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Abstract

This work presents a novel solution for accelerating the dynamic optimal power flow using
a distributed-memory parallelization approach. Unlike other two-stage relaxation-based
approaches (such as ADMM), the proposed approach constructs the entire dynamic opti-
mal power flow problem in parallel and solves it using a parallel primal-dual interior point
method with an iterative Krylov subspace linear solver with a block-Jacobi precondition-
ing scheme. The parallel primal-dual interior point method has been implemented in the
open-source portable, extensible toolkit for scientific computation (PETSc) library. The
formulation, implementation, and numerical results on multicore computers to demon-
strate the performance of the proposed approach on medium- to large-scale networks
with varying time horizons are presented. The results show that a significant speedup is
achieved by using a block-Jacobi preconditioner with an iterative Krylov subspace method
for solving the dynamic optimal power flow problems.

1 INTRODUCTION

The operation and planning of the electric power grid contin-
ues to increase in complexity with the advent of technologies
promoting deeper decarbonization. The proliferation of renew-
able energy sources, such as wind and solar energy, continues
to permeate through the grid, providing cleaner and eco-
nomical sources of electricity. As their penetration increases,
the role of storage and technologies for flexible resource uti-
lization will be critical, and the analysis of their impact and
economic benefits will be vital. However, the introduction of
these technologies also increases the computational complex-
ity of optimal operation, necessitating more accurate and faster
solution methods.

The alternating current optimal power flow (ACOPF) [1, 2]
is an important analysis tool for grid engineers and planners.
Its aim is to find the optimal generation dispatch minimizing
the production cost, while adhering to network and equipment
operating limits. The dynamic optimal power flow (DOPF)
problem, also referred to as multiperiod ACOPF, is an exten-
sion of ACOPF that adds the dimension of time. DOPF’s aim is
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to find the optimal generation dispatch over an operating time
horizon while adhering to the network, equipment operating
limits, and intertemporal constraints.

The complexity of DOPF with respect to computing and
memory grows approximately linearly with the number of
timesteps. Thus, the solution of large-scale DOPF problems
over long time horizons is a challenging computational prob-
lem. Substantial work has been performed on DOPF [3–7], but
all these approaches solve the DOPF problem sequentially, that
is, on only one processing element. As a result, they do not scale
to larger problems. Moreover, they ignore the near-independent
structure of DOPF, thus causing a computational bottle-
neck when creating and updating the Karush–Kuhn–Tucker
(KKT) system.

In [8–10], the authors distribute the system across multiple
processors after the setup is done on a single processor. While
this approach does improve the solution time, it is inefficient
because it creates a communication bandwidth limitation as the
single processor must distribute the information across the par-
allel compute system. Additionally, this leads to memory issues
as the whole system must be able to fit in the memory of a
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2 SUNDERMANN ET AL.

single processor (or compute node) prior to distribution. A sim-
ilar parallel structure can be found in [11, 12], which utilizes the
programming language Julia to handle the parallel calculations
of the DOPF system and a parallel interior point method solver
(PIPS). The authors solve a security-constrained optimal power
flow problem using PIPS, which has the advantage of having a
block-arrow matrix structure. Such a structure is very efficient
for a Schur-complement decomposition approach. The DOPF
problem results in a staircase matrix structure, however, which is
not efficient for a Schur-complement decomposition approach.

The primal-dual interior point method (PDIPM) [13–15]
solver used in this work is a generalization and can be used for
all types of problem structures. The proposed block-Jacobi pre-
conditioner removes the interprocessor communication that the
LDL

T factorization requires. Moreover, the implementation
in parallel allows for additional memory resources and lower
memory requirement per processor. Our work is a direct expan-
sion of [3], parallelizing ExaGO’s TCOPFLOW structure and
creating an application interface with our PDIPM solver.

1.1 Contributions

In this paper we present a novel approach to accelerate DOPF
solutions to solve problems involving large-scale power systems
with longer time-horizons. The main contributions of our work
are as follows:

(i) Development of a fully parallel PDIPM method for solving
the DOPF problem with computational ease and effi-
ciency, compared with existing approaches that solve the
DOPF problem on a single processor (limiting application
sizes) [4–7] or use decomposition approaches [8, 10] that
implement sequential optimization steps with distributed
execution of the KKT linear systems (limiting scalability).

