<div dir="auto">Then just do the multiplications you need. My proposal was for the example function you were showing.</div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Thu, Aug 10, 2023, 12:25 Niclas Götting <<a href="mailto:ngoetting@itp.uni-bremen.de">ngoetting@itp.uni-bremen.de</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><u></u>

  
    
  
  <div>
    <p>You are absolutely right for this specific case (I get about
      2400it/s instead of 2100it/s). However, the single square function
      will be replaced by a series of gaussian pulses in the future,
      which will never be zero. Maybe one could do an approximation and
      skip the second mult, if the gaussians are close to zero.</p>
    <div>On 10.08.23 12:16, Stefano Zampini
      wrote:<br>
    </div>
    <blockquote type="cite">
      
      <div dir="auto">If you do the mult of "pump" inside an if it
        should be faster </div>
      <br>
      <div class="gmail_quote">
        <div dir="ltr" class="gmail_attr">On Thu, Aug 10, 2023, 12:12
          Niclas Götting <<a href="mailto:ngoetting@itp.uni-bremen.de" target="_blank" rel="noreferrer">ngoetting@itp.uni-bremen.de</a>>
          wrote:<br>
        </div>
        <blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
          <div>
            <p>If I understood you right, this should be the resulting
              RHS:</p>
            <p><font face="monospace">def rhsfunc5(ts, t, u, F):<br>
                    l.mult(u, F)<br>
                    pump.mult(u, tmp_vec)<br>
                    scale = 0.5 * (5 < t < 10)<br>
                    F.axpy(scale, tmp_vec)</font></p>
            <p>It is a little bit slower than option 3, but with about
              2100it/s consistently ~10% faster than option 4.</p>
            <p>Thank you very much for the suggestion!<br>
            </p>
            <div>On 10.08.23 11:47, Stefano Zampini wrote:<br>
            </div>
            <blockquote type="cite">
              <div dir="auto">I would use option 3. Keep a work vector
                and do a vector summation instead of the multiple
                multiplication by scale and 1/scale. 
                <div dir="auto"><br>
                </div>
                <div dir="auto">I agree with you the docs are a little
                  misleading here. </div>
              </div>
              <br>
              <div class="gmail_quote">
                <div dir="ltr" class="gmail_attr">On Thu, Aug 10, 2023,
                  11:40 Niclas Götting <<a href="mailto:ngoetting@itp.uni-bremen.de" rel="noreferrer noreferrer" target="_blank">ngoetting@itp.uni-bremen.de</a>>
                  wrote:<br>
                </div>
                <blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
                  <div>
                    <p>Thank you both for the very quick answer!</p>
                    <p>So far, I compiled PETSc with debugging turned
                      on, but I think it should still be faster than
                      standard scipy in both cases. Actually, Stefano's
                      answer has got me very far already; now I only
                      define the RHS of the ODE and no Jacobian (I
                      wonder, why the documentation suggests otherwise,
                      though). I had the following four tries at
                      implementing the RHS:</p>
                    <ol>
                      <li><font face="monospace">def rhsfunc1(ts, t, u,
                          F):<br>
                              scale = 0.5 * (5 < t < 10)<br>
                              (l + scale * pump).mult(u, F)</font></li>
                      <li><font face="monospace">def rhsfunc2(ts, t, u,
                          F):<br>
                              l.mult(u, F)<br>
                              scale = 0.5 * (5 < t < 10)<br>
                              (scale * pump).multAdd(u, F, F)</font></li>
                      <li><font face="monospace">def rhsfunc3(ts, t, u,
                          F):<br>
                              l.mult(u, F)<br>
                              scale = 0.5 * (5 < t < 10)<br>
                              if scale != 0:<br>
                                  pump.scale(scale)<br>
                                  pump.multAdd(u, F, F)<br>
                                  pump.scale(1/scale)</font></li>
                      <li><font face="monospace">def rhsfunc4(ts, t, u,
                          F):<br>
                              tmp_pump.zeroEntries() # tmp_pump is
                          pump.duplicate()<br>
                              l.mult(u, F)<br>
                              scale = 0.5 * (5 < t < 10)<br>
                              tmp_pump.axpy(scale, pump,
                          structure=PETSc.Mat.Structure.SAME_NONZERO_PATTERN)<br>
                              tmp_pump.multAdd(u, F, F)<br>
                        </font></li>
                    </ol>
                    <p>They all yield the same results, but with 50it/s,
                      800it/, 2300it/s and 1900it/s, respectively, which
                      is a huge performance boost (almost 7 times as
                      fast as scipy, with PETSc debugging still turned
                      on). As the scale function will most likely be a
                      gaussian in the future, I think that option 3 will
                      be become numerically unstable and I'll have to go
                      with option 4, which is already faster than I
                      expected. If you think it is possible to speed up
                      the RHS calculation even more, I'd be happy to
                      hear your suggestions; the -log_view is attached
                      to this message.</p>
                    <p>One last point: If I didn't misunderstand the
                      documentation at <a href="https://petsc.org/release/manual/ts/#special-cases" rel="noreferrer noreferrer noreferrer" target="_blank">https://petsc.org/release/manual/ts/#special-cases</a>,
