
Computational Meshing

Practical Application of PETSc’s DMPlex

Matthew G. Knepley

Department of Computer Science and Engineering
University At Buffalo

November 4, 2022

I dedicate these notes to my wonderful wife Margarete, without whose
patience and help they could never have been written.

Acknowledgements

TBD

4

Contents

I Representations 9

1 Topology 11
1.1 Conforming Topology . 11

1.1.1 The Hasse Diagram . 13
1.1.2 Mesh Interpolation . 16
1.1.3 Orientation . 16
1.1.4 Periodicity . 37
1.1.5 CAD Interface . 37

1.2 Nonconforming Topology . 37
1.2.1 The Parent Tree . 37
1.2.2 Anchors and Constraints 37

1.3 Submeshes . 37
1.4 Parallelism . 37

1.4.1 Distribution . 37

2 Functions 39
2.1 PetscSection . 39

2.1.1 Constraints . 39
2.1.2 Symmetries . 39

2.2 Parallelism . 40
2.2.1 Local and Global Sections 40
2.2.2 Data Distribution . 40

2.3 Periodicity . 40
2.4 Global Basis Transformation . 40
2.5 Geometry . 40
2.6 Projection . 40

2.6.1 Interpolation . 40
2.6.2 L2 projection . 41

II Transformations 43

3 General Transformations 45
3.1 Definition . 47

5

6 CONTENTS

3.2 Group Action . 50
3.3 Numbering . 51
3.4 Implementation . 52

4 Interpolating 55
4.1 Serial Algorithm . 55
4.2 Parallel algorithm . 57

5 Extracting 61
5.1 Filtering . 61
5.2 Submeshes . 61

6 Extruding 63
6.1 Simple Extrusion . 63

6.1.1 Coordinates . 66
6.2 Embedded Extrusion . 67

6.2.1 Labeling . 68
6.2.2 Construction . 68

7 Refining 71
7.1 Regular refinement . 71

7.1.1 Converting cell types . 74
7.1.2 Boundary Layers . 76
7.1.3 Snapping to structure . 76

7.2 Adaptive refinement . 76
7.2.1 Plaza . 76
7.2.2 p4est . 77
7.2.3 ParMMG . 77

8 Coordinate Transformations 79
8.1 Coordinate Representation . 79
8.2 Direct Modification . 79
8.3 Projection . 80

III Applications 83

9 Crustal Dynamics 85

10 Low Mach Flow 87

Appendix A Creating DMPlex Meshes 91
A.1 Working with files . 91
A.2 Working with Shapes . 93
A.3 Working in Parallel . 98

Appendices

CONTENTS 7

Index 101

8 CONTENTS

Part I

Representations

9

Chapter 1

Topology

Point set topology is a disease from which the human race will soon recover.

— Henri Poincare

1.1 Conforming Topology

In the last century, at the birth of topology, two main organizing concepts
emerged for the new discpline, the complex and the topological space, both of
which are attempts to describe mathematically the intuitive idea of a geometrical
figure. Since Euclid, a figure has been thought of as a heterogeneous collection
of elements (points, lines, planes, . . .), or configuration, arranged according
to attachment rules. These will become our complexes, following the line of
thinking from synthetic geometry. The other point of view is that a figure is
an infinite collection of homogeneous elements, a point set, organized to form
a geometrical figure. This is usually done by introducing a coordinate system,
metric, and idea of neighborhoods. The synthesis of these two lines of thought
comes about through the work of Brouwer 1.

We will take the combinatorial approach to topology, meaning that we will
cut space into a finite number of pieces, rather than imaging it as being com-
posed an infinite sets of points. This is a much more natural framework for
understanding and manipulating descriptions of space on a computer. We will
call the fundamental units of this division a k-cell , where k indicates the di-
mension of a cell. We cannot change the dimension of a cell by a continuous
mapping, so this classification makes sense here. In fact, all k-cells are infinites-
imally close to a k dimensional polyhedron (Dimension theory 2021), so that we
can always think of breaking up our domain into k-cells which have well-defined
faces. We will call a decomposition conforming if any two k-cells are disjoint,

1A beautiful description of these developments appears in the early book of Paul Alexan-
droff Alexandroff 1932

11

12 CHAPTER 1. TOPOLOGY

2 3

4 5

6

7

8 9

10

0

1

0 1

6 7 8 9 10

2 3 4 5

Figure 1.1: Two adjacent triangles, and the corresponding Hasse diagram.

4 5 6

7 8 9

10 11 12

13 14

15 16

17 18

19

20

21

22

23

24

0 1

2 3

4 5

7 8

0

5 6

8 9

1

7 8

10 11

2

8 9

11 12

3

Figure 1.2: A square decomposed into cell closure patches.

or their intersection defines a face which is a (k − 1)-cell. An example is shown
in Fig. 1.1, where two 2-cells (triangles) intersect in a 1-cell (edge).

Discussion of cone and support with pictures
We commonly think of building up a mesh from pieces which contain their

closure, in a similar way to a jigsaw puzzle. For example, in Fig. 1.2, we con-
struct a square mesh from four smaller squares. The boundaries of these smaller
pieces overlap when we put them together, and we eliminate the redundant
boundary points. However, a complementary, or dual, point of view would see
the square mesh as built up from a central vertex attached to four edges and
four square interiors, four edge vertices attached to two edges and two square
interiors, and four corner vertices attached to two edges and one square inte-
rior. When we put those pieces together, the edges and interiors overlap, and
we discard the redundant points, just as we did in the case for boundaries.

This dual point of view becomes more important when we are forced to divide
our mesh, rather than keep a single, coherent representation. For example, if
we run in parallel, we would need to store part of the mesh on each machine,
rather then replicating the entire mesh, in order to be memory scalable. Suppose
that we choose to divide our square into the four smaller squares, and store
each one on a different process. On each process we would have the cone of

1.1. CONFORMING TOPOLOGY 13

4 5 6

7 8 9

10 11 12

13 14

15 16

17 18

19

20

21

22

23

24

0 1

2 3

8

0 1

2 3

7

0

2

9

1

3

5

0 1

11

2 3

4

0

6

1

10

2

12

3

Figure 1.3: A square decomposed into vertex star patches.

each stored point, but the supports would be incomplete. For example, the
support of each interior edge contains two squares, but only one square would
be available on that process. The solution might seem simple. Why not just
add the off-process square to the support of that edge? However, if we do that,
then we have a point (the new square) with an incomplete cone. We could
add the boundary of the new square, but that would mean adding points with
incomplete supports. It now becomes clear, that pieces we extract from a mesh
can have either complete cones or complete supports, but not both. In Plex,
we guarantee the completeness of local cones, but not supports, because people
naturally think of pieces containing their boundary. One could equally well
construct Plex with complete supports, using vertex star pieces, but this has
not yet been implemented.

1.1.1 The Hasse Diagram

Let Pk(p, q) be the relation “there exists a directed path of length k from p to
q in the Hasse diagram”, and let P be the union of all these relations

P =
⋃
k

Pk. (1.1)

We can define the cone and support operations as a duality relation

q ∈ cone(p) ⇐⇒ P1(p, q) ⇐⇒ p ∈ supp(q). (1.2)

14 CHAPTER 1. TOPOLOGY

And we can generalize this to transitive closures,

q ∈ cl(p) ⇐⇒ P (p, q) ⇐⇒ p ∈ st(q). (1.3)

Once we have the Hasse diagram, we can identify the boundary of any k-cell
p. It is the set of mesh points given by cl(p) − p. However, if we decompose
a manifold into k-cells, we do not have enough information to orient it. For
example, if I triangulated a surface, I would not be able to calculate a unique
normal because I would not know the order of vertices around each triangle.
Seen from a combinatorial points of view, the formal sum of a boundary should
vanish, but I do not know what weights to put on the vertices in the closure.