(ii) Design of an iterative Krylov-subspace method with a
block-Jacobi preconditioner to overcome the memory bot-
tleneck in solving internal linear systems. Our numerical
experiments demonstrate its superiority and scalability on
the large size DOPF problems.

(iii) Release of an open-source parallel PDIPM implemented
in the popular open-source library portable, extensible
toolkit for scientific computation (PETSc) [16] to enable
others to solve their applications, including problems aris-
ing from the operation and control of power generation,
power system management, etc. on parallel computers,
either for shorter development effort, faster computer
execution time, or breaking memory barrier. While there
are implementations of PDIPM for single-processor exe-
cution, IPOPT [17], or PIPS-IPM [18] for structured
problems, the PDIPM implementation in PETSc is, to our
knowledge, the first to solve general nonlinear optimization
problems with constraints in parallel.

1.2 Paper organization

The remaining sections of the paper are organized as fol-
lows. Section 2 describes the formulation of DOPF as an

FIGURE 1 Multiperiod optimal power flow example with four time steps.
The lines connecting the different time periods denote the coupling between
them (adapted from [19])

optimization problem. In Section 3, the PDIPM for solving
general nonlinear constrained optimization problems and its
parallel implementation in PETSc are presented. Details about
its application to DOPF are provided in Section 4. Section 5
presents the numerical simulation results and analysis of the
parallel performance. Conclusions and future work are given in
Section 6.

2 FORMULATION OF DYNAMIC
OPTIMAL POWER FLOW

The DOPF problem can be conceived as a series of ACOPF
problems connected with intertemporal constraints, as shown in
Figure 1. Each timestep ti is coupled with its preceding timestep
ti−1 = ti − Δt , and the objective is to find a least-cost dispatch
for the given time horizon T = [t0, tNt

]. The equations for the
general form of DOPF are given by Equations (1)–(5).

min
∑
t∈T

f (x(t )) (1)

s.t.

g(x(t )) = 0, (2)

h(x(t )) ≥ 0, (3)

x− ≤ x(t ) ≤ x+, (4)

−r (t ) ≤ x(t ) − x(t − Δt ) ≤ r (t ), t ≠ 0. (5)

DOPF aims to minimize the total generation cost∑
t∈T

f (x(t )) over the time horizon T . At each timestep, the
equality constraints g(x(t )), inequality constraints h(x(t )), and
lower/upper limit (x−, x+) constraints need to be satisfied.
Equation (5) represents the coupling between the consecu-
tive timesteps. In the rest of this section, we describe the
different elements of the dynamic optimal power flow formu-
lation including variables, objective function, constraints, and
bounds.

2.1 Variables

The solution vector x(t ) consists of the generator real and reac-
tive power and the bus voltages; x(t ) = [PGk

,QGk
,VRk

,VIk
]T .

In this work, we use a Cartesian representation of the
network voltages.
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SUNDERMANN ET AL. 3

2.2 Objective function

For minimizing power production across a set time horizon,
[0, T ], the DOPF problem is decomposed into Nt = T ∕Δt

timesteps as described in [10, 20]. The objective of the DOPF
problem is to minimize the total operating cost over the given
time horizon and is expressed as follows

∑
t∈T

f (x(t )) =
∑
t∈T

Ng∑
k=1

(
𝛼kP2

Gk
+ 𝛽kPGk

+ 𝛾k

)
, (6)

where 𝛼k, 𝛽k, 𝛾k are the quadratic cost coefficients for genera-
tor k and Ng is the number of generators.

2.3 Variable bounds

The generator power and bus voltages need to adhere to their
operational limits, which are expressed as box bounds on the
x(t ) vector as follows:

⎡⎢⎢⎢⎢⎢⎢⎣

P−
G

Q−
G

V−
R

V−
I

⎤⎥⎥⎥⎥⎥⎥⎦
≤ x(t ) ≤

⎡⎢⎢⎢⎢⎢⎢⎣

P+
G

Q+
G

V+
R

V+
I

⎤⎥⎥⎥⎥⎥⎥⎦
(7)

where P−
G ,P

+
G ,Q

−
G

, and Q+
G

are given and generator depen-
dent, and bus voltage is unbounded V−

R ,V
−
I = −∞ and

V+
R ,V

+
I = ∞.

