<div dir="ltr">Or just call the LAPACK routine directly.<div><br></div><div> Matt</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sat, Dec 24, 2022 at 7:14 AM Stefano Zampini <<a href="mailto:stefano.zampini@gmail.com">stefano.zampini@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="auto">For 3x3 matrices you can use explicit formulas</div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sat, Dec 24, 2022, 11:20 김성익 <<a href="mailto:ksi2443@gmail.com" target="_blank">ksi2443@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Hello,<div><br></div><div><br></div><div>I tried to calculate the eigenvalues and eigenvectors in 3 by 3 matrix (real and nonsymmetric).</div><div>I already checked the kspcomputeeigenvalues and kspcomputeritz.</div><div><br></div><div>However, the target matrix is just 3 by 3 matrix.<br>So I need another way to calculate the values and vectors.</div><div>Can anyone recommend other methods that are efficient for such small size problems??</div><div><br></div><div>Thanks,</div><div>Hyung Kim</div></div>
</blockquote></div>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div><div><br></div><div><a href="http://www.cse.buffalo.edu/~knepley/" target="_blank">https://www.cse.buffalo.edu/~knepley/</a><br></div></div></div></div></div></div></div>