will choose the (new) schedule on the processor where it completes the earliest

(with void filling between existing schedules). It benefits the overrunning cases as the new

schedule has better chance to complete timely so as to minimize the impact on its children

and the number of adaptations. It also benefits the completing earlier case as tasks on the

critical path or the critical child may complete earlier leading to reduced response time. The

start time of the new schedule is determined by the expected/actual completion times of its

parents and the communication time from them to the new schedule. Note that for Cases

1, 3A-G and 3B-N, only one task at a time needs to be adapted. However, in Cases 2A and

2B, multiple children may need to be adapted. The children are adapted according to their

potential impact on the response time as well.

References

[1] V. Shestak, J. Smith, A.A. Maciejewski, and H.J. Siegel, “Stochastic robustness metric and its use for
static resource allocation,” Journal of Parallel and Distributed Computing, vol. 68, no. 8, pp. 1157-1173,
August 2003.

[2] M. Maheswaran and H.J. Siegel, “A dynamic matching and scheduling algorithm for heterogeneous
computing systems,” in Proceedings of the Heterogeneous Computing Workshop, pp. 5769, 1998.

[3] Z. Shi, E. Jeannot, and J.J. Dongarra, “Robust task scheduling in non-deterministic heterogeneous
computing systems,” in Proceedings of the IEEE International Conference on Cluster Computing, pp.
1-10, 2006.

10



[4] A.H. Alhusaini, C.S. Raghavendra, and V.K. Prasanna, “Run-time adaptation for grid environments,”
in Proceedings of the 15th International Parallel and Distributed Processing Symposium, pp. 864874,
2001.

[5] K. Kim, L.L. Bello, S.L. Min, and O. Mirabella, “On Relaxing Task Isolation in Overrun Handling
to Provide Probabilistic Guarantees to Soft Real-Time Tasks with Varying Execution Times,” in
Proceedings of the 14th Euromicro Conference on Real-Time Systems (ECRTS), 2002.

[6] A.J. Davenport and J.C. Beck, “A survey of techniques for scheduling with uncertainty,” preprint,
2000.

[7] S. Darbha and S. Pande, “A robust compile time method for scheduling task parallelism on distributed
memory machines,” The Journal of Supercomputing, vol. 12, no. 4, pp. 325347, 1998.

[8] L. Boloni and D. Marinescu, “Robust scheduling of metaprograms,” Journal of Scheduling, vol. 5, no.
5, 2002.

[9] D. England, J. Weissman, and J. Sadagopan, “A new metric for robustness with application to job
scheduling,” in Proceedings of HPDC, pages 135143, 2005.

[10] A. Dogan and F. Ozguner, “Genetic algorithm based scheduling of meta-taskswith stochastic execution
times in heterogeneous computing systems,” Cluster Computing, vol. 7, no. 2, pp. 177190, 2004.

[11] R. Sakellariou and H. Zhao, “A low-cost rescheduling policy for efficient mapping of workflows on grid
systems,” Scientific Programming, vol. 12, no. 4, pp. 253262, 2004.

[12] F. Berman, H. Casanova, A. Chien, K. Cooper, H. Dail, A. Dasgupta, W. Deng, J. Dongarra, L.
Johnsson, K. Kennedy, C. Koelbel, B. Liu, X. Liu, A. Mandal, G. Marin, M. Mazina, J. Mellor-
Crummey, C. Mendes, A. Olugbile, M. Patel, D. Reed, Z. Shi, O. Sievert, H. Xia, and A. YarKhan,
“New grid scheduling and rescheduling methods in the GrADS project,” International Journal of
Parallel Programming, vol. 33, no. 2-3, pp. 209229, 2005.

[13] I. Foster and C. Kesselman, Eds., The Grid: Blueprint for a Future Computing Infrastructure. 2nd
Edition. Morgan Kaufmann Publishers, 2004.

[14] M. J. Gonzalez, “Deterministic processor scheduling,” ACM Computing Surveys, vol. 9, no. 3, pp.
173-204, September 1977.

[15] H. Topcuoglu, S. Hariri, and M. Wu, “Performance-effective and low-complexity task scheduling for
heterogeneous computing,” IEEE Trans. on Parallel and Distributed Systems, vol. 13, no. 3, pp. 260-
274, March 2003.

[16] M.K. Gardner and J.W.S. Liu, “Performance of Algorithms for Scheduling Real-Time Systems with
Overrun and Overload,” in Proceedings of the 11th Euromicro Conference on Real-Time Systems, June
1999.

11