2.4 Equality constraints

The nodal power balance constraints at each time-step form the
equality constraints for the problem and are given by:

ΔPf =
∑

Abr ( f ,t )=1

(G f f (V 2
R f

+V 2
I f

) +VR f (G ft VRt

− B ftVIt ) +VI f (B ftVRt + G ft VIt ))

−
∑

AG ( f ,k)=1

PGk +
∑

AL ( f , j )≠0

(PD j ) = 0, (8)

ΔQ f =
∑

Abr ( f ,t )=1

(−B f f (V 2
R f

+V 2
I f

) +VI f (G ftVRt

− B ftVIt ) −VR f (B ftVRt + G ft VIt ))

−
∑

AG ( f ,k)≠0

QGk +
∑

AL ( f , j )=1

(QD j ) = 0, (9)

Δ𝜃re f = VIre f −VRre f tan(𝜃re f ) = 0, (10)

where Equations (8) and (9) are the real and reactive power
balance equations, respectively, and Equation (10) holds the

reference voltage angle constant. Abr ,AG ,AL represent sparse
incidence matrices mapping the lines, generators, and loads to
buses, respectively. Abr ( f , t ) = 1 indicates a branch connec-
tion between buses f (from) and t (to). Similarly, AG ( f , k) = 1
indicates generator f is incident at bus k, and AL ( f , j ) = 1
indicates load f is incident at bus j .

2.5 Inequality constraints

The inequality constraints are the flow limits (Equation (11))
for the transmission lines and voltage magnitude bounds
(Equation (12)) at each time-step

0 ≤

(
P2

ft
+ Q2

ft

)
≤ (S+

ft
)2,

0 ≤

(
P2

t f
+ Q2

t f

)
≤ (S+

ft
)2, (11)

(Vmin )2
≤ V 2

Ri
+V 2

Ii
≤ (Vmax )2

. (12)

When considering the power flow between buses, S+
ft

can
vary as each transmission line is rated for normal, short-
term, and emergency operation, labelled RATE_A, RATE_B,
RATE_C, respectively. In this paper, we use RATE_A rating
of lines.

The other set of inequality constraints arises from the ramp
rate limits for generators between consecutive time-periods, that
is, every generator output can ramp up or down within its ramp-
rate capability. This can be expressed through Equations (13)
and (14).

PG (t − Δt ) − PG (t ) ≤ rGk
Δt , (13)

PG (t ) − PG (t − Δt ) ≤ rGk
Δt . (14)

3 A PARALLEL PRIMAL-DUAL
INTERIOR POINT METHOD IN PETSC

In this section we construct a PDIPM for solving constrained
nonlinear optimization problems. Consider the described opti-
mization problem for DOPF, the objective function f (x),
equality constraints g(x), inequality constraints h(x), and upper
and lower bounds x− and x+ on x, in general. Then an
optimization problem is written in compact form as

min
x

f (x)

s.t. g(x) = 0,

h(x) ≥ 0,

x− ≤ x ≤ x+.

(15)

From Equation (15), we combine the constraints and the
bounds to obtain
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4 SUNDERMANN ET AL.

G(x) =

[
g(x)

x − xeq

]
and H (x) =

⎡⎢⎢⎣
h(x)

x+ − x
x − x−

⎤⎥⎥⎦,

where xeq represents the set of x variables where x− = x+.
Introducing a set of slack variables z and a logarithmic barrier
to ensure the positivity of z, then Equation (15) is formulated
as a new optimization problem:

min
x

f (x) − 𝜇

NH∑
i=1

ln(zi )

s.t. G(x) = 0,

H(x) − z = 0,

(16)

where NH denotes the number of inequality constraints in H .
We note that 𝜇 is driven to zero during the optimization.

Define X =
[
x, 𝜆G , 𝜆H , z

]T
. Then the final transformation

of Equation (16) is a single Lagrangian function [21]:

L𝜇 (X ) = f (x) + 𝝀
T
G G(x) − 𝝀

T
H (H (x) − z) − 𝜇

NH∑
i=1

ln zi ,

(17)

where 𝝀G and 𝝀H are Lagrangian multipliers for the equal-
ity and inequality constraints, respectively. Additionally, the
solution to Equation (16) will result in a saddle point in Equa-
tion (17). Applying Newton’s method with Equation (17) as the
target function, we aim to find a critical point x∗ that will solve
our original optimization problem in Equation (15).

