<div dir="ltr"><div dir="ltr">On Fri, Feb 17, 2023 at 2:43 AM user_gong Kim <<a href="mailto:ksi2443@gmail.com">ksi2443@gmail.com</a>> wrote:<br></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Hello,<div><br></div><div>I have a question about rank of matrix.</div><div>At the problem </div><div>Au = b, </div><div><br></div><div>In my case, sometimes global matrix A is not full rank.</div><div>In this case, the global matrix A is more likely to be singular, and if it becomes singular, the problem cannot be solved even in the case of the direct solver.</div><div>I haven't solved the problem with an iterative solver yet, but I would like to ask someone who has experienced this kind of problem.<br></div><div><br></div><div>1. If it is not full rank, is there a numerical technique to solve it by catching rows and columns with empty ranks in advance?<br></div><div><br></div><div>2.If anyone has solved it in a different way than the above numerical analysis method, please tell me your experience.</div></div></blockquote><div><br></div><div>As Pierre points out, MUMPS can solve singular systems.</div><div><br></div><div>If you have an explicit characterization of the null space, then many iterative methods can also solve it by projecting out</div><div>the null space. You call MatSetNullSpace() on the system matrix.</div><div><br></div><div> Thanks,</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>Thanks,</div><div>Hyung Kim</div><div><br><br></div></div>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div><div><br></div><div><a href="http://www.cse.buffalo.edu/~knepley/" target="_blank">https://www.cse.buffalo.edu/~knepley/</a><br></div></div></div></div></div></div></div></div>