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Abstract—Fault-tolerant scheduling is an imperative step for large-scale computational Grid systems, as often geographically

distributed nodes cooperate to execute a task. By and large, primary-backup approach is a common methodology used for fault

tolerance wherein each task has a primary copy and a backup copy on two different processors. For independent tasks, the backup

copy can overload with other backup copies on the same processor, as long as their corresponding primary copies are scheduled on

different processors. However, for dependent tasks, precedence constraint among tasks must be considered when scheduling backup

copies and overloading backups. In this paper, we first identify two cases that may happen when scheduling dependent tasks with

primary-backup approach. For one of the cases, we derive two important constraints that must be satisfied. Further, we show that

these two constraints play a crucial role in limiting the schedulability and overloading efficiency of backups of dependent tasks. We

then propose two strategies to improve schedulability and overloading efficiency, respectively. We propose two algorithms, called the

Minimum Replication Cost with Early Completion Time (MRC-ECT) algorithm and the Minimum Completion Time with Less Replication

Cost (MCT-LRC) algorithm, to schedule backups of independent jobs and dependent jobs, respectively. Algorithm MRC-ECT is shown

to guarantee an optimal backup schedule in terms of replication cost for an independent task, while MCT-LRC can schedule a backup

of a dependent task with minimum completion time and less replication cost. We conduct extensive simulation experiments to quantify

the performance of the proposed algorithms and strategies.

Index Terms—Grid computing, directed acyclic graphs, independent tasks, primary-backup, fault-tolerance.
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1 INTRODUCTION

GRID computing has emerged as the next-generation
parallel and distributed computing methodology that

aggregates dispersed heterogeneous resources for solving
various kinds of large-scale parallel applications in science,
engineering, and commerce [1]. These applications may be
submitted by Grid users dynamically via Grid middleware
and may have tight deadline requirements. Further, these
applications may consist of independent jobs (for example,
parameter sweep applications) and dependent jobs modeled
by directed acyclic graphs (DAGs) which may consist of tens,
hundreds, or even thousands of interdependent component
tasks [2]. Running applications in such environments is
susceptible to a wide range of failures as revealed by a recent
survey [3] with real users on fault treatments in the Grid.

Failures or error conditions due to the inherently unreliable
nature of the Grid environment include hardware failures
(e.g., host crash and network partition), software errors (e.g.,
memory leak and numerical exception), and other sources of
failures (e.g., machine rebooted by the owner, network
congestion, and excessive CPU load) [2]. As Grids are much
more complex and heterogeneous than traditional comput-
ing systems, in a grid, one can discover a failure in a grid
processor about what he/she could never know its hardware
platform model has existed [3]. However, the issue of
handling failures in the Grid services model as represented
by the Open Grid Services Infrastructure (OGSI) and its
Globus toolkit 3 (GT3) implementation remains largely
unexplored [4]. This paper considers the problem of fault-
tolerant scheduling of independent and dependent jobs
arriving dynamically with deadline requirements in compu-
tational Grid, against processor failures. This problem is an
NP-complete problem as given an application consisting of a
number of jobs, either independent or dependent, and a set
of heterogeneous resources, the problem of scheduling the
jobs into the resources subject to some criteria (without fault
tolerance) is a well-known NP-complete problem [5].

1.1 Related Works

In [6], fault-tolerant approaches are classified into 1) embed

fault-tolerant mechanisms within the middleware software

layer as in systems like Condor [7] or Legion [8] or 2) embed

fault-tolerance mechanisms within algorithms. Works in [2],
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[9], and [4] belong to the first category. Primary-backup
approach, also called passive replication strategy, belongs to
the second category. It was first studied in [10] where one
server is selected as the primary and all the others are
backups. If the primary fails, then a failover occurs and one of
the backups takes over. In this paper, we consider a different
approach where a backup is scheduled for each primary and
they are located on two different processors. In this approach,
a backup is executed when its primary cannot complete
execution due to processor failure. It does not require fault
diagnosis and is guaranteed to recover all affected tasks by
processor failure. This approach is very useful for Grid where
fault diagnosis is very difficult as one can discover a failure in
a grid processor about what he/she could never know its
hardware platform model has existed [3]. Most works using
the primary-backup approach [11], [12], [13], [14], [15]
consider scheduling of independent tasks. Backup over-
loading is introduced in [11] to reduce replication cost of
independent tasks which allows scheduling backups of
multiple primaries on the same or overlapping time interval
on a processor. However, there are no algorithms in the
literature that can guarantee to find an optimal schedule for
backups of independent tasks in terms of replication cost. In
this paper, we propose an algorithm that is guaranteed to
find an optimal backup schedule for each independent task.
In [16] and [17], to schedule tasks with precedence constraint,
“strong primary copy” is considered which is assumed to
never encounter the case where a primary cannot receive
results from all its predecessors. As a result, their algorithm
eFRD considers only direct predecessors of a task when
scheduling and cannot tolerate failures of its other prede-
cessors. In this paper, we consider all predecessors of a task,
and thus, a task can always receive results from all its
predecessors even if any of these predecessors fails.

1.2 Motivations

Our work is motivated by the need of efficient algorithms that
can schedule both independent and dependent jobs on
computational Grids so that jobs can run successfully even
when processor failure occurs. Besides the need to deal with
processor failure, grid applications, which are, in general,
distributed, heterogeneous multitask applications, should be
able to handle failures sensitive to the context of their own
component tasks. For example, for DAGs where component
tasks have dependencies among themselves, failure occurs
when a task is unable to receive results from any of the tasks
that it has dependency on. Therefore, precedence constraint
among tasks must be considered while scheduling backup
copies and overloading them. Scenarios where scheduling of
backups of DAGs are allowed and scenarios that should be
forbidden to enable fault tolerance must be clearly identified.
The effect of this constraint on schedulability and overloading
efficiency of backups must be analyzed. Consequently,
strategies to improve both of them need to be developed.
For both kinds of tasks, efficient algorithms must be
developed which can schedule their backups with minimum
completion time and minimum replication cost. To the best of
our literature knowledge, this study is first of its kind to
collectively consider all types of tasks, which arise in real-life
situation, toward a fault-tolerant scheduling in Grid systems.

1.3 Scope of This Work and Our Contributions

The scope of our work is restricted to designing fault-tolerant
scheduling algorithms and to evaluate their performance for
all three categories of jobs—independent, dependent, and hybrid
tasks—that are suitable for computational Grid systems. We
will not be considering system level issues such as, how
communication is effected and on the underlying protocols for
communications. Within the scope of this formulation, our
contribution in this work is fivefold. First, we analyze
constraints that must be satisfied for backup scheduling
and overloading of dependent tasks. Second, two strategies
are proposed which uses information on maximum fault
recovery time to improve schedulability; and interleaving
technique to improve overloading efficiency, respectively.
Third, we develop an algorithm which can determine the
earliest possible start time for a backup of a dependent task.
Fourth, two separate algorithms are developed which can
schedule backups with minimum replication cost and
minimum completion time, respectively. Finally, to calculate
replication cost of a backup for both kinds of tasks, we
develop an efficient algorithm.