                      should this maybe be changed?</p>
                    <p>Best regards<br>
                      Niclas<br>
                    </p>
                    <div>On 09.08.23 17:51, Stefano Zampini wrote:<br>
                    </div>
                    <blockquote type="cite">
                      <div dir="auto">
                        <div>TSRK is an explicit solver. Unless you are
                          changing the ts type from command line,  the
                          explicit  jacobian should not be needed. On
                          top of Barry's suggestion, I would suggest you
                          to write the explicit RHS instead of assembly
                          a throw away matrix every time that function
                          needs to be sampled.<br>
                          <br>
                          <div class="gmail_quote">
                            <div dir="ltr" class="gmail_attr">On Wed,
                              Aug 9, 2023, 17:09 Niclas Götting <<a href="mailto:ngoetting@itp.uni-bremen.de" rel="noreferrer noreferrer noreferrer" target="_blank">ngoetting@itp.uni-bremen.de</a>>
                              wrote:<br>
                            </div>
                            <blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Hi
                              all,<br>
                              <br>
                              I'm currently trying to convert a quantum
                              simulation from scipy to <br>
                              PETSc. The problem itself is extremely
                              simple and of the form \dot{u}(t) <br>
                              = (A_const + f(t)*B_const)*u(t), where
                              f(t) in this simple test case is <br>
                              a square function. The matrices A_const
                              and B_const are extremely sparse <br>
                              and therefore I thought, the problem will
                              be well suited for PETSc. <br>
                              Currently, I solve the ODE with the
                              following procedure in scipy (I can <br>
                              provide the necessary data files, if
                              needed, but they are just some <br>
                              trace-preserving, very sparse matrices):<br>
                              <br>
                              import numpy as np<br>
                              import scipy.sparse<br>
                              import scipy.integrate<br>
                              <br>
                              from tqdm import tqdm<br>
                              <br>
                              <br>
                              l = np.load("../liouvillian.npy")<br>
                              pump = np.load("../pump_operator.npy")<br>
                              state = np.load("../initial_state.npy")<br>
                              <br>
                              l = scipy.sparse.csr_array(l)<br>
                              pump = scipy.sparse.csr_array(pump)<br>
                              <br>
                              def f(t, y, *args):<br>
                                   return (l + 0.5 * (5 < t < 10)
                              * pump) @ y<br>
                                   #return l @ y # Uncomment for f(t) =
                              0<br>
                              <br>
                              dt = 0.1<br>
                              NUM_STEPS = 200<br>
                              res = np.empty((NUM_STEPS, 4096),
                              dtype=np.complex128)<br>
                              solver = <br>
scipy.integrate.ode(f).set_integrator("zvode").set_initial_value(state)<br>
                              times = []<br>
                              for i in tqdm(range(NUM_STEPS)):<br>
                                   res[i, :] = solver.integrate(solver.t
                              + dt)<br>
                                   times.append(solver.t)<br>
                              <br>
                              Here, A_const = l, B_const = pump and f(t)
                              = 5 < t < 10. tqdm reports <br>
                              about 330it/s on my machine. When
                              converting the code to PETSc, I came <br>
                              to the following result (according to the
                              chapter <br>
                              <a href="https://petsc.org/main/manual/ts/#special-cases" rel="noreferrer noreferrer noreferrer noreferrer noreferrer" target="_blank">https://petsc.org/main/manual/ts/#special-cases</a>)<br>
                              <br>
                              import sys<br>
                              import petsc4py<br>
                              petsc4py.init(args=sys.argv)<br>
                              import numpy as np<br>
                              import scipy.sparse<br>
                              <br>
                              from tqdm import tqdm<br>
                              from petsc4py import PETSc<br>
                              <br>
                              comm = PETSc.COMM_WORLD<br>
                              <br>
                              <br>
                              def mat_to_real(arr):<br>
                                   return np.block([[arr.real,
                              -arr.imag], [arr.imag, <br>
                              arr.real]]).astype(np.float64)<br>
                              <br>
                              def mat_to_petsc_aij(arr):<br>
                                   arr_sc_sp =
                              scipy.sparse.csr_array(arr)<br>
                                   mat =
                              PETSc.Mat().createAIJ(arr.shape[0],
                              comm=comm)<br>
                                   rstart, rend =
                              mat.getOwnershipRange()<br>