What we need is some way to distinguish one configuration of a k-cell from
another, and by configuration we will mean the order of points in its cone. Taken
transitively, this will impose an order on the closure of any point. However, this
order might not be what we want. For example, we would like the boundary
sum to vanish when applied to something that is already a boundary, which is
what we usually mean by orienting a manifold. This will only happen if we are
allow to orient mesh point differently, depending on what cell they are attached
to. A simple example will help illustrate the abstract point.

The cone of triangle 0 is the edges {6, 7, 8}, and we can imagine that these
edges have cones {4, 2}, {2, 3}, and {3, 4}. Thus, our formal boundary sum is
given by

bd(0) = 6 + 7 + 8

and is just another form of the cone. The boundary of a boundary should vanish,
and it does

bd(bd(0)) = bd(6) + bd(7) + bd(8)

= (4− 2) + (2− 3) + (3− 4)

= ∅

if we orient the edges as suggested. However, let us try the same thing with
triangle 1, whose cone is {9, 10, 8}, and the edges have cones {3, 5}, {5, 4}, and
{3, 4}. Then the boundary of 1 is

bd(1) = 9 + 10 + 8

and the second boundary operation gives

bd(bd(1)) = bd(9) + bd(10) + bd(8)

= (3− 5) + (5− 4) + (3− 4)

= (3− 4) + (3− 4)

6= ∅.

In this simple example, the problem is clear. Triangle 0 would like edge 8 to be
directed north-east, but triangle 1 would like it to be oriented south-west. The

1.1. CONFORMING TOPOLOGY 15

solution is to allow triangle 1 to attach edge 8 with the opposite orientation.
Then we would have,

bd(bd(1)) = bd(9 + 10− 8)

= bd(9) + bd(10)− bd(8)

= (3− 5) + (5− 4)− (3− 4)

= (3− 4) + (4− 3)

= ∅.

This use of just +/− is fine for edges, but if we have faces with symmetry groups
that are more complex than S2, we must allow a more sophisticated system for
labeling the possible ways of attaching a (k − 1)-cell face to a k-cell. You can
think of these labels as labeling the edges in the Hasse diagram.

Suppose we take a k-cell in the canonical configuration. We could generate
an alternative cell by changing the arrangement of the faces, and label each
arrangement with a number so that we can tell them apart. We will call this
number the orientation for the cell. It will turn out to be more fruitful to think
of labeling, not the configuration itself, but the transformation that gets us from
the canonical configuration to the alternative one we are labeling. This gets us
to the idea of group transformations, where now we label all the members of the
group by our orientation number. Thinking this way allows us to compose one
transformation with another, so that we have a prescription for transforming
our cells. In the next section, we will walk through examples to show how this
works in practice.

Continuous Maps

There are many equivalent definitions of continuity. The simplest one from
grade school is that the graph of a continuous function can be drawn without
lifting your pencil. A more sophisticated version of this, referred to as an ε− δ
definition, is that given an target point of the map, we can find another point as
close to it as we please (distance ε) by taking another source point sufficiently
close (distance δ) to our original source point. We can imagine this as a little
ball of radius δ around each source point which maps to another ball of radius ε
around a target point. This suggest another definition, that continuous functions
map open sets to other open sets. Embedded in all these definitions is the idea
of being ”close to” something else, which is at the heart of topology. If two
points are close to each other in the source space, their images should be close
to each other in the target space in order to preserve the topology.

If we think of this in terms of simplicial decompositions. continuous maps
should preserve cells, since all points in a cell are considered close, and in fact
algebraic topology sees the cell as a single ”point”. Moreover, the boundary of
a cell, or those cells covering it, should also cover it in the target space. This
means that the Hasse diagram is invariant under continuous maps.

Continuous maps are important because they preserve topological charac-
teristics, famously embodied in invariance theorems, meaning that if a property

16 CHAPTER 1. TOPOLOGY

holds for one simplicial decomposition, it will hold for all such decompositions.
The most famous such theorem in Brouwer’s demonstration of the invariance
of dimension: if an n-dimensional complex appears as the decomposition of a
polyhedron P , then every decomposition of P is n-dimensional, as well as every
P ′ that is homeomorphic to P meaning it was produced by a continuous map.

1.1.2 Mesh Interpolation

By mesh interpolation, we mean the process of automatically creating k-faces
in a mesh that formerly consisted solely of cells and vertices. For example,
in the 3D dimensional mesh, this would mean creating both edges and faces
(of whatever type is required). Faces of any type can be created directly in a
Plex, but we can only interpolate faces that have first been defined for certain
cell types. The list of all cell types which support interpolation is shown in
Table 1.1, along with the cell abbreviations and canonical figure. Notice that
in the figures, we number the vertices and edges with their point number in the
Plex, rather than the ordinal number.

Now, we must define the faces that we are able to interpolate. We will define
a face as the ordered set of vertices in its closure. Note that this imposes a strong
constraint on interpolation. The closure after interpolation must preserve the
order of vertices. In Table 1.2, we give the ordered set of vertices for each face
such that the face normal is outward. We number the vertices using ordinal num-
bers, where the vertex numbering is just shifted to zero from the Plex ordering
in Table 1.1. This is to mirror the code, in DMPlexGetRawFaces Internal(),
which uses these numbers as offsets, so that you can index into the cone of a
cell from an uninterpolated mesh.

In Chapter 4, we will present algorithms for interpolating a mesh in parallel.
This operation has complexity linear in both the input and output meshes,
noting the number of faces and edges is linear in the number of cells and vertices
by Euler’s formula. This will be convenient when reading in meshes from other
sources, or when using a mesh generator library.

1.1.3 Orientation

We can naturally conceive of a geometric figure being built up out of smaller
pieces, and this notion is at the heart of computational meshing. We divide a
complicated manifold into pieces which are simpler to understand and manipu-
late. We will think of each simple piece as containing its boundary, and thus we
are led to think about closures as being the basic pieces of a mesh. Each piece
will be a complex, in the same sense as we defined it above, as will the combi-
nation of all the pieces. In order to understand the process of putting the pieces
together, we would like to understand the symmetry properties of the pieces
themselves. We will call each possible different arrangement of a complex an
orientation, and assign each one a number. We can also think of these numbers
as refering to a specific element of the symmetry group for this complex.

1.1. CONFORMING TOPOLOGY 17

Segment (Seg) Triangle (Tri) Quadrilateral (Quad)

1 2

1 2

3

4

56

1 2

34

5

6

7

8

Tetrahedron (Tet) Hexahedron (Hex) Triangular Prism (TriP)

1

2

3

4

1

2 3

4

5 6

78

1

2

3

4 5

6

Tensor Segment (TSeg) Tensor Triangle (TTri) Tensor Quadrilateral (TQuad)

1 2

3 4

5

6

7 8

1 2

3

4 5

6

1 2

34

5 6

78

Pyramid (Pyr)

1

2 3

4

5

Table 1.1: The cell types which support interpolation.

