<div dir="ltr"><div dir="ltr">On Mon, May 5, 2025 at 3:52 AM MIGUEL MOLINOS PEREZ <<a href="mailto:mmolinos@us.es">mmolinos@us.es</a>> wrote:</div><div class="gmail_quote gmail_quote_container"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Dear all,<br>
<br>
I am working on the resolution of a non-linear problem via SNES with a large null-space (at least 70% of the equations are trivial). In a nutshell I have a mesh with active and non-active nodes, and the non-active nodes introduces the null-space. <br>
<br>
So far I've dealing with it using NGMRES but I want to use a scheme based on NR. However, despite removing the null-space using PETSc's in-build functions the linear solver (KSP+PC) diverges at the first iteration. However, If I remove the non-active nodes and use the same solver (SNES+KSP+PC), which failed before, now I can solve the non-linear system.<br>
<br>
Any clue? I’m missing something?<br></blockquote><div><br></div><div>The most likely thing is that the nullspace is slightly wrong, or the convergence test is not accounting for the nullspace somehow.</div><div><br></div><div>However, since so many equations are inactive, I would consider projecting the problem. I might either</div><div><br></div><div>1) Select a subset of the mesh to phrase the problem on. In you use DMPlex, you could use DMPlexFilter().</div><div><br></div><div>2) Use a constraint to get a subsystem for Newton using SNESVI. The SNESVIRS will project the linear system onto a subspace without the constraints.</div><div><br></div><div> Thanks,</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
Thanks,<br>
Miguel</blockquote></div><div><br clear="all"></div><div><br></div><span class="gmail_signature_prefix">-- </span><br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div><div><br></div><div><a href="https://urldefense.us/v3/__http://www.cse.buffalo.edu/*knepley/__;fg!!G_uCfscf7eWS!bByLEARdv_XsY4xZu0ezoqCT2bh14450x43ffJDakWXMjru0Po-BcPS5TJl_mDXpjWZaJkliCDj07TT0nwzb$" target="_blank">https://www.cse.buffalo.edu/~knepley/</a><br></div></div></div></div></div></div></div></div>