The remainder of this paper is organized as follows:
Section 2 describes the system model and states the problem.
Sections 3, 4, and 5 consider dependent tasks. Constraints in
backup scheduling and overloading are discussed in Sec-
tion 3. Consequently, strategies to improve backup schedul-
ing and overloading are proposed in Section 4. An algorithm
which determines the earliest possible start time of a backup
under these constraints and with the proposed strategies is
described in Section 5. Section 6 presents the proposed
algorithms for scheduling independent tasks and dependent
tasks. Simulation results are discussed in Section 7. Section 8
provides concluding remarks and discusses future work.

2 SYSTEM MODEL AND PROBLEM STATEMENT

2.1 Task Model

Both independent jobs and DAGs comprise a number of
tasks. E is a set of edges that defines the precedence
relationships among tasks of a DAG. Each job has three
attributes: arrival time ta, deadline td, and execution time for
each task. The Grid system considered has M heteroge-
neous processors. The execution time of a task on processors
is heterogeneous and we use teðjÞ to denote the execution
time of a task j on a processor Pe. Each task has a primary
and a backup. The execution time of the primary and the
backup could be different depending on the processors they
are scheduled on.

Both kinds of jobs are real-time, aperiodic, and non-
preemptive. Aperiodic jobs are those whose arrival times
are not known a priori and therefore must be scheduled
dynamically when they arrive. Nonpreemptive jobs are those
that cannot be interrupted during execution and must
finish to completion. Each task cannot be divided further
for parallel processing, and thus must be scheduled in its
entirety on a processor.

2.2 Fault Model

Tasks will fail when the processor where they are located
fails due to hardware faults. The faults can be transient or
permanent and are assumed to be independent. The
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maximum number of processors that are expected to fail at

any instant of time is assumed to be one. For each task, the

backup is scheduled after its primary. However, it is not

required that backups of all tasks in a job must be scheduled

after primaries of all tasks in a job. There exists a fault-

detection mechanism such as fail-signal and acceptance test

to detect processor and task failures [11], [2]. If a failure is

detected in the primary, the backup will execute.
Backup overloading is defined as scheduling backups of

multiple primaries on the same or overlapping time interval

on a processor. Backup overlapping is shown in Fig. 1 where

two primary copies are scheduled on processors 1 and 3 and

their backups are scheduled in an overlapping manner on

processor 2. The following are the conditions under which

backups can be overloaded on a processor [11], [13]:

1. Backups scheduled on a processor can overload only
if their primaries are scheduled on different proces-
sors. Therefore, although several backups may be
overlapped on a processor, at most, one of them needs
to be executed under the single processor failure
model. The case that several overlapped backups
execute concurrently will not happen.

2. At most, one of these primaries is expected to
encounter a fault. This is to ensure that, at most,
one backup is required to be executed among the
overloaded backups.

3. At most, one version of a task is expected to
encounter a fault. In other words, if the primary of a
task fails, its backup always succeeds. This condition
is guaranteed by the assumption that the minimum
required value of mean time to failure (MTTF)1 is
always greater than or equal to the maximum task
execution time in a primary-backup approach.

For DAGs, we assume the minimum required value of

MTTF is always greater than or equal to the maximum job

execution time. Maximum failure recovery time which denotes

the maximum amount of time to recover a processor failure

in the system is also an important parameter and we will

discuss it later. When a primary finishes execution, its

backup is deleted which is called “resource reclaiming.”

Resource reclaiming is also invoked when the primary

completes earlier than its estimated execution time. Re-

source reclaiming is necessary so that the backup slot can be

released timely for new tasks.

2.3 Problem Statement

We now formally state the problem to be tackled. Given a
Grid system, task and fault model described above, we seek a
schedule for primary and backup for each task, so that the
response time and replication cost of a task are minimized, while
both copies meet the deadline.

3 CONSTRAINTS IN SCHEDULING AND BACKUP

OVERLOADING OF DEPENDENT TASKS

For independent tasks, scheduling of backups is independent
and backups can overload as long as their primaries are
scheduled on different processors. However, backup sche-
duling and overloading of dependent tasks are nontrivial and
additional constraints need to be identified. In this section,
we discuss these constraints and find that they limit backup
schedulability and overloading efficiency significantly.

A DAG is shown in Fig. 2 where arrow denotes
precedence relationships among tasks. In the following, we
consider scheduling primary and backup of task j. We first
discuss how to schedule task j considering only one direct
predecessor task i. Then, we discuss how to schedule j
considering all its predecessors. Finally, we discuss the
constraint in backup overloading.

3.1 Scheduling a Task Considering One Direct
Predecessor

We consider scheduling task j with one direct predecessor i.
Let tP ;sðjÞ and tP ;fðjÞ denote the start and finish time of
primary of j. Let tB;sðjÞ and tB;fðjÞ denote the start and finish
time of backup of j. Obviously, task j can only start execution
after receiving result from task i. Therefore, primary of j
must start after primary of i finishes executing. That is

tP;sðjÞ > tP;fðiÞ: ð1Þ

However, a key question to be considered is that does
primary of j have to start after backup of i? That is

Case1 : tP ;sðjÞ > tB;fðiÞ: ð2Þ

This case is shown in Fig. 3a and is referred to as Case1.
In this case, primary of j can always receive results from i
even if primary of i fails. However, response time and
schedulability of j are constrained. Therefore, we allow
primary of j to start before backup of i finishes. That is

Case2 : tP ;sðjÞ < tB;fðiÞ: ð3Þ

This case is referred as Case2 and is shown in Fig. 3b. In
Case2, if primary of i fails, primary of j cannot receive results
from backup of i which is still executing. Consequently,
backup of j must be able to receive result and execute. To
make it possible, the following two conditions must be
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1. MTTF is defined as the expected time for which the system operates
before the first failure occurs.

Fig. 1. Backup overlapping between two tasks.

Fig. 2. A Directed Acyclic Graph (DAG).



satisfied for Case2. Let PP ðjÞ and PBðjÞ denote the two

processors where primary and backup of j are scheduled,

respectively. We have

Condition1 : tB;sðjÞ > tB;fðiÞ; ð4Þ

Condition2 : PBðjÞ 6¼ PP ðiÞ: ð5Þ

Lemma 1. Backup of task j can only start after backup of task i

finishes and must not be scheduled on the processor where

primary of i is located.

Proof. First, we prove that backup of task j can only start

after backup of task i finishes (Condition1). Condition1

must be satisfied as otherwise, when PP ðiÞ fails, both

primary and backup of j cannot receive result from

backup of i which is still executing. The task cannot be

completed. Next, we prove that backup of task j must

not be scheduled on the processor where primary of i is

located (Condition2). Condition2 must be satisfied as

otherwise, when PP ðiÞ fails, backup of j will also fail

while primary of j cannot receive result from backup of i.