18 CHAPTER 1. TOPOLOGY

Cell Type Face 0 Face 1 Face 2 Face 3 Face 4 Face 5
Seg {0} {1}

Pnt Pnt
TPnt {0} {1}

Pnt Pnt
Tri {0, 1} {1, 2} {2, 0}

Seg Seg Seg
Quad {0, 1} {1, 2} {2, 3} {3, 0}

Seg Seg Seg Seg
TSeg {0, 1} {2, 3} {0, 2} {1, 3}

Seg Seg TPnt TPnt
Tet {0, 1, 2} {0, 3, 1} {0, 2, 3} {2, 1, 3}

Tri Tri Tri Tri
Hex {0, 1, 2, 3} {4, 5, 6, 7} {0, 3, 5, 4} {2, 1, 7, 6} {3, 2, 6, 5} {0, 4, 7, 1}

Quad Quad Quad Quad Quad Quad
TriP {0, 1, 2} {3, 4, 5} {0, 2, 4, 3} {2, 1, 5, 4} {1, 0, 3, 5}

Tri Tri Quad Quad Quad
TTri {0, 1, 2} {3, 4, 5} {0, 1, 3, 4} {1, 2, 4, 5} {2, 0, 5, 3}

Tri Tri TSeg TSeg TSeg
TQuad {0, 1, 2, 3} {4, 5, 6, 7} {0, 1, 4, 5} {1, 2, 5, 6} {2, 3, 6, 7} {3, 0, 7, 4}

Quad Quad TSeg TSeg TSeg TSeg
Pyr {0, 1, 2, 3} {0, 3, 4} {3, 2, 4} {2, 1, 4} {1, 0, 4}

Quad Tri Tri Tri Tri

Table 1.2: Definition of faces for each cell type, using ordinal numbering

1.1. CONFORMING TOPOLOGY 19

Orientation 0 -1

Arrangement
1 2 12

Table 1.3: The dihedral group D2 for the segment

The simplest mesh point is a vertex, which has a single transformation, the
identity, since it has no faces. We will always label the identity transformation
by 0. In the code, the cell type of a vertex is DM POLYTOPE POINT, but in this
text we will indicate this using point, and similarly for all the members of that
enumeration type. If we combine two vertices together, we get an edge, seg-
ment. The segment has two possible arrangements, the canonical one (0) and
one with the vertices flipped (-1), shown in Table 1.3. The group of transforma-
tions of a regular n-gon is called the dihedral group on n elements, Dn, so that
the group for the segment is D2. This group naturally separates into rotations
and reflections, and for D2 we have only the reflection. In our labeling, we will
indicate the transformation you obtain by reflecting an operation o as −(o+ 1).
Thus, when we reflect the identity transformation 0, we get −(0 + 1) = −1. Of
course other numberings are possible, and can be easily achieved once our code
is driven by the group multiplication table.

Notice that we could also orient the star in the same way that we have
oriented the closure. The shapes are not as familiar as the boundaries of simple
shapes shown below, but they are not esoteric. In two dimensions, the edges
around a vertex transform as the dihedral group Dn, and similarly for the
faces around an edge in 3D, whereas faces will always have S2 as a symmetry
group. The edges around a vertex in 3D will represent one of the finite spherical
symmetry groups. These should not be surprising, since we have a duality
between these groups and the cone symmetry groups. However, we will not
pursue this right now, since our principal numerical methods are formulated on
the closure of cells.

Extensibility of cell types in Plex: Go over everything needed to register
another cell type. Should rewrite code to allow user-defined cell types.

Below, we will show the possible arrangements, and the associated orienta-
tion, for all k-cells that Plex can interpolate. These pictures were generated and
checked using Plex tutorial ex11 in the PETSc source tree. The ascii latex

output format for Plex produces TikZ pictures that can be embedded in a larger
document, as we have done here.

Triangle

Our next example, the group D3 for the symmetries of the equilateral triangle,
will allow us to look at the group table. In Table 1.4, the canonical arrange-
ment starts with edge 4, and proceeds counter-clockwise with edges 5 and 6. An
additional complication here is that the faces are also oriented. The canonical
orientation of these edges is (1, 2), (2, 3), and (3, 1), so that they are also
counter-clockwise. Orientation 1 produces the arrangement shown in the table,

https://en.wikipedia.org/wiki/List_of_finite_spherical_symmetry_groups
https://en.wikipedia.org/wiki/List_of_finite_spherical_symmetry_groups
https://gitlab.com/petsc/petsc/-/blob/knepley/feature-orientation-rethink/src/dm/impls/plex/tutorials/ex11.c

20 CHAPTER 1. TOPOLOGY

Orientation 0 1 2

Arrangement

1 2

3

4

56

1

2 3

4

5

6

1

2

3

45

6

Orientation -1 -2 -3

Arrangement

1

23

4

5

6

1

2

3

4 5

6 12

3

4

5 6

Table 1.4: The dihedral group D3 for the triangle

namely that we begin on edge 5 with the same counter-clockwise ordering. Simi-
larly, for Orientation 2, we start on edge 6. We can also interpret the orientation
as talking about the progression of vertices, as it follows from the edges.

Now we consider the reflected orientations. For the identity, it is −(0 + 1) =
−1. This corresponds to reversing the order of the edges and reversing the order
of each edge in the sequence. Therefore when we reflect a cell orientation, we
must also reflect the orientation of the faces. However, instead of edge 6, we
begin at edge 5, which reversed has vertices (3, 2), and proceed to edge 4, now
(2, 1), and finally edge 6 as (1, 3). This produces the vertex sequence (3, 2,
1), which is what we expect from reflecting (1, 2, 3). Thus our convention is
designed to produce certain vertex orderings in the closure, rather than face
orderings. We can interpret the orientation as a permutation of the vertices.
Let us take e as the identity permutation, a as swapping the first two vertices,
and b as swapping the last two vertices. Then we can write the group operation
table for our orientations as follows

Orientation Permutation Operation
-3 0, 2, 1 b
-2 2, 1, 0 aba
-1 1, 0, 2 a
0 0, 1, 2 e
1 1, 2, 0 ba
2 2, 0, 1 ab

where the numbers refer to faces in the cone, not vertices in the closure. We see
that the reflections have an odd number of swaps, whereas the rotations have
an even number. From this it is also clear that D3 has two generators, a and b.

1.1. CONFORMING TOPOLOGY 21

Moreover, we can write the group multiplication or Cayley Table, which shows
how orientation operations combine

-3 -2 -1 0 1 2
-3 0 1 2 -3 -2 -1
-2 2 0 1 -2 -1 -3
-1 1 2 0 -1 -3 -2
0 -3 -2 -1 0 1 2
1 -1 -3 -2 1 2 0
2 -2 -1 -3 2 0 1

Quadrilateral

We can look at the dihedral group for the square, D4, for an example that does
not contain all permutations of the vertices, shown in Table 1.5. This shows
then same progression as the triangle, namely that the positive orientations
are successive rotations, whereas the negative orientations are a rotation and a
reflection.

Tetrahedron

All symmetry groups of regular polytopes are finite Coxeter groups, and the
dual polytopes have the same symmetry group. The symmetry group of the
n-simplex is the symmetric group Sn+1 of permutations of n+1 elements. Thus
the tetrahedron has group S4 of size 4! = 24. We choose the canonical orien-
tation to be the one with the normal to the first face pointing away from the
fourth vertex, so that all faces have outward normals, as shown in Tables 1.6
and 1.7. Unfortunately, odd permutations no longer correspond to inversions
of the tetrahedron, meaning that the inverse orientation cannot be one that
reverses the order of all the vertices in the closure. Instead, we choose the in-
verse orientation to be the one that reverses the first face, as that guarantees
an inversion of the tetrahedron.

