<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-fareast-language:EN-US;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:#954F72;
text-decoration:underline;}
span.E-MailFormatvorlage17
{mso-style-type:personal-compose;
font-family:"Calibri",sans-serif;
color:windowtext;}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri",sans-serif;
mso-fareast-language:EN-US;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:70.85pt 70.85pt 2.0cm 70.85pt;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="DE" link="#0563C1" vlink="#954F72">
<div class="WordSection1">
<p class="MsoNormal">Hi,<o:p></o:p></p>
<p class="MsoNormal"><span lang="EN-US">we are solving a time dependent problem with a single KSP in every time step. We are debating which convergence criterion to use. Is there general guidance around when to use one of the norms with initial residual (ksp_converged_use_initial_residual_norm
or ksp_converged_use_min_initial_residual_norm) over the default norm? If I understand the formulas correctly, the initial residual norm “norm(b – A * x0)” (maybe add preconditioning) means that if you have a very good initial guess (as is often the case in
time dependent problems if you can use the result if the last time step as initial guess), the norm is much stricter than the default norm “norm(b)”. Is this meant as a way to control error accumulation over time? Or does it have some other purpose?<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US">Thanks and Regards,<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US">Daniel<o:p></o:p></span></p>
</div>
</body>
</html>