The minimizer X ∗ of Equation (17) must satisfy KKT con-
ditions [22], which allow an extension of Lagrangian multipliers
to inequality constraints. We apply a Newton’s method to refine
an initial guess X 0 by X n+1 = X n + 𝛼𝚫X , in which the search
direction 𝚫X is calculated by solving

K𝚫X = −F , (18)

the symmetric KKT matrix K = 𝛁
2
L𝜇 is

⎡⎢⎢⎢⎢⎣

W xx ∇G(x)T −∇H (x)T 0

∇G(x) 0 0 0

−∇H (x) 0 0 I

0 0 I 𝚲H ∗ Z−1

⎤⎥⎥⎥⎥⎦
, (19)

the right-hand side vector

F =

⎡⎢⎢⎢⎢⎣

W x

G(x)

z − H (x)

𝚲H e − 𝜇 ∗ Z−1e

⎤⎥⎥⎥⎥⎦
, (20)

W x = ∇ f (x)T + ∇G(x)T 𝝀G − ∇H (x)T 𝝀H , (21)

W xx = ∇2 f (x) + ∇2G(x)T 𝝀G − ∇2H (x)T 𝝀H , (22)

where e is a vector of ones, I is the identity matrix, and
Z and 𝚲H are square matrices with z and 𝝀H along their
diagonals, respectively.

The KKT matrix (Equation (19)) would become more indefi-
nite and ill-conditioned for large-scale problems. The sequential
PDIPM software packages (e.g. IPOPT and MIPS) use a
reduced KKT matrix to improve computational efficiency.
However, evaluation of the reduced KKT matrix requires paral-
lel matrix–matrix products that incur significant data movement
between processors and lead to a denser submatrix W xx . Thus,
we use the uncompressed KKT matrix (Equation (19)) in our
current PDIPM/PETSc implementation.

To ensure a descent direction 𝚫X , we expect no zero inertia
indices and the number of primal and dual variables to match
the number of positive and negative inertia indices, respectively.
We apply an LDL

T [23] matrix factorization preconditioner
provided by the latest release of MUltifrontal Massively Paral-
lel sparse direct Solver (MUMPS-v5.4.1) library [24] to K and
evaluate its matrix inertia [25]. Should there be a different dis-
tribution of the matrix inertia, we introduce shift 𝛿w to balance
positive and negative inertia indices and add shift 𝛿c to remove
zero indices We adopt the same heuristics and algorithm for
shifts as IPOPT. This formulation can be represented as

⎡⎢⎢⎢⎢⎣

W xx + 𝛿w ∗ I ∇G(x)T −∇H (x)T 0

∇G(x) −𝛿c ∗ I 0 0

−∇H (x) 0 −𝛿c ∗ I I

0 0 I 𝚲H ∗ Z−1

⎤⎥⎥⎥⎥⎦
. (23)

The evaluation of the matrix inertia counts the number of pos-
itive, negative and zero diagonals of the numerically factored
matrix. It costs ignorable computation and communication time
compared to the numerical factorization of the matrix. This
process is implemented in MUMPS.

At the end of each iteration, we test the convergence of the
Newton’s solver by testing the norm of F separated between
prime and dual components described as the residual norm

r =

√
W x

T W x + (Z�H e − 𝜇e)T (Z�H e − 𝜇e) (24)

and constraint norm (c-norm)

𝜏 =

√
G(x)T G(x) + (z − H (x))T (z − H (x)). (25)

These norms are then used as convergence criteria: residual
convergence and constraint convergence. The convergence is
reached when the c-norm and either absolute or relative residual
tolerances are met. These criteria are based on the convergence
of primal, dual, and complementary slackness as used in most
optimization solvers, for example, [17].