Hexahedron

The hexhedron has the symmetry group B3 which has order 48. The rotation
part is isomorphic to S4 since each rotation corresponds to an arrangement of
the four diagonals. Thus with reflections, it is twice as large as S4. To reflect
the hexahedron, we invert the bottom face (orientation -1), and use orientation
-3 for the top face.

Triangular Prism

The triangular prism has the symmetries of a triangle, combined with a 180◦

rotation which exchanges the top and bottom faces.

22 CHAPTER 1. TOPOLOGY

Orientation 0 1

Arrangement

1 2

34

5

6

7

8

1

2 3

4

5

6

7

8

Orientation -1 -2

Arrangement

1 2

34

5

6

7

8

1

2 3

4

5

6

7

8

Orientation 2 3

Arrangement

12

3 4

5

6

7

8

1

23

4

5

6

7

8

Orientation -3 -4

Arrangement

12

3 4

5

6

7

8

1

23

4

5

6

7

8

Table 1.5: The dihedral group D4 for the square

1.1. CONFORMING TOPOLOGY 23

Orientation 0 1 2

Arrangement

1

2

3

4

12

3

4

1

23

4

Orientation -1 -2 -3

Arrangement

1

2

3

4

1 2

3

4

1

2 3

4

Orientation 3 4 5

Arrangement 1

2

3

4 1 2

3

4

1

2

3

4

Orientation -4 -5 -6

Arrangement 1

2

3

4 12

3

4

1

2

3

4

Table 1.6: PartI: The symmetric group S4 for the tetrahedron

24 CHAPTER 1. TOPOLOGY

Orientation 6 7 8

Arrangement

1

2

3

4 1

2

34 1

2

3

4

Orientation -7 -8 -9

Arrangement

1

2

3

4 1

2

3 4 1

2

3

4

Orientation 9 10 11

Arrangement

1

2

3

4

1

2

3 4

1

2 3

4

Orientation -10 -11 -12

Arrangement

1

2

3

4

1

2

34

1

23

4

Table 1.7: PartII: The symmetric group S4 for the tetrahedron

1.1. CONFORMING TOPOLOGY 25

Orientation 0 1 2

Arrangement

1

2 3

4

5 6

78

12

3 4

5

67

8

1

23

4

56

7 8

Orientation -1 -2 -3

Arrangement

1

23

4

56

7 8

1 2

34

5

6 7

8

1

2 3

4

5 6

78

Orientation 3 4 5

Arrangement
1 2

34

5

6 7

8

1

2 3

4

5 6

78

1

2 3

4

5 6

78

Orientation -4 -5 -6

Arrangement
12

3 4

5

67

8

1

23

4

56

7 8

1

23

4

56

7 8

Table 1.8: PartI: The Coxeter group B3 for the hexahedron

26 CHAPTER 1. TOPOLOGY

Orientation 6 7 8

Arrangement
1

2 3

4

5 6

78

1

2

3

4

5

6

7

8

1

23

4

56

7 8

Orientation -7 -8 -9

Arrangement
1

23

4

56

7 8

1

2

3

4

5

6

7

8

1

2 3

4

5 6

78

Orientation 9 10 11

Arrangement

1

2

3

4

5

6

7

8

1 2

34

5

6 7

8

12

3 4

5

67

8

Orientation -10 -11 -12

Arrangement

1

2

3

4

5

6

7

8

12

3 4

5

67

8

1 2

34

5

6 7

8

Table 1.9: PartII: The Coxeter group B3 for the hexahedron

1.1. CONFORMING TOPOLOGY 27

Orientation 12 13 14

Arrangement

1

23

4

56

7 8 1

23

4

56

7 8

1

2

3

4

5

6

7

8

Orientation -13 -14 -15

Arrangement

1

2 3

4

5 6

78 1

2 3

4

5 6

78

1

2

3

4

5

6

7

8

Orientation 15 16 17

Arrangement

1

2

3

4

5

6

7

8

1 2

34

5

6 7

8

1

2

3

4

5

6

7

8

Orientation -16 -17 -18

Arrangement

1

2

3

4

5

6

7

8

12

3 4

5

67

8

1

2

3

4

5

6

7

8

Table 1.10: PartIII: The Coxeter group B3 for the hexahedron

28 CHAPTER 1. TOPOLOGY

Orientation 18 19 20

Arrangement

1 2

34

5

6 7

8 1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Orientation -19 -20 -21

Arrangement

12

3 4

5

67

8 1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Orientation 21 22 23

Arrangement
12

3 4

5

67

8

12

3 4

5

67

8

1

2

3

4

5

6

7

8

Orientation -22 -23 -24

Arrangement
1 2

34

5

6 7

8

1 2

34

5

6 7

8

1

2

3

4

5

6

7

8

Table 1.11: PartIV: The Coxeter group B3 for the hexahedron

1.1. CONFORMING TOPOLOGY 29

Orientation 0 1 2

Arrangement

1

2

3

4 5

6

12

3

4

5

6

1

23

4

5 6

Orientation -1 -2 -3

Arrangement

1

2

3

45

6

1 2

3

4

5

6

1

2 3

4

56

Orientation 3 4 5

Arrangement

1

2

3

45

6

1 2

3

4

5

6

1

2 3

4

56

Orientation -4 -5 -6

Arrangement

1

2

3

4 5

6

12

3

4

5

6

1

23

4

5 6

Table 1.12: The symmetry group for the triangular prism

30 CHAPTER 1. TOPOLOGY

Pyramid

The pyramid with a square base has the same set of symmetries as its base,
shown in Table 1.13.

Tensor Segment Prism

Plex also recognizes cells that are created by taking the tensor product of two
cells. The simplest of these is the tensor product of two segments. From a
point-set topology point of view, this is the same as our quadrilateral. How-
ever, instead of orienting the boundary for outward normals, we use the same
orientation for the two copies of the initial cell produced for the boundaries.
You can see this in Table 1.14, where the top and bottom segments always have
the same orientation, as do the two vertical segments (which are actually point
prisms in our language). The inversion operation (r) reflects the top and bot-
tom segements, whereas exchanging the top and bottom segments (b) does not
change the volume.

Tensor Triangular Prism

We can produce a triangular prism from the tensor product of a triangle and
a segment. The symmetries are slightly different than the triangular prism
above, as shown in Table 1.15, because the top and bottom faces are oriented
in the same way, instead of both oriented to produce outward normals. We can
describe the group as being generated by a rotation of 120◦ about the z-axis
(a), an exchange of the top and bottom faces (b), and a reflection (r). We will
number the orientations such that the reflection of orientation o is −(o+ 1).

Tensor Quadrilateral Prism

In the same way, we can produce a prism, identical in point-set topology to the
hexahedron, from the tensor product of a quadrilateral and a segment, shown
in Tables 1.16 and 1.17. We can describe the group as being generated by a
rotation of 90◦ about the z-axis (a), an exchange of the top and bottom faces (b),
and a reflection (r). We again number the orientations such that the reflection
of orientation o is −(o+ 1).