This task cannot be completed. tu

The significance of this lemma is that it specifies the

earliest possible start time and processors on which backup

of task j can be scheduled, with only one direct predecessor

task i. For example, as shown in Fig. 3b, backup of j cannot

be scheduled on processor P1 or on processors P3 and P4

before tB;fðiÞ. Therefore, backup of j can only be scheduled

on processor P3 or P4 after tB;fðiÞ.
In both Case1 and Case2, a special case is that primaries

of tasks i and j are scheduled on the same processor. For

Case2, if this special case happens, backup of task j can

be scheduled subject to only Condition1. This is because

Condition2 is always satisfied as backup of task jmust not be

scheduled on the processor where its primary is located. In

the following, we will not distinguish this special case when

scheduling backups.

3.2 Scheduling a Task Considering All Its
Predecessors

We now consider the case of scheduling primary and backup
of task j with all its predecessors. Let the set of predecessors
of j be denoted as set SpðjÞ. Also, we denote the set of its
direct predecessors as set SdpðjÞ. Let u be a task in SdpðjÞ.
Primary of task j must start after primaries of all tasks in
SdpðjÞ finish. That is

tP ;sðjÞ > max
u2SdpðjÞ

tP;fðuÞ
� �

: ð6Þ

After primary of j is scheduled, we can compare its start
time with finish time of backups of tasks inSdpðjÞ to determine
whether their relationships satisfy Case1 or Case2. Task j
satisfies Case1 relationship with all its direct predecessors if

tP;sðjÞ > max
u2SdpðjÞ

tB;fðuÞ
� �

: ð7Þ

If the above equation is satisfied, primary of j can always
receive results from all its direct predecessors and backup
of j can be scheduled with no additional constraints.
Otherwise, task j must satisfy Case2 relationship with
some of its direct predecessors. We first illustrate using the
following example. In Fig. 4, we consider scheduling task j
with its predecessors tasks f and i as shown in the DAG in
Fig. 2. Tasks f and i as well as primary of task j are
scheduled as shown in Fig. 4. It can be observed that tasks f
and i satisfy Case2 relationship and tasks i and j also satisfy
Case2 relationship. Furthermore, backup of j need to be
scheduled after backup of i and cannot be scheduled on
processors P1 and P2, where primaries of f and i are
located. Otherwise, when processor 1 or 2 fails, backup of j
also fails while primary of j cannot receive result. This DAG
cannot be completed. Therefore, backup of j can only be
scheduled on processor 3 after backup of i finishes.

We are now ready to present important conditions that
must be satisfied when scheduling backup of task j if j
satisfies Case2 relationship with any direct predecessor. Let
S2
dpðjÞ denote the set of tasks in SdpðjÞ that satisfy Case2

relationship with j. Let S2
pðjÞ denote the set of tasks that

comprises S2
dpðjÞ and tasks in SpðjÞ which have a series of

only Case2 (no Case1) relationship with j. Let u be a task in
S2
dpðjÞ. S2

pðjÞ can be determined by the following equation:

S2
pðjÞ ¼ S2

dpðjÞ
n o[ [

u2S2
dp
ðjÞ

S2
pðuÞ

n o
8<
:

9=
;: ð8Þ

S2
pðjÞ includes all tasks in S2

dpðjÞ and for each task u in
S2
dpðjÞ, all tasks in S2

pðuÞ. We will discuss it in detail in
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Lemma 4. Let P 2
dpðjÞ and P 2

p ðjÞ denote the set of processors
that primaries of tasks in S2

dpðjÞ and S2
pðjÞ are located,

respectively. For instance, in the above example, tasks f and
i are in S2

pðjÞ as task i is in S2
dpðjÞ and Case2 relationship

exists between tasks f and i and tasks i and j. Consequently,
PP ðfÞ and PP ðiÞ are in P 2

p ðjÞ. We have

ConditionG1 : tB;sðjÞ > max
u2S2

dp
ðjÞ

tB;fðuÞ
� �

; ð9Þ

ConditionG2 : PBðjÞ 62 P 2
p ðjÞ: ð10Þ

Lemma 2. Backup of task j can only start after

maxu2S2
dp
ðjÞftB;fðuÞg and must not be scheduled on processors

in P 2
p ðjÞ.

Proof. First, we prove backup of task j can only start
after maxu2S2

dp
ðjÞftB;fðuÞg (ConditionG1). We prove by

contradiction. Suppose there is a task u in S2
dpðjÞ and

tB;sðjÞ < tB;fðuÞ. When PP ðuÞ fails, backup of task j
cannot receive result from backup of u. This task
cannot be completed. Contradiction happens. There-
fore, backup of j must start after the maximum finish
time of backups of all task in S2

dpðjÞ.
Next, we prove backup of task j must not be

scheduled on processors in P 2
p ðjÞ (ConditionG2). We

prove by contradiction. Suppose that backup of task j is
scheduled on processor Pe in P 2

p ðjÞ. When processor Pe
fails, backup of j will also fail. As a result, task j cannot
be completed. Contradiction happens. Therefore, backup
of task j must not be scheduled on processors in P 2

p ðjÞ.tu

The significance of this lemma is that it specifies the
earliest possible start time and processors on which backup
of task j can be scheduled, with all its predecessor. In the
following Lemma 3, we will prove that S2

dpðjÞ is sufficient
to determine tB;sðjÞ. In Lemma 4, we will show that in order
to determine P 2

p ðjÞ in ConditionG2, S2
pðjÞ does not need to

have tasks that have a mixed series of Case1 and Case2
relationships with j.

Lemma 3. S2
dpðjÞ is sufficient to determine tB;sðjÞ.

Proof. Let u be a task in S2
dpðjÞ. Let task a be a direct

predecessor of u. We first prove that no matter Case1 or
Case2 relationship exists between a and u, backup of u
always starts after backup of a finishes. For Case1, backup
of u always starts after backup of a finishes as primary of u
always starts after backup of a finishes. For Case2, backup
of u always starts after backup of a finishes (Condition1).
Therefore, backup of a task always starts after backup of
its direct predecessor finishes. The same procedure can be
applied to direct predecessors of task a and so on.
Therefore, backups of direct predecessors of j always start
after backups of other predecessors of j. It is sufficient to
use S2

dpðjÞ to determine tB;sðjÞ. tu

The significance of this lemma is as follows: Lemma 3
attempts to derive the time after which backup of task j can
start so that it can get all results from its predecessors even
when processor fault happens. It is proved that it is sufficient
to consider not all predecessors but only direct predecessors

to determine this time. As a result, when dependent tasks
arrive, algorithms can determine the earliest possible start
time of backups in a much faster way.

Lemma 4. S2
pðjÞ is sufficient to determine the set of processors

that backup of task j cannot be scheduled on.