The PDIPM is implemented as a general constrained opti-
mization solver in PETSc. Appendix A illustrates its software
design, implementation, and usage.
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SUNDERMANN ET AL. 5

FIGURE 2 Software structure of DOPF within ExaGO

4 APPLICATION OF PDIPM to DOPF

The DOPF application is built on top of the ExaGO framework
[3]. It utilizes the DMNetwork foundation [26] in PETSc to
handle the construction and parallel distribution of the under-
lying power network, data movement, and ACOPF objects (see
OPFLOW in [3]). Figure 2 illustrates the software structure of
DOPF using ExaGO, as well as how this work and parallel
PDIPM add new extensions to the ExaGO and PETSc libraries.

We note here that we solve the entire DOPF (including all
the time-periods) as a single problem. We do not decouple
the equations and solve them using two-stage approaches such
as ADMM. The equations for each time-period are assigned
to individual processors and there are equations that couple
variables across different processors to model the dependency
between time-step ti and ti+1. So, in essence the DOPF model is
partitioned across many processors and solved in parallel using
the PDIPM solver developed in PETSc.

The full optimization system in Equation (15) is solved by
using PDIPM/PETSc as presented in the preceding section.
The internal nonlinear algebraic equations (Equations (17) and
(18)) are solved via Newton–Krylov methods by using PETSc
SNES [27].

In general, the solutions of linear systems dominate the com-
putation. In this section, we discuss the data structures of the
KKT matrices arising from the DOPF application, based on
which we present two preconditioners for solving the KKT
systems (Equation (18)).

Observing the full optimization system (Equation (15)), we
see that the only link between the variables associated with
the timesteps is the ramping constraints in Equations (13) and
(14). If the system is ordered such that the variables from the
first time period appear first, then the variables from the next
timestep, the resulting KKT matrix has an interesting blocked-
diagonal structure that allows minimal communication between
processors in the computation. Therefore, we distribute DOPF
as a full set of ACOPF systems, where each processor contains
at least one timestep.

For example, consider simulating a DOPF with a half-hour
time period where the load data has resolution of 5 min. For our

purposes, this equates to Nt =
30 min

5 min
= 6 timesteps. Figure 3a

shows the data structure of the resulting KKT matrix on a sin-
gle processor. If we distribute this to 2 processors, we would
have three timesteps per processor with processor 1 holding

FIGURE 3 KKT matrix structure with six timesteps

t = 1, 2, 3 and processor 2 holding 4, 5, 6 timesteps, as shown in
Figure 3b. Having each timestep represented as an independent
power network, we can initialize our DOPF solution by solving
ACOPF separately on each timestep independently in parallel.

From here, the network constraints described in Equa-
tion (15) can be solved in parallel, running the DOPF update
routines mentioned earlier. Additionally, the time constraints
can be computed without communication if t − 1 and t from
Equations (13) and (14) are on the same processor. In this exam-
ple, the ramp conditions linking timesteps 1 & 2, 2 & 3, 4 & 5,
and 5 & 6 are handled without communication, while those link-
ing 3 & 4 require minimal local communication as indicated by
Figure 3b.

With the formulation of the KKT system, at each iteration
of Newton’s method, a linear solve (i.e., a Krylov subspace
method) is required to find the search direction𝚫X from Equa-
tion (18). The indefinite and highly ill-conditioned nature of
KKT matrices requires a robust preconditioner. We apply an
LDL

T direct solver and the inertia correction method described
in Equation (23) to aid convergence.

As the system (Equation (15)) becomes large when the
timesteps increase, the LDL

T direct solver consumes too much
memory and/or reduces the parallel scalability. We then take
advantage of the block-diagonal structure of the KKT matri-
ces and apply the block-Jacobi preconditioner [27] with LDL

T

matrix factorization applied to the inner subblocks, as shown by
Figure 4.

Our numerical experiments show that the block-Jacobi pre-
conditioner yields better parallel speedups although it takes
more total PDIPM iterations to converge. PETSc library
provides numerous options to allow users to select solvers
and algorithms at runtime. When the DOPF problem is
modified or the KKT matrix structure changes, users can
experiment with various options and find a feasible and effi-
cient solver. Appendix B presents the options used in our
numerical experiments.

5 NUMERICAL EXPERIMENTS

Two standard power systems from the Texas A&M Synthetic
Test Case Repository, 200-Bus and 2000-Bus systems [28, 29],
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6 SUNDERMANN ET AL.