Orienting Separating Faces

In Fig. 1.4, p = 0 is a cell with height 0, cone point 1 (c = 1) is an edge q = 7
with height 1, and cone(q) = {3, 4} which are vertices of height 2, or depth 0.
There can only be one sorted order for the edge 7, which here is {3, 4}, but for
cell 1 we want the order to be {4, 3}. We attach an orientation to the arrow (p,
q) in the DAG indicating that q should be reordered when used in cell p. The
orientation indicates which group element from the dihedral group of q should
transform the stored order to the order needed in cell p. For an edge, there are
only two transformations, the identity (0) and flipping (-1).

1.1. CONFORMING TOPOLOGY 31

Orientation 0 1

Arrangement

1

2 3

4

5

12

3 4

5

Orientation -1 -2

Arrangement

1

23

4

5

1 2

34

5

Orientation 2 3

Arrangement 1

23

4

5

1 2

34

5

Orientation -3 -4

Arrangement 1

2 3

4

5

12

3 4

5

Table 1.13: The symmetry group for the square pyramid

32 CHAPTER 1. TOPOLOGY

Orientation 0 1

Arrangement

1 2

3 4

5

6

7 8

1 2

3 4

5

6

7 8

Orientation -1 -2

Arrangement

12

34

5

6

78

12

34

5

6

78

Table 1.14: The symmetry group for the tensor product of two segments

2

3

4

5

6

7

8 9

10

0 1

0 1

6 7 8 9 10

2 3 4 5

0 0 0 00-1

Figure 1.4: Two triangles sharing a common edge, and the corresponding Hasse
digram.

1.1. CONFORMING TOPOLOGY 33

Orientation 0 1 2

Arrangement

1 2

3

4 5

6

1

2 3

4

5 6

1

2

3

4

5

6

Orientation -1 -2 -3

Arrangement 1

23

4

56

1

2

3

4

5

6

12

3

45

6

Orientation 3 4 5

Arrangement

1 2

3

4 5

6

1

2 3

4

5 6

1

2

3

4

5

6

Orientation -4 -5 -6

Arrangement

1

23

4

56

1

2

3

4

5

6

12

3

45

6

Table 1.15: The symmetry group for the tensor product of a triangle and a
segments

34 CHAPTER 1. TOPOLOGY

Orientation 0 1

Arrangement

1 2

34

5 6

78

1

2 3

4

5

6 7

8

Orientation -1 -2

Arrangement 1 2

34

5 6

78

1

2 3

4

5

6 7

8

Orientation 2 3

Arrangement 12

3 4

56

7 8

1

23

4

5

67

8

Orientation -3 -4

Arrangement

12

3 4

56

7 8

1

23

4

5

67

8

Table 1.16: Part I: The symmetry group for the tensor product of a quadrilateral
and a segments

1.1. CONFORMING TOPOLOGY 35

Orientation 4 5

Arrangement

1 2

34

5 6

78

1

2 3

4

5

6 7

8

Orientation -5 -6

Arrangement

1 2

34

5 6

78

1

2 3

4

5

6 7

8

Orientation 6 7

Arrangement

12

3 4

56

7 8

1

23

4

5

67

8

Orientation -7 -8

Arrangement

12

3 4

56

7 8

1

23

4

5

67

8

Table 1.17: Part II: The symmetry group for the tensor product of a quadrilat-
eral and a segments

36 CHAPTER 1. TOPOLOGY

3

2 5

4

6

7

8

9

10

10

(a) edge 7 in cone of face 0,
C(0, 1) = 7

3

2 5

4

6

7

8

9

10

10

(b) edge 7 in cone of face 1,
C(1, 0) = 7

0 1

2 3 4 5

6 7 8 9 10

0
1

0 1
2

(c) starting point of edge 7 within face
0 is 3,
C(C(0, 1), S(0, 1)) = C(7, 0) = 3,
O(0, 1) = 0

0 1

2 3 4 5

6 7 8 9 10

0
1

0 1 2

(d) starting point of edge 7 within face
1 is 4,
C(C(1, 0), S(1, 0)) = C(7, 1) = 4
O(1, 0) = −2

Figure 1.5: Mesh from Figs. ?? with cone points order and orientation. We
focus here on the edge 7 within the cones of faces 0 and 1.

1.2. NONCONFORMING TOPOLOGY 37

1.1.4 Periodicity

1.1.5 CAD Interface

1.2 Nonconforming Topology

1.2.1 The Parent Tree

1.2.2 Anchors and Constraints

1.3 Submeshes

DMLabel - Hash table + Sorted list - Automatic conversion, good for batches
of queries and updates

1.4 Parallelism

A parallel Plex is nothing more than a collection of serial Plexes along with
a mapping identifying points between them. For this mapping, we use the
PetscSF object. It relates things on different process which can be numbered
with PetscInt, but may have different numbers on different processes. Thus,
the SF can relate point 5 on the current process with point 27 on process p.
This mapping allows an arbitrary overlap for parallel meshes, and means that
PetscSF can automatically compute the communication pattern and create the
MPI structures for all mesh communication.

The guarantee that Plex makes in parallel is that the closure of any point p
will always be present locally. This allows all queries based upon cell shapes to
succeed in parallel without extra communication and marshalling. We make this
choice because it is common to think of dividing up space into pieces with well-
defined shapes, and the combinatorial topology is usually bases on a definition
of the boundary operator, closely related to our closure operation. Moreover,
we will base our description of mesh symmetries on symmetries of cell closures.
Alternatively, we could guarantee that the star of any point is present locally,
and consider the symmetries of the edges around a vertex, or the cells around
a face, rather than the faces around a cell. However, this seems less natural for
most numerical methods.

Note that it is not possible for both the closure and star to be present locally
and for the mesh to be consistent in parallel. We must choose one operation
to preserve. For example, if we add a cell from another process in order to
complete the star of a face, then that cell will initially be missing a portion of
its closure. If we add this closure, we can introduce points on its boundary that
are missing parts of their star.

1.4.1 Distribution

Bootstrap from process graph

38 CHAPTER 1. TOPOLOGY

References

Alexandroff, Paul (1932). Elementary concepts of topology. translated by Alan
Farley (Dover 1960).

Dimension theory (June 2021). Encyclopedia of Mathematics. url: %5Curl%

7Bhttp://encyclopediaofmath.org/index.php?title=Dimension theory&oldid=46706%7D.

%5Curl%7Bhttp://encyclopediaofmath.org/index.php?title=Dimension_theory&oldid=46706%7D
%5Curl%7Bhttp://encyclopediaofmath.org/index.php?title=Dimension_theory&oldid=46706%7D

Chapter 2

Functions

The purpose of computing is insight, not numbers.

— Richard Hamming

2.1 PetscSection

Start with section from PETSc manual The purpose of a PetscSection
is to determine a data layout over the mesh by associating degrees-of-freedom,
dof , to each mesh point.

Explain local and global section.

2.1.1 Constraints

Constraints are stored in a subsection and IS.

2.1.2 Symmetries

If dofs are associated to a mesh point that has a symmetry group, such as S2

for the segment, then the ordering of dofs should change when the arrangement
of the k-cell changes. We need any arrangement of the cell to also define a valid
data layout. An example will help illustrate this principle. If we have a P3

element on a triangle, or a Q3 element on a quadrilateral, then two dofs are
associated with each edge. However, we think of each dof as being located on
a ”node” on the edge, and these nodes divide the edge into thirds. This means
that I have to know which value is associated with which node, not just the
edge itself. Note here that these nodes correspond exactly to point evaluation
functionals in the dual basis. The dofs must have some ordering in the local
section, and we will assume that it follows the canonical arrangement of the
mesh point. If the mesh point is attached to a cell in another arrangement,
using an orientation different from zero, then that cell should see the dofs in
an order that matches the orientation. In our example, shown in Fig. 2.1, the

39

40 CHAPTER 2. FUNCTIONS

Draw a picture of two quad cells, showing the dof layout.