Proof. We prove by contradiction. Suppose that tasks have a
mixed series of Case1 and Case2 relationships with task j
must be considered. As a result, backup of j cannot be
scheduled on processors where primaries of these tasks
are located. Otherwise, when one of these processors
fails, both primary and backup of task j will not be able
to complete. Let u denote one such task. Between u and j,
there must exist at least two tasks satisfying Case1
relationship. Let these two tasks be a and b. Assume that
primary of task u and backup of task j are scheduled on a
processor and this processor fails. As a result, primary of
task u and backup of task j both fail. However, no matter
what relationship exists between tasks u and a, primary
of task b is guaranteed to receive results from a.
Therefore, primary of j will receive results and task j

can be completed. Contradiction happens. tu

The significance of this lemma is as follows: Lemma 4
attempts to derive the set of processors on which backup of
task j cannot be scheduled so that it can get all results from its
predecessors even when processor fault happens. It proves
that it is sufficient to consider only predecessors with a series
of Case2 relationships with j to determine this set. As a
result, when dependent tasks arrive, algorithms can deter-
mine the set of processors that backups can be scheduled on
in a much faster way. We will show the importance and use
of the above two lemmas in the design of our strategies and
algorithms.

3.3 Backup Overloading of Dependent Tasks

We have the following generic claim for backup overloading
for the case of dependent tasks.

Theorem 1. Backup overloading is not allowed among tasks with

precedence relationships.

Proof. Recall the following conclusion in the proof of
Lemma 4: backup of a task always starts after finish time
of its direct predecessors. Therefore, a task will never be
able to overload its backup with backups of its direct
predecessors. Similarly, backup of a task will never be
able to overload with other predecessors as their backups
finish even before direct predecessors of this task.
Therefore, a task is never able to overload its backup
with its predecessor. Similarly, this task is never able to
overload its backup with tasks that have dependencies on
it. Therefore, backup overloading is not allowed among
tasks with precedence relationships. tu

The theorem clearly shows that backup overloading in a
DAG is constrained. As a result, its replication cost is high.
Note that tasks without precedence can overload backups,
such as tasks j and q in Fig. 2. However, as to be shown in
the next section, backup overloading among tasks without
precedence relationships is also limited.
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4 DESIGN OF STRATEGIES FOR EFFICIENT BACKUP

SCHEDULABILITY AND OVERLOADING

In the previous section, we analyzed that scheduling backup
and backup overloading are constrained for dependent
tasks. In this section, we propose two strategies to improve
schedulability and overloading efficiency of backups, re-
spectively. Finally, necessary fault recovery requirements for
dependent tasks are discussed.

4.1 Improving Backup Schedulability Based on
Maximum Failure Recovery Time

In this strategy, we relax ConditionG2 by exploiting the
information on maximum failure recovery time of a
processor. This strategy is referred to as Improving Backup
Schedulability Based on Maximum Failure Recovery Time
(IBS-MFRT). When maximum failure recovery time (de-
noted as tmfr) in the system is known, tasks in S2

pðjÞ whose
primaries are at least tmfr away from backup of task j can be
exempted. This is because even when one of them fails, the
fault must be recovered before backup of task j starts and
will not affect the execution of j. Therefore, less processors
are in P 2

p ðjÞ. Let u be a task in S2
pðjÞ and Pe be a processor in

P 2
p ðjÞ. Tasks in S2

pðjÞ that are located on processor Pe can be
determined and the latest finish time of primaries of these
tasks (denoted as tP;lfe ðjÞ) can be determined using the
following equation:

tP ;lfe ðjÞ ¼ max
u2S2

pðjÞ;PP ðuÞ¼Pe
tP ;fðuÞ
� �

: ð11Þ

ConditionG2 can be relaxed to ConditionG2R, that is,
backup of task j can be scheduled on processor Pe in P 2

p ðjÞ if

ConditionG2R : tB;sðjÞ > tP;lfe ðjÞ þ tmfr; Pe 2 P 2
p ðjÞ: ð12Þ

It implies that backup of task j can be scheduled on
processors in P 2

p ðjÞ after certain time. Recall that previously
without exploring information on maximum failure recov-
ery time, backup of j cannot be scheduled on any processor
in P 2

p ðjÞ. This strategy improves schedulability of backup of
j and will be particularly useful for fault tolerance of large-
scale dependent jobs consisting of a large number of tasks
each of which need to be executed for a long period of time.

4.2 Interleaving Technique

We have earlier shown via Theorem 1 that backup over-
loading is not possible for tasks with precedence relation-
ships. Although tasks without precedence (such as j and q in
Fig. 2) or tasks from different DAGs can overload backups,
its efficiency is limited due to the two general conditions
which inhibit backups of these tasks from being scheduled
before certain time and on a certain set of processors. On the
other hand, independent tasks can be scheduled with much
more flexibility. This motivates us to overload backups of
independent tasks to backups of dependent tasks, which is
referred to as the interleaving technique. This technique has a
profound effect in improving the overall performance of the
system in terms of resource utilization. Of course, this can be
carried out only when there are independent tasks arriving
to the system. As a result of this interleaving, the overall
replication cost in the system is reduced.

We use the following example to illustrate this idea. This
example is designed to illustrate two fundamental aspects of
this scheduling problem. In the first part, we will show that
the overloading of backups for tasks without precedence
relationships is also limited. In the second part, we will show
how interleaving clearly aids to resolve this situation. In
Fig. 5, we first consider scheduling task q where tasks i and j
are scheduled as in Fig. 3 and task p and primary of task q are
scheduled as shown in Fig. 5. Backup of q cannot be
scheduled before backup of p and on processor P4, as p and

q satisfy Case2 relationship. As a result, it can only
be scheduled on processor 1 or 3 after tB;fðpÞ. Recall that
backup of task j can only be scheduled on processor 3 or 4
after tB;fðiÞ. Therefore, backup of q and j can only overload if
they are both scheduled on processor 3 and after tB;fðpÞ or
tB;fðiÞwhichever is larger. However, in the example, they will
not be able to overload as backup of j is scheduled before
tB;fðpÞwhich is larger (rescheduling of tasks is not considered
in this paper). Therefore, overloading of backups of tasks
without precedence relationships is also constrained.

Now, we consider scheduling an independent task x
using interleaving technique. Assume backup of task q is
scheduled as shown in the figure. After primary of x is
scheduled, there is no constraint on scheduling its backup
which can overload with backups of both tasks q and j
effectively as shown in the figure.

4.3 Fault Recovery Operations for Dependent Tasks

Recovery operations for independent tasks are straightfor-
ward where a backup executes if its primary fails. There-
fore, we focus on dependent tasks and especially recovery
operations required by a task if primary of one of its
predecessors fails. We consider three tasks f , i, and j as
shown in Fig. 2. Suppose the primary of task f fails.
Consequently, the backup of task f executes. Recovery
operations required by task i depend on whether Case1 or
Case2 relationships exists between tasks f and i. For Case1
relationship, no operations are required and the primary of
i will receive the result from the backup of f and execute.
For Case2 relationship, the primary of task i will not be able
to receive result and its backup need to be activated which
will wait for result and execute instead. Next, we consider
recovery operations required by task j, which depend on
relationships between these three tasks. If Case1 relation-
ship exists between tasks f and i, then no operations are
required by task j as the primary of task i is executed.
Otherwise, as the backup of task i is executed, recovery
operations required by task j also depend on relationship
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Fig. 5. Backup overloading between tasks without precedence relation-
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between tasks i and j. For Case1 relationship, no operations
are required while for Case2 relationship, the backup of
task j will be activated. Similarly, recovery operations
required by direct successors of task j can be determined
and so on and so forth.

