<div dir="ltr"><div dir="ltr">On Wed, Oct 11, 2023 at 1:03 PM Jed Brown <<a href="mailto:jed@jedbrown.org">jed@jedbrown.org</a>> wrote:<br></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">I don't see an attachment, but his thesis used conservative variables and defined an effective length scale in a way that seemed to assume constant shape function gradients. I'm not aware of systematic literature comparing the covariant and contravariant length measures on anisotropic meshes, but I believe most people working in the Shakib/Hughes approach use the covariant measure. Our docs have a brief discussion of this choice.<br>
<br>
<a href="https://libceed.org/en/latest/examples/fluids/#equation-eq-peclet" rel="noreferrer" target="_blank">https://libceed.org/en/latest/examples/fluids/#equation-eq-peclet</a><br>
<br>
Matt, I don't understand how the second derivative comes into play as a length measure on anistropic meshes -- the second derivatives can be uniformly zero and yet you still need a length measure.<br></blockquote><div><br></div><div>I was talking about the usual SUPG where we just penalize the true residual.</div><div><br></div><div>  Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
Brandon Denton via petsc-users <<a href="mailto:petsc-users@mcs.anl.gov" target="_blank">petsc-users@mcs.anl.gov</a>> writes:<br>
<br>
> I was thinking about trying to implement Ben Kirk's approach to Navier-Stokes (see attached paper; Section 5). His approach uses these quantities to align the orientation of the unstructured element/cell with the fluid velocity to apply the stabilization/upwinding and to detect shocks.<br>
><br>
> If you have an example of the approach you mentioned, could you please send it over so I can review it?<br>
><br>
> On Oct 11, 2023 6:02 AM, Matthew Knepley <<a href="mailto:knepley@gmail.com" target="_blank">knepley@gmail.com</a>> wrote:<br>
> On Tue, Oct 10, 2023 at 9:34 PM Brandon Denton via petsc-users <<a href="mailto:petsc-users@mcs.anl.gov" target="_blank">petsc-users@mcs.anl.gov</a><mailto:<a href="mailto:petsc-users@mcs.anl.gov" target="_blank">petsc-users@mcs.anl.gov</a>>> wrote:<br>
> Good Evening,<br>
><br>
> I am looking to implement a form of Navier-Stokes with SUPG Stabilization and shock capturing using PETSc's FEM infrastructure. In this implementation, I need access to the cell's shape function gradients and natural coordinate gradients for calculations within the point-wise residual calculations. How do I get these quantities at the quadrature points? The signatures for fo and f1 don't seem to contain this information.<br>
><br>
> Are you sure you need those? Darsh and I implemented SUPG without that. You would need local second derivative information, which you can get using -dm_ds_jet_degree 2. If you check in an example, I can go over it.<br>
><br>
>   Thanks,<br>
><br>
>      Matt<br>
><br>
> Thank you in advance for your time.<br>
> Brandon<br>
><br>
><br>
> --<br>
> What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>
> -- Norbert Wiener<br>
><br>
> <a href="https://www.cse.buffalo.edu/~knepley/" rel="noreferrer" target="_blank">https://www.cse.buffalo.edu/~knepley/</a><<a href="http://www.cse.buffalo.edu/~knepley/" rel="noreferrer" target="_blank">http://www.cse.buffalo.edu/~knepley/</a>><br>
</blockquote></div><br clear="all"><div><br></div><span class="gmail_signature_prefix">-- </span><br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div><div><br></div><div><a href="http://www.cse.buffalo.edu/~knepley/" target="_blank">https://www.cse.buffalo.edu/~knepley/</a><br></div></div></div></div></div></div></div></div>