Figure 2.1: Dofs on a pair of Q3 cells

left cell sees the edge in the canonical ordering, and thus the dofs as {24, 25},
whereas the right cell sees the edge reversed, in orientation -1, so that the dofs
are ordered {25, 24}.

In general, if the cell transforms with group G and has n dofs, then the dofs
should transform as an n-dimensional representation of the group G. There is
a complication if the dual basis vector has non-trivial transformation behavior.
For example, if the functional is a vector, then it will acquire a minus sign under
inversion, whereas scalar dofs will not.

Toby computes the transformation of the dual basis, given the transforma-
tion of vertices from the orientation. This is fine to preserve.

We need a way to speed up the lookup. I think it is to store representations
of the symmetry groups for known cell types, and use that memory directly
with an integer tag in the Section rather than a DMLabel lookup. This does
trade more storage for speed, but this is usually a good trade with Section. We
can omit the storage if no cells requires a non-trivial permutation.

2.2 Parallelism

2.2.1 Local and Global Sections

2.2.2 Data Distribution

2.3 Periodicity

2.4 Global Basis Transformation

2.5 Geometry

2.6 Projection

The projection functionality of Plex is intended to make it easy for users to
define useful projection operations that commonly occur in numerical code.
Although projection into some space will always be the last step, we do not
confine ourselves to pure projections, but rather allow some preprocessing in
order to simplify the procedure.

2.6.1 Interpolation

Interpolation is perhaps the most common type of projection. We can easily see
the interpolation is a projection, since if the input lies in the space, the action

2.6. PROJECTION 41

is just the identity, meaning that I2 = I. By interpolation, we will mean that
the action of the dual basis vectors on the function is the same as the action on
the interpolant. To see that this makes sense, lets take the example of a dual
basis biorthogonal to the primal basis,

φ†iφj = δij . (2.1)

Now the action of the dual basis vector gives the coefficient,

φ†iv = φ†i
∑
j

vjφj (2.2)

=
∑
j

vjφ
†
iφj (2.3)

=
∑
j

vjδij (2.4)

= vi (2.5)

so if we set the coefficients to this action

u∗i = φ†iu, (2.6)

then interpolation will be idempotent for functions in the space.

Now we will let the input function come from a different finite element space,
and perhaps even a different mesh. Each dual basis vector can be expressed as a
quadrature rule, as a consequence of the Riesz-Markov-Kakutani representation
theorem (Wikipedia 2015). The quadrature points are guaranteed to lie in the
cell closure, so we need only evaluate the source basis on the reference quadrature
points if source and target spaces share a mesh. On non-matching meshes, we
would have to locate the quadrature points in the source mesh and then evaluate
the function at those points.

2.6.2 L2 projection

If we minimize the L2 norm between a function and its representer in the target
space, we may write this as

Pu ≡ u∗ = min
v∈V

1

2
‖u− v‖22. (2.7)

The first order conditions for this problem are∫
φu =

∫
φu∗ ∀φ ∈ V, (2.8)

which we can also interpret as the requirement that u and u∗ are weakly equiva-
lent , meaning that they share the same moments for all functions in the target

42 CHAPTER 2. FUNCTIONS

space. If we expand u∗ in this basis,∫
φi

∑
j

u∗jφj =

∫
φiu (2.9)

Mu∗ = u (2.10)

where M is the mass matrix, and u is a vector of the moments of u.
We can implement L2 projection by giving the identity kernel for the g0

Jacobian (producing the mass matrix), and function u for the f0 residual kernel.
However, we can consider that case that u is also a finite element function, but
in a different space on the same mesh or on a different mesh. If u is on the same
mesh, we need only tabulate that basis once on the new quadrature points since
the cells match. If the meshes are different, we will have to locate each set of
quadrature in the source mesh, which argues for batching groups of cells, and
interpolate them separately, as discussed above.

References

Wikipedia (2015). Riesz-Markov-Kakutani Representation Theorem. http://en.

wikipedia . org / wiki / Riesz - Markov - Kakutani representation theorem. url: http : / / en .

wikipedia.org/wiki/Riesz-Markov-Kakutani representation theorem.

http://en.wikipedia.org/wiki/Riesz-Markov-Kakutani_representation_theorem
http://en.wikipedia.org/wiki/Riesz-Markov-Kakutani_representation_theorem
http://en.wikipedia.org/wiki/Riesz-Markov-Kakutani_representation_theorem
http://en.wikipedia.org/wiki/Riesz-Markov-Kakutani_representation_theorem

Part II

Transformations

43

Chapter 3

General Transformations

As Gregor Samsa awoke one morning from uneasy dreams, he found himself
transformed in his bed into a gigantic insect.

— Franz Kafka

Having learned to represent computational meshes in Part I, we can now
think about changing a given mesh into another. For example, we might want
to take in a mesh and deliver back a refined version of it, or perhaps a coarsened
version, or do this adaptively. We can imagine receiving only cells and vertices,
and creating the associated faces and edges automatically. We could transform
all cells in the mesh to simplices, or to box cells. We could take in a surface
mesh, and extrude it in the normal direction to create a volumetric mesh, or do
this only in part of the mesh to produce a refined boundary layer. Given two
meshes, we could produce a common refinement of them both.

Our goal in this chapter will be to identify, out of the myriad possible mesh
transformations, those that are efficiently computable, considering both the
time and space complexity. We would like a general strategy for producing the
transformed mesh, given an input mesh, which is valid also in parallel. Moreover,
we will strive to develop algorithms whose complexity is output sensitive. By
this we mean that the cost is proportional to the fraction of the transformed
mesh that we choose to output. With such an algorithm, we could envision
producing the transformed mesh “on the fly”, so that it need not be stored but
the needed portions could be computing on demand.

Suppose that a point p in the input mesh produces a point q in the trans-
formed mesh. We would like a kind of locality, meaning that the cone of q was
easily discoverable given p. The simplest rule of this kind would be that the
cone of p produces the cone of q. However, this rules out many of our cases
above, such as regular refinement of a mesh. Thus we will begin with a slightly
more expansive rule,

Condition 1 The cone of a point q of the transformed mesh is produced by the
closure of a point p in the input mesh.

45

46 CHAPTER 3. GENERAL TRANSFORMATIONS

which we can write

cone(child(p)) ∈ child(cl(p)), (3.1)

where we use child(p) to indicate the set of points produced by point p, or
the “production cone” of p. There will be a similar dual notion, a “production
support”, which we will call parent(q) meaning the set of points which can
produce q. With this condition, we need only compute the part of the trans-
formed mesh produced by the closure of p in order to capture the cone of q.
This gives us an easy way to bound both computation and storage costs for our
virtual mesh.