5 ALGORITHM TO DETERMINE THE EARLIEST

POSSIBLE START TIME

In the previous two sections, we discussed the constraints
on the start time of backups of dependent tasks. In this
section, we present an algorithm to determine their
earliest possible start time on all processors. A pseudo-
code description of this algorithm is given in Fig. 6. Let Pe
denote a processor besides processor PpðjÞ and tB;epse ðjÞ
denote the earliest possible start time of backup of task j
on processor Pe. If primary of task j satisfies Case1
relationship with all its direct predecessors (7), its backup
only needs to start after its primary and the earliest
possible start time tB;epse ðjÞ is tP ;fðjÞ. Otherwise, its backup
must start after backups of all tasks in S2

dpðjÞ (Condi-
tionG1) and tB;epse ðjÞ is maxftP;fðjÞ;maxu2S2

dp
ðjÞftB;fðuÞgg.

Furthermore, for processors in P 2
p ðjÞ, its backup must start

after the time specified by ConditionG2R and tB;epse ðjÞ is
maxftP;fðjÞ; maxu2S2

dp
ðjÞftB;fðuÞg; tP ;lfe ðjÞ þ tmfrg.

5.1 Complexity Analysis

We now analyze the complexity of this algorithm. Let NdpðjÞ
denote the number of direct predecessors of task j. Let
N2
dpðjÞ denote the number of direct predecessors of task j

that satisfy Case2 relationship with j. Let N2
p ðjÞ denote the

number of tasks in S2
pðjÞ which satisfy a or a series of Case2

relationships with j.

The algorithm first takes OðNdpðjÞÞ to determine

maxu2SdpðjÞftB;fðuÞg. If (7) is satisfied, it takes OðMÞ to

assign tP ;fðjÞ to tB;epse ðjÞ for all processors. Otherwise, its

backup must start after backups of all tasks in S2
dpðjÞ

(ConditionG1) and maxu2S2
dp
ðjÞftB;fðuÞg can be determined

in OðN2
dpðjÞÞ. Then, it takes OðMÞ to determine tB;epse ðjÞ for

all processors.
For lines 7 to 9, P 2

p ðjÞ can be determined after S2
pðjÞ is

determined (8) which takes OðN2
dpðjÞÞ. The latest finish time

of primaries of tasks in S2
pðjÞ ðtP ;lfe ðjÞÞ for processors in

P 2
p ðjÞ can be determined in two steps. In the first step, it

takes OðN2
p ðjÞÞ to map tasks in S2

pðjÞ to processors in P 2
p ðjÞ.

In the second step, it takes OðN2
p ðjÞÞ to compare and

determine the latest finish time on processors in P 2
p ðjÞ.

Then, the algorithm takes OðN2
p ðjÞÞ to update tB;epse ðjÞ for

processors in P 2
p ðjÞ. Therefore, the worst-case complexity

for lines 7 to 9 is OðN2
dpðjÞ þN2

p ðjÞÞ which is OðN2
p ðjÞÞ as

N2
p ðjÞ is larger or at least equal to N2

dpðjÞ.
Therefore, the overall worst-case complexity to deter-

mine the earliest possible start time for a dependent task is
OðNdpðjÞ þN2

dpðjÞ þM þN2
p ðjÞÞ which is OðNdpðjÞ þM þ

N2
p ðjÞÞ as NdpðjÞ is larger or at least equal to N2

dpðjÞ.

6 THE PROPOSED FAULT-TOLERANT SCHEDULING

ALGORITHM FOR BACKUPS

In this section, we present two algorithms for scheduling
backups of independent tasks and dependent tasks, respec-
tively. For independent tasks, we minimize replication cost
of each backup as long as the deadline is met. The objective
is to improve resource utilization. For dependent tasks, we
minimize completion time of each backup and the objective
is to reduce job rejection. By minimizing completion time of
a task, tasks that have dependencies on it can start early so
that the possibility of meeting the job deadline is increased.

6.1 Backup Schedules

After the earliest possible start time for a backup on all
processors is determined, the time window that this backup
can be scheduled on all processors is determined which is
between this time and its deadline. Primary schedules and
nonoverloadable backup schedules that are scheduled on
the time window can be identified. These schedules partition
the time window into a number of intervals and backup can
only be scheduled on these intervals. One such interval is
shown in Fig. 7a which is between tu and tv, where tu is the
end time of the primary schedule and tv is the start time of
the nonoverloadable backup schedule. There only exist
overloadable backup schedules on each interval which can
overload each other as shown in the figure. Note that these
backup schedules could be scheduled for independent tasks
or dependent task as interleaving technique is allowed.

Now, we address the problem of how to schedule
backup of task j in an interval. We first consider special
cases for scheduling backup of task j (dashed rectangle)
where its start time and/or finish time collide with
boundaries of the interval or boundaries of overloadable
backup schedules. These special cases are referred to as
boundary schedules and are labeled as b-0 to b-5 in Fig. 7b.
Other possible cases are labeled as c-1 to c-4 in Fig. 7c where
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Fig. 6. Algorithm to determine the earliest possible start time.

Fig. 7. Schedule a backup on an interval: (a) overloadable backup

schedules, (b) boundary schedules, and (c) other possible schedules.



start time and/or finish time of backup of task j fall onto
overloadable backup schedules and/or idle periods.

Lemma 5. There exist only four possible cases c-1 to c-4 as in
Fig. 7c for scheduling a backup of task j other than boundary
schedules.

Proof. As start time and/or finish time of backup of task j
do not collide with boundaries (boundary schedules),
they can only fall onto overloadable backup schedules
(denoted as O-period) and/or idle periods (denoted as
I-period). Therefore, there exist only four cases where
start time and finish time fall onto different periods (c-1
and c-3); or they both fall onto I-periods (c-2); or they
both fall onto O-periods (c-4). tu

While traditional approach like As Soon As Possible
(ASAP) [18], [19] or As Late As Possible (ALAP) [20] can be
used to schedule the primary, they are not suitable to
schedule the backup as the backup can overload with
existing backup schedules, and thus, nonboundary sche-
dules like cases c-1 to c-4 must be considered. As a result,
sampling must be used to determine the start time of the
backup and the replication cost. However, the complexity of
this approach is not fixed and depends on the sampling rate.
In the following sections, we present our proposed algo-
rithms which do not need sampling when scheduling
backups.

6.2 Boundary Schedules and Replication Cost

Replication cost is defined as the actual percentage of time
needed to be scheduled for the backup besides all over-
loaded periods with existing backups. Let tOe ðjÞ denote the
amount of time that backup of task j can overload with
other backups on processor Pe. Replication cost to schedule
backup of j on Pe is defined as

CR
e ðjÞ ¼

teðjÞ � tOe ðjÞ
teðjÞ

: ð13Þ

Lemma 6. Nonboundary schedules always have higher replica-
tion cost or the same replication cost but later completion time
than boundary schedules.