FIGURE 4 KKT matrix structure of 200-bus system with six timesteps
on six processors

were used to evaluate our PDIPM implementation in PETSc.
For DOPF results, we utilized variable load demands on the
200-Bus system to demonstrate viability on real-world data[3]
and two different load profiles on the 2000-Bus system for
scope and scalability. The different load profiles were designed
to show the potential of the solver within 𝜹 t x on a large
system (Tables 3 and 4) and test performance when tightly
linked from inter-temporal constraints (Table 5). We load data
every 5 min for the 200-Bus system and every one hour for
the 2000-Bus system; thus the number of timesteps Nt =

Duration (min)∕Time Interval (min). For parallel computation,
we set the number of processor cores Np = Nt ; in other words,
each core holds an independent power network subsystem at a
single timestep, as discussed in Section 4.

Our DOPF is built on the ExaGO framework [3], which
consists of ACOPF and PFLOW objects, and utilizes the
DMNetwork class [26] in PETSc to handle the construction and
parallel distribution of the underlying power network, as shown
in Figure 2. Our DOPF code first reads network data for a single
timestep, as shown in Figure 5. Using DMNetwork/PETSc API
functions, we created the power network; registered network
components, such as transmission lines as edges, buses and gen-
erators as vertices; added these components to the network;
and then DMNetwork assembled and distributed the resulting
network to all processor cores [30]. The linear, nonlinear, and
optimization solvers were built on the top of this network via
standard PDIPM/PETSc API functions.

We conducted experiments on two computer systems: (i) a
Linux server and (ii) Theta, an Intel-Cray XC40 system in the
Argonne Leadership Computing Facility [31]. The Linux server
has dual Intel Xeon Gold 6130 CPUs at 2.1 GHz with 32 cores
(64 threads) and 192 GiB of RAM. Theta has 4392 nodes, each

FIGURE 5 ACTIVSg200 network for a single timestep (adapted from
[28])

TABLE 1 Total time of 200-Bus system on Theta (s)

LDL
T

Duration Nt NVar Np = 1 Np = Nt

b-Jacobi

Np = Nt Speedup

0.5 h 6 25,726 216 150 56 3.9

1 h 12 51,604 658 608 88 7.5

2 h 24 103,360 2043 972 135 15.1

4 h 48 206,872 6767 2704 476 14.2

NVar : Number of variables in X . Np: Number of cores. Speedup: Column 4 / Column 6.

TABLE 2 Total time of 200-Bus system on the Linux server (s)

LDL
T

Duration Nt

IPOPT

Np = 1 Np = 1 Np = Nt

b-Jacobi

Np = Nt Speedup

0.5 h 6 13 19 15 6.3 3.0

1 h 12 35 57 67 14 4.1

2 h 24 102 187 108 16 11.7

4 h 48 581 621 520 87 7.1

Np: Number of cores. Speedup: Column 4 / Column 6.

with 64 1.3 GHz Intel Xeon Phi 7230 cores with 16 GiB of
MCDRAM per node.

Tables 1 and 2 show the total execution time of a 200-Bus
system on the Theta supercomputer and on the Linux server.
Tables 3 and 5 present experimental results of the 2000-Bus
system. More than 90% of the computation is spent on solving
the KKT linear systems (Equation (18)), for which we compare
three preconditioners used in the generalized minimal resid-
ual (GMRES) Krylov subspace iterations: sequential LDL

T

(Np = 1), parallel LDL
T (Np = Nt ), and block-Jacobi using

Np diagonal blocks with sequential LDL
T applied to each inner

sub-block of the KKT matrix (b-Jacobi).
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SUNDERMANN ET AL. 7

TABLE 3 Total time of 2000-Bus system (first load profile) on the Linux
server (s)

LDL
T

Duration Nt NVar Np = 1 Np = Nt

b-Jacobi

Np = Nt

2 h 2 34,554 136 143 163

10 h 10 172,770 Out of Mem. 693 592

20 h 20 345,540 Out of Mem. Out of Mem. 3192

NVar : Number of variables in X . Np: Number of cores. Out of Mem.: Insufficient memory
during matrix factorization.