What about the closure of q? Consider a point q′ in the cone of q, so that

q′ ∈ cone(q) (3.2)

∈ child(cl(p)) (3.3)

by Condition 1. This means there is some point point p′ in the closure of p that
produces q′. Thus,

cone(q′) ∈ cone(child(p′)) (3.4)

∈ child(cl(p′)) (3.5)

∈ child(cl(p)) (3.6)

where the last line follows because transitive closures are nested. By reasoning
this way for each point in the closure, we can conclude that

cl(child(p)) ∈ child(cl(p)). (3.7)

We have now bounded the storage requirements for our transformed mesh,
but how costly is it to identify the produced points? In concrete terms, how
can one compute a total order on the points in the transformed mesh? Consider
the situation for mesh interpolation. We can think of each cell producing the
faces and edges in its closure. However, this would mean that multiple cells
would produce the same face or edge. To compute a numbering, we have to
compute a signature for each point introduced, say its vertex cone, and then
compare signatures to establish identity. In order to limit the resources for this
comparison, we need some limit on the parent set for a point q. The simplest
condition is

Condition 2 A point q of the transformed mesh is produced by only one p in
the input mesh, such that |parent(q)| = 1.

This rule allows a unique numbering to be calculated given only a prior number-
ing of the producing Plex. Even in parallel, local numbering can be calculated
independently and patched together using PetscSF. Using Condition 2, we can
now bound the cost of support queries. Let a point q be produced by a point
p, and consider a point q′ in the star of q,

q′ ∈ st(q) ⇐⇒ q ∈ cl(q′)

3.1. DEFINITION 47

from Eq. 1.3. Let q′ be produced by a point p′,

q′ ∈ child(p′) (3.8)

so that

cl(q′) ∈ child(cl(p′)) (3.9)

q ∈ child(cl(p′)) (3.10)

We can now use that fact that parents are unique, Condition 2,

parent(q) ∈ cl(p′) (3.11)

p ∈ cl(p′) (3.12)

p′ ∈ st(p) (3.13)

so that we have shown

st(child(p)) ∈ child(st(p)). (3.14)

Thus, to compute a star for any point in the transformed mesh, we need only
consider the star of the parent in the input mesh.

A more sophisticated condition would bound the set of possible parents. For
example, we could require that

parent(st(q)) ∈ st(parent(q)) (3.15)

which would produce the same kind of locality. This is satisfied by the inter-
polation algorithm, even though parents are not unique. In parallel, this could
become problematic as regions to check spread across process boundaries. In-
terpolation, fortunately, has another property. All the produced points that
are shared are guaranteed to appear in the SF, which we will see in detail in
Chapter 4.

3.1 Definition

A transformation will be defined by its action on each cell, in that for each
cell in the source mesh the transformation will produce a set of cells in the
target mesh. In the simplest examples, such as regular refinement, the action
depends only on the cell type. However, we will allow the transformation to
make different decisions for cells of the same type. In the implementation, this
will be accomplished using a label to differentiate the cells, giving each cell a
transformation type to refine its cell type. Thus, in the discussion below we will
refer to transformation type, but the reader can imagine this as a stand-in for
the cell type in order to get an intuitive feel for the algorithm. As we discuss
the definition below, we will use regular tetrahedral refinement as a non-trivial
example to illustrate the stages.

48 CHAPTER 3. GENERAL TRANSFORMATIONS

In our definition, we first indicate which cell types are produced for a given
transformation type. This allows the stratification of the target mesh to be eas-
ily computed, and also separates the different transformation rules, simplifying
the description. In our tetrahedral refinement example, we need to consider the
transformation of four cell types: vertices, edges, triangular faces, and tetra-
hedral cells. The vertices produce identical copies, and thus have a single pro-
duction type point. Edges are split into two pieces, yielding one point in the
center, and two segments. The triangular faces are divided into four, produc-
ing three segments and four triangles. Notice that the subdivided triangles
do not count the edges and vertices introduced on the boundary because those
are handled by the edge transformation rule. In general, the transformation
rule only deals with the interior, not the boundary of a cell. Finally, the tetra-
hedron is divided into eight, producing one segment, eight triangles, and
eight tetrahedra. Since several points can be produced with the same cell
type, we will number them using a replica number , which we denote as r.

In order to describe the cells which are produced, we need to know their
cones and cone orientations. The cones consist of points in the target mesh,
so we must have some way of identifying them. If we just needed to refer to
points produced by the current point, we could use the celltype and replica
number. However, this will not in general be sufficient. Instead we make use of
Condition 1, which says that the cone of any point produced must be contained
in the set of points produced from the closure of the original point. Thus, we
need to first locate a point in the closure of the original point, and then specify
the target point produced from it. In the code, this information is returned by
DMPlexTransformCellTransform().

Let us first consider the lone segment produced by dividing the tetrahedron,
shown in Fig. 3.1. We can describe the cone of this segment with the following
array

{DM POLYTOPE POINT, 2, 0, 0, 0, DM POLYTOPE POINT, 2, 2, 1, 0};

The first cone point is a vertex, and we arrive at the producing point by taking
two cones. First, we take cone point 0 of the tetrahedron, which is the bottom
face. Then we take cone point 0 in that bottom face, which is the left edge.
Finally, we take the first vertex produced by that edge, which is replica 0. In
the reference cell, this vertex has coordinates (−1, 0,−1). We can carry out
the same computation for the second cone point, which also requires taking two
cones. We take cone point 2 of the tetrahedron, which is the front face, and
then cone point 1 of that face, which is the diagonal edge, and finally the first
vertex produced by that edge, which has coordinates (0,−1, 0). To complete
the definition, we should also specify the orientation of each cone point, but
vertices can only have orientation 0. Notice that the description of these points
is not unique. For example, we could have used face 3 to extract the second
vertex.

We proceed in the same manner for all target points produced from this
source point. The first internal triangular subface can be described using

3.1. DEFINITION 49

8

9

10

11

12 13

14

15

16

17

Figure 3.1: A single regular refinement of a tetrahedron. We have indicated the
interior segment in black, and used dashed lines for the segments produced by
the boundary faces.

50 CHAPTER 3. GENERAL TRANSFORMATIONS

{DM POLYTOPE SEGMENT, 1, 0, 2,
DM POLYTOPE SEGMENT, 1, 1, 2,
DM POLYTOPE SEGMENT, 1, 2, 2};

The first edge is produced from a point in the cone of the tetrahedron, so we
only need 1 cone operation. It comes from face 0 of the tetrahedron, which is
the bottom face, and is the third segment produced, which means it connects
the left edge with the front edge. The second edge is produced from face 1,
which is the left face, and is the third segment produced, meaning it connects
the bottom edge (left edge from before) with the vertical edge. Finally, the third
edge is produced from face 2, which is the front face, and is the third segment
produced, which connects the vertical edge to the bottom edge (front edge from
the first face). Thus we have a triangle, and the edges are properly oriented.
On other internal triangles, for example

{DM POLYTOPE SEGMENT, 1, 0, 2,
DM POLYTOPE SEGMENT, 0, 0,
DM POLYTOPE SEGMENT, 1, 2, 0};

some segments need to be reversed, in this case the last one. Therefore we must
also provide an orientation array, which here would look like

{0, 0, −1};

Note also that the middle segment is produced directly by the tetrahedron, and
thus 0 cones need to be taken.

If we look at the first subtetrahedron, we have the expression

{DM POLYTOPE TRIANGLE, 1, 0, 0, DM POLYTOPE TRIANGLE, 1, 1, 0,
DM POLYTOPE TRIANGLE, 1, 2, 0, DM POLYTOPE TRIANGLE, 0, 0};

The first face is produced from face 0 in the tetrahedron, which is the bottom
face. It is the first triangle produced, meaning it is the triangle containing
the lower-left vertex. The second face is produced from face 1, and is also the
triangle containing the lower-left vertex. Similarly, the third face comes from
face 2 of the tetrahedron, and is the triangle containing the lower-left vertex.
Finally, the last face is produced directly by the tetrahedron itself, and is the
first such face, which divides the lower-left vertex, (−1,−1,−1), from the rest
of the tetrahedron. Also, each of these faces is properly oriented. However, this
will not be true of all the subtetrahedra, so we will need a way of discovering
the orientations automatically, detailed in Section 7.1.