Proof. We consider four nonboundary schedules c-1 to c-4
one by one. For case c-1, it can be moved to the left until
its start time or finish time reaches boundaries. Case c-1
becomes boundary schedule b-1 if its start time reaches
the left boundary, b-4 if its finish time reaches the right
boundary, or b-0 when left boundary of the interval ðtuÞ
is reached. In this process, the amount of overloading
tOe ðjÞ is always increasing and start time becomes earlier.
Therefore, case c-1 always has higher replication cost
than its corresponding boundary schedules. Similarly,
case c-2 can be moved to the left until its start time or
finish time reaches boundaries which becomes boundary
schedules b-2, b-4, or b-0. In this process, the amount of
overloading tOe ðjÞ remains the same but start time
becomes earlier. Case c-3 can be moved to the right until
its start time or finish time reaches boundaries which
becomes boundary schedules b-1, b-4, or b-5 when right
boundary of the interval ðtvÞ is reached. In this process,
the amount of overloading tOe ðjÞ is always increasing.

Case c-4 can be moved to the left until its start time or
finish time reaches boundaries which becomes boundary
schedules b-1, b-3, or b-0. In this process, the amount of
overloading tOe ðjÞ remains the same but start time
becomes earlier. Therefore, the four nonboundary
schedules c-1 to c-4 will always have higher replication
cost or the same replication cost but later completion
time than boundary schedules. tu

The significance of this lemma is as follows: It proves
that to minimize replication cost, it is sufficient to consider
only boundary schedules for backups. Without this lemma,
cases c-1 to c-4 must be considered and sampling must be
used as it is continuous. As a result, the complexity is not
fixed and depends on the sampling rate.

In the following two sections, we present the proposed
algorithms for scheduling backups of independent tasks and
dependent tasks, respectively. Both algorithms consider only
boundary schedules to reduce replication cost. Therefore,
sampling is not required and the complexity of these two
algorithms is fixed and becomes much lower. As a result,
when tasks arrive dynamically, our proposed algorithms can
determine schedules for backups in a much faster way.

6.3 Algorithm for Scheduling Backups of
Independent Jobs

We refer to our algorithm as Minimum Replication Cost
with Early Completion Time (MRC-ECT). For all proces-
sors besides the one where the primary is scheduled on,
boundary schedules within the time window are consid-
ered and their replication cost is compared. The boundary
schedule which has minimum replication cost (denoted as
CRðjÞ) is chosen where

CRðjÞ ¼ min
1�e�M;Pe 6¼PP ðjÞ

CR
e ðjÞ

� �
: ð14Þ

In case a tie happens, the boundary schedule which can
complete earliest is selected. A pseudocode description of the
algorithm is given in Fig. 8. Let tl and tr denote the start time
and completion time of an existing schedule, respectively.
The algorithm first considers boundary schedules of the time
window. Then, all existing schedules within or overlapping
with the time window are examined one by one and their
respective boundary schedules are considered. Algorithm
MRC-ECT invokes a subroutine BoundarySchedule which
takes start time of the backup (denoted as ts) as input
parameter. This subroutine records the current boundary
schedule if it is eligible and is better than the recorded (best)
schedule. Specifically, the current boundary schedule is
better if it has lower replication cost or the same replication
cost but earlier completion time than the recorded (best)
schedule. Algorithms to determine schedule eligibility and
replication cost will be discussed later in this section.

Theorem 2. MRC-ECT is guaranteed to find an optimal backup
schedule in terms of replication cost for a task.

Proof. From Lemma 6, it is proved that the optimal schedule
in terms of replication cost must be boundary schedules.
As MRC-ECT considers all boundary schedules when
scheduling a backup, it guarantees to find the optimal
schedule. tu
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We use the following example to illustrate the difference
between MRC-ECT and ASAP and ALAP. Consider
scheduling the independent task x in Fig. 5. ASAP will
schedule backup of task j immediately after its primary
while ALAP will schedule backup of j so that it will complete
right before the deadline. On the other hand, MRC-ECT
attempts to schedule backup of j with minimum replication
cost by maximizing overloading and early completion time.
When deadline of j is after backup of q, it can be scheduled as
shown in the figure which clearly minimizes replication cost.
Note that postponing it any further will delay its completion
time without reducing replication cost while pushing it
forward will affect overloading efficiency. This algorithm
derives its name by this property.

6.4 Algorithm for Scheduling Backups of
Dependent Jobs

We refer to our algorithm as Minimum Completion Time
with Less Replication Cost (MCT-LRC). For all processors
besides the one where the primary is scheduled on, boundary
schedules within the time window are considered and the
boundary schedule which can complete earliest is chosen. In
case a tie happens, the boundary schedule which has
minimum replication cost is selected. A pseudocode descrip-
tion of the algorithm is given in Fig. 9. The algorithm first
considers the left boundary schedules of the time window.
Then, all existing schedules2 (sorted in nondecreasing order

of start time) within or overlapping with the time window are
examined one by one, while the earliest boundary schedule
of an existing schedule completes not later than the recorded
(best) schedule or the schedule already found on the current
processor (start at ts). For each existing schedule, its
boundary schedules are considered in the order of their start
time and if one boundary schedule is eligible, remaining
boundary schedules are exempted. If no eligible schedule has
been found, the algorithm considers the right boundary
schedule of the time window. Finally, the algorithm
calculates replication cost of the (local) earliest schedule on
the current processor and records it if it can complete earlier
than the recorded schedule or they complete simultaneously
but the local schedule has lower replication cost.

6.5 Schedule Eligibility

A schedule is eligible if it is within the time window and
does not overlap with any primary schedule or nonover-
loadable backup schedule. Specifically, there must not exist
any primary schedule or nonoverloadable backup schedule
that starts and/or ends in this schedule or contains this
schedule.

6.6 Computation of Replication Cost

If a schedule is eligible, there must exist only overloadable
backup schedules, if any, that overlap with the current
schedule. These overloadable backup schedules can be
classified into three categories based on their relationships
with the current schedule. Schedules in the first category
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2. Note that all the existing schedules are already available as a sorted list
based on their start time and hence will not contribute to the complexity.

Fig. 9. Algorithm MCT-LRC.

Fig. 8. Algorithm MRC-ECT.



contain the current schedule, as shown in Fig. 10a.
Schedules in the second category start before and end

within the current schedule, as shown in Fig. 10b. Sche-
dules in the third category start within but can end within

or after the current schedule, as shown in Fig. 10c.
A pseudocode description of the algorithm to calculate

replication cost of the current backup schedule is given in

Fig. 11. Let tl and tr denote the start and completion time of
an overloadable backup schedule, respectively. Let tO;te

denote the time till the current backup schedule can overload
with overloadable backup schedules. Let tNOe denote the

amount of time that the current backup schedule cannot
overload with any overloadable backup schedule.