                                   print(rstart, rend)<br>
                                   print(arr.shape[0])<br>
                                   print(mat.sizes)<br>
                                   I = arr_sc_sp.indptr[rstart : rend +
                              1] - arr_sc_sp.indptr[rstart]<br>
                                   J =
                              arr_sc_sp.indices[arr_sc_sp.indptr[rstart]
                              : <br>
                              arr_sc_sp.indptr[rend]]<br>
                                   V =
                              arr_sc_sp.data[arr_sc_sp.indptr[rstart] :
                              arr_sc_sp.indptr[rend]]<br>
                              <br>
                                   print(I.shape, J.shape, V.shape)<br>
                                   mat.setValuesCSR(I, J, V)<br>
                                   mat.assemble()<br>
                                   return mat<br>
                              <br>
                              <br>
                              l = np.load("../liouvillian.npy")<br>
                              l = mat_to_real(l)<br>
                              pump = np.load("../pump_operator.npy")<br>
                              pump = mat_to_real(pump)<br>
                              state = np.load("../initial_state.npy")<br>
                              state = np.hstack([state.real,
                              state.imag]).astype(np.float64)<br>
                              <br>
                              l = mat_to_petsc_aij(l)<br>
                              pump = mat_to_petsc_aij(pump)<br>
                              <br>
                              <br>
                              jac = l.duplicate()<br>
                              for i in range(8192):<br>
                                   jac.setValue(i, i, 0)<br>
                              jac.assemble()<br>
                              jac += l<br>
                              <br>
                              vec = l.createVecRight()<br>
                              vec.setValues(np.arange(state.shape[0],
                              dtype=np.int32), state)<br>
                              vec.assemble()<br>
                              <br>
                              <br>
                              dt = 0.1<br>
                              <br>
                              ts = PETSc.TS().create(comm=comm)<br>
                              ts.setFromOptions()<br>
                              ts.setProblemType(ts.ProblemType.LINEAR)<br>
ts.setEquationType(ts.EquationType.ODE_EXPLICIT)<br>
                              ts.setType(ts.Type.RK)<br>
                              ts.setRKType(ts.RKType.RK3BS)<br>
                              ts.setTime(0)<br>
                              print("KSP:", ts.getKSP().getType())<br>
                              print("KSP
                              PC:",ts.getKSP().getPC().getType())<br>
                              print("SNES :", ts.getSNES().getType())<br>
                              <br>
                              def jacobian(ts, t, u, Amat, Pmat):<br>
                                   Amat.zeroEntries()<br>
                                   Amat.aypx(1, l,
                              structure=PETSc.Mat.Structure.SUBSET_NONZERO_PATTERN)<br>
                                   Amat.axpy(0.5 * (5 < t < 10),
                              pump, <br>
structure=PETSc.Mat.Structure.SUBSET_NONZERO_PATTERN)<br>
                              <br>
ts.setRHSFunction(PETSc.TS.computeRHSFunctionLinear)<br>
#ts.setRHSJacobian(PETSc.TS.computeRHSJacobianConstant, l, l) # <br>
                              Uncomment for f(t) = 0<br>
                              ts.setRHSJacobian(jacobian, jac)<br>
                              <br>
                              NUM_STEPS = 200<br>
                              res = np.empty((NUM_STEPS, 8192),
                              dtype=np.float64)<br>
                              times = []<br>
                              rstart, rend = vec.getOwnershipRange()<br>
                              for i in tqdm(range(NUM_STEPS)):<br>
                                   time = ts.getTime()<br>
                                   ts.setMaxTime(time + dt)<br>
                                   ts.solve(vec)<br>
                                   res[i, rstart:rend] =
                              vec.getArray()[:]<br>
                                   times.append(time)<br>
                              <br>
                              I decomposed the complex ODE into a larger
                              real ODE, so that I can <br>
                              easily switch maybe to GPU computation
                              later on. Now, the solutions of <br>
                              both scripts are very much identical, but
                              PETSc runs about 3 times <br>
                              slower at 120it/s on my machine. I don't
                              use MPI for PETSc yet.<br>
                              <br>
                              I strongly suppose that the problem lies
                              within the jacobian definition, <br>
                              as PETSc is about 3 times *faster* than
                              scipy with f(t) = 0 and <br>
                              therefore a constant jacobian.<br>
                              <br>
                              Thank you in advance.<br>
                              <br>
                              All the best,<br>
                              Niclas<br>
                              <br>
                              <br>
                            </blockquote>
                          </div>
                        </div>
                      </div>
                    </blockquote>
                  </div>
                </blockquote>
              </div>
            </blockquote>
          </div>
        </blockquote>
      </div>
    </blockquote>
  </div>

</blockquote></div>