TABLE 4 Total time of 2000-Bus system (first load profile) on Theta (s)

LDL
T

Duration Nt Np = 1 Np = Nt

b-Jacobi

Np = Nt

10 h 10 10,670 4301 5849

20 h 20 Out of Mem. Out of Mem. 20,680

N p: Number of cores. Out of Mem.: Insufficient memory during matrix factorization.

TABLE 5 Total time of 2000-Bus system (second load profile) on Linux
server (s)

LDL
T

Duration Nt Np=1 Np = Nt

b-Jacobi

Np = Nt

2 h 2 251 244 1034

10 h 10 Out of Mem. Out of Mem. 17,223

Np: Number of cores. Out of Mem.: Insufficient memory during matrix factorization.

PETSc library enables users to experiment various solver
options at runtime without modifying application code. The
options we used for the MUMPS’ LDL

T preconditioner and
block-Jacobi preconditioner with LDL

T applied to the inner
sub-block are shown in Appendix B.

We utilized IPOPT via ExaGO to validate the accuracy of
our PDIPM. For all the test systems, our PDIPM solutions gave
the numerically identical optimal values of the objective func-
tion f (x∗(t )) as IPOPT under the same convergence criteria
presented in Section 3. As a reference, Table 2 lists the numer-
ical performance of IPOPT that is comparable with the results
of LDL

T preconditioner, but performs worse than our parallel
PDIPM with the block-Jacobi preconditioner.

A subsystem of the 200-Bus system at a given timestep has
≈4287 variables, while the 2000-Bus system consists of 17,277
variables in each subsystem (i.e. ≈ 4× larger). These numbers
determine the size of the diagonal blocks of the KKT matrix,
as shown in Figure 4. Although the 200-Bus system with 4-h
duration has more total variables in X than the 2000-Bus system
with 10-h duration, its KKT matrix consists of 48 small diagonal
blocks compared with ten larger and denser diagonal blocks for
the 2000-Bus system. The latter requires much larger memory
for LDL

T matrix factorization.

FIGURE 6 Speedup of block-Jacobi preconditioner on 200-Bus system
on the Linux server and Theta ALCF machine

For small- to medium-size power systems (e.g., 0.5- and 1-
h duration of 200-Bus system), parallel LDL

T does not show
noticeable advantages over the sequential runs. As the size of
the problems increases (e.g., 10- and 20-h duration of 2000-Bus
system) sequential runs fail due to insufficient memory dur-
ing LDL

T matrix factorization, while the parallel PDIPM with
appropriate preconditioners successfully computes solutions.
In most experiments, the block-Jacobi preconditioner outper-
forms LDL

T and gives speedups over the sequential LDL
T

ranging from 3.0 to 15.1, as shown in Figure 6.
The first load profile gives loosely linked inter-temporal con-

straints, while the second load profile produces tighter links.
For the latter, the block-Jacobi preconditioner becomes less
efficient, requiring far more inner linear iterations and longer
execution time as shown in Table 5. We conclude that the
block-Jacobi precondtioner improves parallel performance on
certain systems. For large size power systems, the primary ben-
efit is its ability to converge to the optimal solution with much
less memory usage compared to the large memory overhead in
LDL

T factorization.
In addition to the solutions of the KKT systems, some

researchers found the calculation of gradients and the Hes-
sian matrices to be the next most computationally expensive
aspect [4]. We calculate the analytic derivatives in the sparse
gradients and Hessian matrix at each timestep simultaneously
across multiple processors via ExaGO’s ACOPF framework.
Our experiments show that the gradient and Hessian evalu-
ations took less than 5% of the total computation time and
achieved superlinear speedup on almost all parallel tests. Table 6
presents the total time spent on the Hessian evaluations on
Theta using the LDL

T preconditioner. The superlinear speedup

TABLE 6 Hessian evaluations on Theta

Total time (s)

Test system Nt Np = 1 Np = Nt Speedup

200-Bus 48 118 1.6 73.75

2000-Bus* 10 364 16 22.8

Np: Number of cores. Speedup: Column 3 / Column 4. *: First load profile.
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8 SUNDERMANN ET AL.

likely comes from the cache performance. The performance of
200-Bus is significant because it would have a high cache hit
ratio [32].