The amount of time that overloading is not possible tNOe is

initialized to zero and tO;te is initialized to ts which is the start
time of the current backup schedule. Overloadable backup

schedules within or overlapping with the time window are
browsed one by one in order of their start time. Schedules in

Category1 and Category2 are examined first. If any
Category1 schedule exists, the current schedule can over-

load its entirety and thus tO;te is assigned tB;f which is finish
time of the current backup schedule; and break. As a result,

tNOe becomes 0 and replication cost is 0. For Category2
schedules, tO;te is determined by the latest finish time of these

schedules and is updated accordingly.
Category3 schedules are then examined and they need to

be considered if their finish time is later than tO;te . If their start

time is also later than tO;te , such as the first Category3 schedule
shown in Fig. 10c, there exist a period of time that cannot be

overloaded. Note that the current schedule will not be able to
overload with later Category3 schedules as they start even

later. Therefore, nonoverloadable period tNOe need to be
updated. tO;te is also updated accordingly. After update, if tO;te

is later or equal to tB;f which means the current schedule can

overload with the Category3 schedule till the end, tB;f is
assigned to tO;te and break. One such Category3 schedule is

the second Category3 schedule shown in Fig. 10c. After all
schedules are examined, nonoverloadable period tNOe is

updated to account for the period between tO;te and tB;f .
Finally, replication cost of the current backup schedule is

returned which is the ratio of the nonoverloadable amount
over its execution time.

6.7 Complexity Analysis

In this section, we analyze the complexity of our algorithms
MRC-ECT and MCT-LRC. Suppose we consider scheduling
a backup of task j. Let NtweðjÞ denote the number of
existing schedules that are within or overlapping with the
time window for scheduling task j on a processor Pe. Let
NbseðjÞ denote the maximum number of existing schedules
that are within or overlapping with any boundary schedule
within the time window. Let NtwðjÞ denote the maximum
number of schedules that are within or overlapping with
the time window on any processor. Let NbsðjÞ denote the
maximum number of schedules that are within or over-
lapping with a boundary schedule on all processors, where
NbsðjÞ ¼ maxPe 6¼PP ðjÞfNbseðjÞg.

Schedule eligibility can be determined in OðNbseðjÞÞ as
there are maximum NbseðjÞ schedules to be considered for a
backup schedule. Replication cost can be calculated in
OðNbseðjÞÞas there are maximumNbseðjÞoverloadable backup
schedules to be considered for a backup schedule. As for each
existing schedule within a time window, both eligibility and
replication cost need to be determined in the worst case, its
complexity isOðNbseðjÞÞ. As both algorithms need to examine
all existing schedules in the worst case, their complexity is
OðNtweðjÞ �NbseðjÞÞ. Therefore, the overall complexity of
algorithms MRC-ECT and MCT-LRC to schedule a backup
in the Grid system is OðM �NtwðjÞ �NbsðjÞÞ.

Note that NbsðjÞ is usually much smaller than NtwðjÞ.
Furthermore, even scheduling a primary using ASAP takes
OðM �NtwðjÞÞ while the time taken to schedule a backup
using ASAP depends on sampling rate and is not fixed.

7 PERFORMANCE STUDY

In this section, we evaluate the performance of our algorithms
and strategies. We first present performance metrics and
simulation parameter used. Then, experimental results are
presented where jobs are independent, dependent, or hybrid.
We use ASAP to schedule primaries of both independent and
dependent tasks. MRC-ECT and MCT-LRC are used to
schedule backups of independent and dependent tasks,
respectively. We compare with algorithm eFRD [17] and the
approach where both primaries and backups are scheduled
using ASAP. ALAP is not used for comparison as it tries to
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Fig. 10. Calculate replication cost of the current backup schedule.
(a) Category1 overloadable backup schedules. (b) Category2 over-
loadable backup schedules. (c) Category3 overloadable backup
schedules.

Fig. 11. Algorithm to calculate replication cost.



schedule backups of tasks right before the deadline, and thus,

not suitable for dependent tasks.

7.1 Performance Metrics

For our formulation and scope of study, the metrics that are

natural to consider are job rejection ratio, average replication

cost, average backup response time, and average reliability.
Job rejection ratio is defined as the percentage of jobs that

are rejected. A job is rejected if primary or backup of any its

task cannot be scheduled before deadline. This metric

reflects the ability of an algorithm in scheduling dynamic

jobs under deadline requirements.
Replication cost of a job is defined as the ratio of

weighted sum of replication cost of its tasks over cumulative

execution time of its tasks. This metric reflects the ability of a

fault-tolerant algorithm in minimizing processor time used

for backup.
Response time of a job is defined as the amount of time it

takes to execute its tasks since its arrival. In failure-free

situations, this time depends on the latest completion time

of primaries of its tasks. When failure happens, this time

depends on the latest completion time of backups of its

tasks, which is referred to as backup response time. This

metric reflects the ability of a fault-tolerant algorithm in

minimizing completion time for jobs when failure occurs.
Reliability is defined as the percentage of jobs that can be

recovered when a processor failure occurs. This metric

reflects the ability of an algorithm in fault tolerance.

7.2 Simulation Parameters

Our simulation was done by implementing a discrete-event

simulator where the events driving the simulation are the

arrival and completion of a job as well as occurrence of

processor faults as in [11]. Job arrival is assumed to follow

Poisson process with rate � and the execution time of a job is

assumed to be exponentially distributed with a mean of 1=�.

Obviously, workload is defined as �=� [13]. In our experi-

ments, 100,000 DAGs are made to arrive at a Grid comprising

a number of processors. The numbers of processors chosen

are 16, 80, 400, and 2,000. These processors have hetero-

geneous processing speeds, which is assumed to be uni-

formly distributed in the range [1.0, 10.0]. The computational

time of a task on a processor is the ratio of its execution time

over processing speed of this processor as mentioned in [21].
Each DAG has a number of tasks (denoted as n)

randomly chosen from the set {20, 40, 60, 80, 100}. For each

DAG, a random graph is generated with n nodes and graph

connectivity randomly chosen assuming a uniform dis-

tribution from 1 percent to 100 percent (fully connected).

The execution time of a task is assumed to be uniformly

distributed with a mean of texe=n, where texe is the

execution time of the job it belongs to. The deadline of a

job is also assumed to be uniformly distributed with a mean

ta þ � � 2�texe
5:5 , where ta is the arrival time of this job, � is a

parameter less than 1.0, and 5.5 is the mean processing

speed. Similar assumption is made in [12] and [13] for

independent tasks without taking processing speed into

account. In our experiments, � is varied between 0.2 and 0.3

to show its effect on performance.

7.3 Results and Discussions

The results are organized in five parts. The first three parts
present results on rejection ratio, replication cost, and
response time for independent and dependent tasks. The
fourth part presents results on effect of connectivity of
dependent tasks on performance. The last part presents
results on hybrid jobs. In order to obtain stable and
accurate results with a confidence of 95 percent, each of
our experiments is repeated 25 times and we take an
average measure. In the following, the results on a Grid
comprising 16 processors are shown and similar trends on
performance are observed on Grids with 80, 400, and 2,000
processors.

