
Site Selection in Swift Workflow Execution 

Introduction 
Basically, site will be selected dynamically in Swift. Site selection (scheduling) algorithm is an 
adaptive one considering previous jobs execution performance of sites. Based on my 
understanding of current Swift implementation, this document describes a set of complete site 
selection methods. The main difference from the current implementation is that, sites will be 
divided into different groups explicitly based on their status. Each time a target site will be only 
selected from one of group (called candidate sites set) based on their scores, which is promising 
to decrease the possibility of selecting bad performance sites. In addition, scores of each site will 
be adjusted according to its job execution performance such as submission time, queue time, job 
finishing status and so on. 
 
Different Site Status 
Divide sites into different sets: 
1. Candidate sites set: these sites are candidates to be selected based on weighted-random 

selection algorithm. At the beginning, it includes all sites in sites.file with initial scores 
(initialScore).  

2. Hibernated sites set: these sites comprise a queue according to in an arrival order. These sites 
couldn’t be chosen for submitting jobs, but they can enter candidate sites when meeting some 
requirements. In addition, when they become candidate sites again, their initial scores would 
be reset to 0 or 1, which might mean new chance being evaluated again. At the beginning, this 
set could be null. However, it could include those sites, which are filtered when generating 
sites file based on calibration scripts. For large workflow, the initially filtered sites might 
become available again due to dynamic site performance fluctuation.  

3. Overloaded sites set: these sites are already up to the limit (max_jobs_per_site) of maximum 
concurrent jobs allowed on them.  

 
Switching Conditions of Site Status 
When some conditions are met, the status of sites could be changed correspondingly. 
1. Candidate sites set  Hibernate sites set: 

a. Job execution failure: when a site fails to finish a job (referred as temp failed site), it 
should be frozen temporarily. A job execution failure might indicate that there is 
something wrong with this site and it is not proper to execution Swift job for this 
moment. Note that there probably are other jobs, which have been already submitted, on 
the temp failed site, so those jobs should be allowed to continue.  
According to this, there are some kinds of situations: 

a1: there is no other job on this temp failed site. 
a2: there are some other jobs on this temp failed site.. 



Anyway, a temp failure doesn’t necessarily mean the site couldn’t be chosen forever. So 
these sites could re-enter candidate sites set. 

b. Long queue time: when a job waits on certain site for too long time, that site would be 
hibernated temporarily. The key factor is the definition of “long time”, and this should be 
a threshold time (queueTimeThrottle). Initially, this threshold could be set based on the 
queue time distribution of my globus jobs, which could be turned into CDF graph.  
This threshold should be set carefully, avoiding too many sites being considered 

unavailable. In implementation, it can be also a parameter in properties file. 
As far as implementation is concerned, there are two situations: 
Replication-enabled: when replication is enabled, a replica job will be submitted to 
another site after a replication threshold time (note that it is different from above 
threshold time). Once one of replica gets started to execute, all other replicas would be 
cancelled. At this time, those sites with extremely long queue times could be judged and 
assessed as candidate sites or hibernated sites. 
Replication-disabled: once a site finishes a job successfully, the queue time would be 
calculated and compared with the threshold time, deciding if it is still a candidate site or 
should be hibernated. 

2. Hibernate sites set  Candidate sites set: 
a. Candidate sites set are null: when all sites are either hibernated or overloaded, job could 

not be submitted any more. At this time, the head site of hibernate sites queue can be 
chosen to become a candidate site, so the site is entitled a new chance after an amount of 
time. For these sites, the score should be set to 0 when they become candidate sites 
again. 

b. The temp failed site in hibernate sites queue finishes a job successfully: this corresponds 
to above situation a2. When that job is set as hibernated due to job execution failure at 
that time, there are other jobs on it. If the site can finish other job successfully, it 
indicates that that the previous execution failure is caused by a temporary error and this 
site is still not too bad. For these sites, the score should be set to 1 (or a reasonable 
number more than 0) when they become candidate sites again. This is a bit different from 
the first situation. 

3. Candidate sites set  Overloaded sites set: 
The number of job submitted to a site reach the limit (max_jobs_per_site) of allowed jobs on 
that site, the site would be considered as overloaded and no more jobs could be submit to it 
at this time.  

4. Overloaded sites set  Candidate sites set 
When the overloaded site finishes a job successfully, the number of jobs on that site would 
be definitely less than its limit (max_jobs_per_site). Consequently, the site will become a 
qualified candidate site again. 

 
 
 



Validate 
Sites

Hibernated 
Sites 

Candidate 
Sites 

Overloaded 
Sites

Initially selected Filtering out 

Job failure / Long queue time 

No candidate site / Job success

Number of submitted jobs reaches limit 
Finishing a job 

Fig. Sites Status Switching 
 
Scoring mechanism 
1. Increasing scores of sites 

a. A job is submitted to a site successfully (jobSubmissionTaskLoadFactor). 
b. A file operation is done successfully on a site (fileOperationTaskLoadFactor). 
c. A file is transferred to a site successfully (transferTaskLoadFactor). 
d. A site finishes a job successfully (successFactor). 