6 CONCLUSIONS AND FUTURE WORK

This work presents solution of dynamic optimal power flow
with the following innovations:

(1) Instead of using conventional relaxation-based approaches,
such as ADMM, we solved the entire DOPF problem
using a fully parallel primal-dual interior point method
(PDIPM),

(2) A block-Jacobi preconditioner is used to overcome the
memory bottleneck in solving KKT linear systems and
thereby maximizing parallel performance. Our analysis and
numerical results demonstrate a significant speedup on
large-scale networks with varying time horizons, and

(3) the parallel PDIPM solver is available publicly to benefit
other researchers in their endeavors. To our knowledge,
this is the first freely available parallel PDIPM for general
nonlinear optimization problems with constraints.

Future work will consider expanding DOPF model to include
energy storage (additional inter-temporal constraints) and use
wind and other renewable energy as stochastic variables towards
a stochastic-DOPF. In addition, scalable and robust solvers for
the KKT linear systems for large-scale DOPF problems will
be investigated.

NOMENCLATURE

S f , St Apparent power flow at from and to ends of line
𝛼k, 𝛽k, 𝛾k Generator cost coefficients

⋅ f f , ⋅ ft Line link from-from and from-to
Nt Number of timesteps
Ng Number of generators
𝜹 t x Ramp capability
rGk Ramping capability of generator k

PGk,QGk Real and reactive power at generator k

ΔPf , ΔQ f Real and reactive power balance
𝜃re f Reference bus voltage angle

VRre f ,VIre f Real and imaginary components of voltage at the
reference voltage

G f f ,G ft Self and mutual conductance
B f f ,B ft Self and mutual susceptance
⋅+, ⋅− Upper and lower bounds on a variable

Vi , VRi ,VIi Voltage magnitude, real, and imaginary voltage
components at bus i
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APPENDIX A: PDIPM IN PETSc

Portable, extensible toolkit for scientific computation (PETSc)
is an open-source library (BSD-style license) for the numerical
solution of large-scale applications and provides the building
blocks for the implementation of application codes on parallel
(and serial) computers. The PETSc package consists of a set of
libraries for creating parallel vectors, matrices, distributed arrays,
scalable linear, nonlinear and timestepping solvers.

Our work in this paper added PDIPM, a new nonlinear opti-
mization solver, to the PETSc library to assist both future power
system applications and general usage. Figure A.1 illustrates the
software structure of the PDIPM in PETSc. Within this solver,
we iteratively solve the KKT systems (Equation (18)) using a
preconditioned Krylov subspace method. The PDIPM solver
in PETSc expects the user to provide the following based on
the decision variable x:

(i) the vectors xl and xu , lower and upper bounds for each x;
(ii) the function that calculates f (x) and ∇ f (x);
(iii) the equality g(x) and inequality h(x) constraints as separate

vectors and their Jacobian matrices; and
(iv) the Hessian matrix 𝛁

2
f (x), the Hessian of the equality

constraints and inequality constraints multiplied by their
Lagrangian multipliers (W xx in Equation (22)).

From here, PETSc assembles the data structures described in
Equations (16) – (22) to implement PDIPM. In each iteration of
Newton’s method, PDIPM updates only the elements of G(x),
H (x), 𝛁G(x), 𝛁H (x), and W xx that directly depend on X n.

The parallel implementation of the PDIPM method is
achieved by distributing all involved vectors and matrices across

FIGURE A.1 Software structure of PDIPM in PETSc. KSP: Krylov
subspace and preconditioner methods. SNES: scalable nonlinear equation
solvers
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multiple processors and utilizing PETSc scalable linear equa-
tion solvers (KSP) and scalable nonlinear equation solvers
(SNES) [27].

APPENDIX B: PRECONDITONER OPTIONS

Within PETSc are numerous options to allow users to select
solvers and modify parameters at runtime. The options we used
in this paper to apply either the LDL

T or block-Jacobi pre-
conditioners to the GMRES Krylov subspace iterations are
shown below.

B.1 MUMPS’ LDLT

-ksp_type gmres -pc_type cholesky
-pc_factor_mat_solver_type mumps

B.2 Block-Jacobi with LDLT in the inner subblocks

-ksp_type gmres -pc_type bjacobi
-sub_pc_type cholesky
-sub_pc_factor_mat_solver_type mumps
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