7.3.1 Rejection Ratio

In Fig. 12, we observe that our algorithms MRC-ECT and
MCT-LRC perform better than algorithms ASAP and eFRD
for independent and dependent jobs, respectively. This is
because our algorithms consider boundary schedules for
backups which have less replication cost; furthermore,
MRC-ECT is guaranteed to find an optimal schedule for
each backup in terms of replication cost. The rejection ratio
of DAGs is much higher than that of independent jobs due
to precedence constraint. Our strategy based on Maximum
Failure Recovery Time (denoted as S1 in the figure) can
reduce rejection ratio significantly for DAGs by improving
backup schedulability. While rejection ratio increases
slowly when load increases, it decreases sharply when �
increases as deadline is relaxed. When � is large enough,
almost all jobs can be scheduled successfully and algo-
rithms exhibit similar performance. On the other hand,
when � is very small, a number of jobs cannot be scheduled
within the deadline by all algorithms.

In Fig. 13, we focus on our algorithms, and it can be
observed that most of jobs are rejected because backups
cannot be scheduled before deadline for both kinds of jobs.
This is because the primary is scheduled before its backup and
sometimes there may not exist time slots before its deadline on
two different processors. As a result, the backup cannot be
scheduled. Furthermore, for DAGs, the two constraints
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discussed in Section 3 specify that the backup must be
scheduled after certain time and cannot be scheduled on
certain processors. In either case, the backup may not be able
to be scheduled before the deadline. Finally, we observe that
our strategy based on Maximum Failure Recovery Time can
reduce rejection caused by backups significantly for DAGs.

7.3.2 Replication Cost

In Fig. 14, we observe that our algorithm MRC-ECT, which
is guaranteed to find an optimal schedule in terms of
replication cost, performs better than algorithms ASAP and
eFRD significantly for independent jobs. MCT-LRC per-
forms better than algorithms ASAP and eFRD for DAGs.
Replication cost of DAGs is much higher than that of
independent jobs, and the reason has been discussed in
Sections 3.3 and 4.2. We can also observe that replication
cost increases slowly when load increases, but sharply
when � increases. The latter is because when � is smaller,
more jobs have to be scheduled in a period of time and thus

overloading efficiency of their backups is improved leading
to less replication cost.

7.3.3 Response Time

In Fig. 15, it can be observed that response time of backups
is longer than that of primaries for both kinds of jobs. For
independent jobs, algorithms ASAP and eFRD have shorter
backup response time than algorithm MRC-ECT which
takes replication cost priority over completion time. How-
ever, algorithm MRC-ECT performs better than algorithms
ASAP and eFRD for primary response time. This is because
in MRC-ECT backup schedules are overloaded more tightly,
and thus, more idle slots are available for primaries. For
DAGs, our algorithms and algorithms ASAP and eFRD
perform closely for both primary and backup response
times. We can observe that response time keeps unchanged
when load increases, but decreases sharply when �
increases. The latter is because when � is smaller, more
jobs are scheduled in a period of time and primaries and
backups of an arriving job may have to start later as earlier
slots are occupied by existing schedules.

7.3.4 Effect of DAG Connectivity

In Fig. 16, we consider the performance of DAGs with
different graph connectivity with respect to �. Algorithm
MCT-LRC and strategy1 are used. It can be observed that
when graph connectivity is high, the performance degrades
in terms of rejection ratio, replication cost, and response
time. This is because when graph connectivity is high, a task
generally has more predecessors which makes the earliest
possible start time of its primary and backup become later
and reduces its backup overloading efficiency. Grid users
can use this figure to participate the performance of DAGs
submitted by them with information on graph connectivity
and deadline requirements.

7.3.5 Hybrid Jobs

In Fig. 17, we consider hybrid jobs which comprising
40 percent independent jobs and 60 percent DAGs.
Algorithm MRC-ECT is used for independent jobs and
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Fig. 13. Rejection ratio of primaries and backups of independent jobs

and DAGs.

Fig. 14. Replication cost of independent jobs and DAGs.

Fig. 15. Response time of independent jobs and DAGs.



algorithm MCT-LRC and S1 are used for DAGs. Interleav-
ing technique (denoted as S2) is used for both kinds of jobs.
The range of � displayed is determined based on � and
percentage of the two kinds of jobs. We will compare the
performance of hybrid jobs to that of independent jobs and
DAGs. It can be observed that the rejection ratio of hybrid
jobs is between that of independent jobs and DAGs.
Similarly, most of jobs are rejected because backups are
not available. Replication cost of hybrid jobs is between that
of independent jobs and DAGs. We can observe that our
interleaving technique can reduce the replication cost of
DAGs significantly (about 10 percent), without compromis-
ing the replication cost of independent jobs. Response time
of DAGs in hybrid jobs is similar to the case of only DAGs.
However, the response time of independent jobs in hybrid
jobs is significantly better than that of only independent
jobs. This is because while primaries and backups of DAGs
cannot be scheduled on some earlier slots due to precedence
constraint, primaries and backups of independent jobs can
occupy these slots leading to reduced response time.

8 CONCLUSIONS

In this paper, for Grid systems, we addressed the problem of
fault-tolerant scheduling of independent, dependent, and
hybrid jobs. We analyzed the impact of precedence
constraints on scheduling and overloading of backups of
dependent tasks and showed that this constraint indeed
limits schedulability and overloading efficiency significantly.
We have proposed and analyzed algorithms for each task
category to improve the performance. Our algorithms for
independent and dependent tasks (MRC-ECT and
MCT-LRC, respectively) do not require sampling, as
required by traditional algorithms to perform backup
overloading. The time complexity of our algorithms is
shown to be polynomial and can schedule backups in a
much faster way. While algorithm MRC-ECT is guaranteed
to find an optimal backup schedule for an independent task,
it was shown that MCT-LRC can schedule a backup of a

dependent task with minimum completion time and less
replication cost.

Through extensive simulation experiments, we observed
that our algorithms perform better than algorithms ASAP
and eFRD for both kinds of jobs in terms of rejection ratio
and replication cost. Our strategy exploring information on
maximum failure recovery time can improve schedulability
of backups of dependent tasks significantly leading to
reduced job rejection ratio. When jobs are hybrid, our
interleaving technique can reduce the replication cost of
DAGs considerably while not compromising the replica-
tion cost of independent jobs. Furthermore, the response
time of independent jobs is reduced significantly.

Our work can be adopted by Globus toolkit in handling
failures for independent, dependent, and hybrid jobs in
Grid systems. Immediate extensions to this work could be to
conduct experimental works correlating with the parameter
settings of the proposed algorithms. One may consider
Grid systems where computing and data resources are
geographically dispersed in different administrative do-
mains with local scheduling entity. One may bring in issues
that are akin to communication protocols to implement our
schemes in real-life environments. Finally, cooperative
computing being plausible on Grid systems owing to large
resource availability, it would be interesting to fine-tune our
strategies to take care of such cooperative computations.
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