2. Decreasing scores of sites 
a. A job is going to be submitted to a site (jobSubmissionTaskLoadFactor). 
b. A file operation is going to be done on a site (fileOperationTaskLoadFactor). 
c. A file is going to be transferred to a site (transferTaskLoadFactor). 
d. A site fails to execute a job (In fact, the site would be hibernated, so the score will be 

decreased to 0) (failureFactor). 
e. With replication enabled, once one of replica job get started to execute on certain site 

(referred as active site), all of other replica jobs would be cancelled, so the corresponding 
sites’ scores should be decreased at the meantime (queueTimeFactor). However it is 
worth noting that replications are not launched at the same time. So it’s unfair to 
decrease scores of all other sites. Only those sites whose queue times are longer than that 
of active site should be penalized. 

f. When the job submission time of a site hits certain threshold, the score of that site should 
be decreased (submissionTimeDelta). 

 
Strategies 
1. Replication 
After a job is submitted to a site, the queue time will be calculated and recorded. If the queue time 



is up to a threshold (replication.min.queue.time), a replica job will be launched. Once one of 
replica job begins to execute, all of other replica jobs would be cancelled. The max number of 
replica jobs is defined by replication.limit. Replication can provide more guarantees for a single 
job to get started as soon as possible, but it will incur overhead at the meantime. Because Swift 
uses GRAM to submit jobs, and the submission stage in GRAM is one of the most CPU 
expensive stages. In addition, replication.min.queue.time could be set based on the knowledge of 
queue time distribution of target Grid environment. 
  
Site Selection Algorithm 
1. weighted-random selection: randomly selecting a site from candidate sites set, the higher 

score a site has, more probably the site would be selected. 
2. best scores selection: always select the site with highest score from candidate sites set. 
Note: currently weighted-random selection algorithm is adopted in Swift. Best scores selection 
method might be also tried. Comparisons could be made between these two methods. 
 
Some Controlling and Tuning Parameters 
1. Score 
This is the most important parameter for site selection. It is the reflection of comprehensive 
performance of each site. The final site selection decision is made based on this parameter. 
Currently, I use some simple methods to set an initialScore for each site involving all my 
observation sites set based on the results of some calibration scripts. It is a kind of exploration. 
There are two functions of setting initialScore. One is to filter some sites with extremely bad 
performance in real time; the other one is to help scheduler to make proper decision at the 
beginning. From experiment to real production, some changes are requirements.  

Solution 1: Improving my current calibration scripts.  
Save those results in database, instead of separate files, which could support all kinds of 
queries. In my experience, I feel that there is always some changes in OSG and such 
fluctuations should be allowed due to the nature of Grid environment. Consequently, static 
methods of probing remote sites are not very suitable. In my experiments, I often try to 
discover resources actively and manually using some monitoring systems such as VORS in 
OSG. So practical dynamic resource discovery for Swift, which could be combined with 
application deployment, might be a topic for exploration. 
Solution 2: Utilizing some current Grid services.  
For example, ReSS in OSG. The Resource Selection Service (ReSS) is the information 
provider which collects data from each supporting sites and publishes such data in Condor 
ClassAd format. In addition, OSG Matchmaking (OSGMM), which in fact is a Condor-G job, 
would use such information to do matching. The information provided by ReSS might be 
transformed and utilized by Swift scheduler. However I’m not sure if OSGMM could replace 
the site selector in Swift, because it requires a detailed job requirement description to make 
matching. There is no such a job description. Maybe for Swift users, they just want their 
workflows to be executed and might not be willing to write such descriptions. In order to use 



OSGMM, Swift has to generate such a job description according to user applications.  
2. TScore 

It is derived from Score and it is a function of bounding the value of score.  

)*arctan(*/)log(* ScoreCapscoreHighCBeTScore π=  

3. jobThrottle 
This parameter is a controlling throttle which will affect the maximum number of allowed 
jobs submitted to a site. 

4. max_jobs_per_site 
The maximum number of allowed jobs is calculated using the formula:  

max_jobs_per_site = 1 + jobThrottle*TScore 
5. queueTimeThrottle 

This parameter is a time threshold deciding if a site where a job is waiting for execution too 
long should be thrown into hibernation status. It could be a variable which is given a initial 
value according to experience. During execution, this threshold could be adjusted 
dynamically based on previous job executions. The simplest way to set this value is as 
follows:or example,  

queueTimeThrottle = average queue time + c 
Note: c is modifying factor, and it can be a constant set in swift.properties. 

6. jobSubmissionTaskLoadFactor / fileOperationTaskLoadFactor / transferTaskLoadFactor / 
successFactor / failureFactor 
These parameters are factors used to adjust scores of sites. They should be variables, because 
chances are less finding best value combinations of these parameters for all applications. 
However, for specific application and grid environment, optimal values could be found. 

7. queueTimeFactor 
With replication enabled, this parameter could only be used to change the scores of sites.  

8. submissionTimeDelta 
Currently, it is calculated with the following formulas: 

1000/TimesubmissionTimeFactorsubmissionTimeBiassubmissionTimeDeltasubmission ∗+=
TimeFactorsubmissionTIMESUBMISSIONBASETimeBiassubmission  __ ∗−=  

)__/( TIMESUBMISSIONBASEionTimemaxSubmisstorsuccessFacTimeFactorsubmission −−=  

9. replication.min.queue.time, replication.limit 
These parameters together control the number and producing frequency of replica jobs. Like 
queueTimeThrottle, this parameter is also a threshold time. Its value could be derived from 
the learning of queue time distribution in target Grid environment such as OSG and Teragrid. 

 
 


	Site Selection in Swift Workflow Execution
	Introduction
	Different Site Status
	Switching Conditions of Site Status
	Scoring mechanism
	Strategies
	Site Selection Algorithm
	Some Controlling and Tuning Parameters