3.2 Group Action

Our definition is able to give us the cone for any point produced from a cell in
orientation 0. However, what happens when our original point has a nonzero
orientation? Since orientations are symmetry transformations of the cell, it

3.3. NUMBERING 51

must be the case that an identical cell type is produced. However, the cell that
is produced might correspond to a different replica number for that type, and
have a different orientation than originally specified. Hence, we can think of our
group action G as mapping, for any cell type ct produced,

G(ct, r, o) −→ (ct, r′, o′).

We can generate this action automatically by running our transformation on
the reference cell, and comparing the cones from points that are produced. We
will cover the implementation of this discovery in Section 7.1.

3.3 Numbering

The defining feature of our definition for a mesh transformation is that the
transformed mesh can be known efficiently purely from the definition of the input
mesh and the transformation. The first step is to introduce a map from source
points, those in the original mesh, to target points, those in the transformed
mesh, and also its inverse. We will think of this numbering as an index structure,
built on top of the transformation mechanism discussed above. We will first
describe the situation when the cell type determines the transformation, and
then extend this to the situation when we have many transformation types.

Suppose that we are given a source point p and its cell type ctp, a cell
type that is being produced ctq, and a replica number r, then we can com-
pute the number of the produced point q in the transformed mesh. During
the setup phase, we precompute data needed for the index. First, a total or-
der on cell types. This might not match the enumeration value since we often
want to number cells, then vertices, then faces, and then edges so that inter-
polation does not affect the ordering. Next, we run over the original mesh,
calling DMPlexTransformCellTransform() for each point, and record the out-
puts. This allows us to calculate offsets for each celltype in the transformed
mesh. In fact, we calculate the offset for the first cell of given target cell type
produced by a cell of given source cell type. Thus given the source cell type,
we can lookup the offset for the output cell type, which we will call off(ctp, ctq).
Next we look at the cell transform description for the given cell type. We can
see the number of replicas of the target cell type for each source point, called
Nr(ctp), which we multiply by the reduced point number rp, meaning that the
source point is the rpth point of the source cell type. In total, our target point
number is

q = off + rp ∗Nr + r.

The only difference when allowing different transformation types for a given
cell type, is that the offset is calculated using the transformation type, and the
reduced point number is computed with respect to the transformation type.

52 CHAPTER 3. GENERAL TRANSFORMATIONS

3.4 Implementation

If we assume the uniqueness condition 2, we shall show that the resulting mesh
need not be stored, since we can build queries on the parent mesh. In order to
demonstrate this, we must first consider how the basic mesh queries are imple-
mented for a Plex. For the basic implementation, we explicitly store both the
cone and support of each mesh point. The transitive closure is built from re-
peated calls to the cone and support routines, while discarding duplicate points.
A similar process is used for the implementation of the meet and join operations.
Thus, if we could produce the cone and support of each point in the transformed
mesh, we could use our prior implementation to generate all queries for it.

The formation of the cone of produced points is more straightforward, and
we will address it first. We must know the size of the cone for any produced
point, but we can discover its type by searching the index structure for point
numbering. The celltype determines the size of the cone, and in fact more.
Using DMPlexTransformGetSourcePoint() we can also recover the produc-
ing point p, its celltype, and the replica number r for the new point. The
DMPlexTransformGetTargetPoint() is the inverse, giving us the number of
the produced point given information about the producing point. Once we
have the producing, or parent, point p, we can march through its cone, us-
ing the data structure from Section 3.1 to discover each point produced in the
cone, it orientation based on the group action for the producing point, and
then get its number in the transformed mesh. The code for this, take from
DMPlexTransformGetCone(), is shown below.

DMPlexGetCone(dm, p, &cone);
for (c = 0; c < csizeNew; ++c) {
/∗ Parent Parent point: Parent of point pp ∗/
PetscInt ppp = −1;
/∗ Parent point: Point in the original mesh producing new cone point ∗/
PetscInt pp = p;
/∗ Orientation of parent point pp in parent parent point ppp ∗/
PetscInt po = 0;
/∗ Parent type: Cell type for parent of new cone point ∗/
DMPolytopeType pct = ct;
/∗ Parent cone: Cone of parent point pp ∗/
const PetscInt ∗pcone = cone;
/∗ Replica number of pp that produces new cone point ∗/
PetscInt pr = −1;
/∗ Cell type for new cone point of pNew ∗/
const DMPolytopeType ft = rcone[coff++];
/∗ Number of cones of p that need to be taken when producing new cone point ∗/
const PetscInt fn = rcone[coff++];
/∗ Orientation of new cone point in pNew ∗/
PetscInt fo = rornt[ooff++];
PetscInt lc;

3.4. IMPLEMENTATION 53

/∗ Get the type (pct) and point number (pp) of the
parent point in the original mesh which produces this cone point ∗/

for (lc = 0; lc < fn; ++lc) {
const PetscInt ∗parr = DMPolytopeTypeGetArrangment(pct, po);
const PetscInt acp = rcone[coff++];
const PetscInt pcp = parr[acp∗2];
const PetscInt pco = parr[acp∗2+1];
const PetscInt ∗ppornt;

ppp = pp;
pp = pcone[pcp];
DMPlexGetCellType(dm, pp, &pct);
DMPlexGetCone(dm, pp, &pcone);
DMPlexGetConeOrientation(dm, ppp, &ppornt);
po = DMPolytopeTypeComposeOrientation(pct, ppornt[pcp], pco);
}
pr = rcone[coff++];
/∗ Orientation po of pp maps (pr, fo) −> (pr', fo') ∗/
DMPlexTransformGetSubcellOrientation(tr, pct, pp, fn ? po : o, ft, pr, fo, &pr, &fo);
DMPlexTransformGetTargetPoint(tr, pct, ft, pp, pr, &coneNew[c]);
orntNew[c] = fo;
}

The rcone[] array and coff offset are the information encoding the cones of
produced points, while rornt[] and ooff encode orientation of the cone points.
The DMPolytopeTypeGetArrangment() function gives the permutation of the
cone corresponding to a given orientation for the input celltype.

In order to produce the support of a point in the transformed mesh, we must
work a little harder. Since we have the relation (3.14), we know that the star of
a produced point q is contained in the produced points of the star of the parent
point p. Thus, we could construct explicitly the patch of the transformed mesh
produced from st(p), and then run our support query as usual. If many support
queries are desired, then an index structure should be built to defray some of
this cost.

54 CHAPTER 3. GENERAL TRANSFORMATIONS

Chapter 4

Interpolating

The purpose of computing is insight, not numbers.

— Richard Hamming

Use quote from my small Topology book.

Topological interpolation is the process of constructing intermediate levels
of the ranked poset describing a mesh, given information at bracketing levels.
For example, if we receive triangles and their covering vertices, as in Fig. 4.1,
interpolation will construct the edges. The first algorithm for interpolation on
the Hasse diagram was published in (Logg 2009), but this version was only
appropriate for simplices, ignores orientation of the mesh points, and did not
give a complexity bound. The version below rectifies these shortcomings, and
was first described in (Hapla et al. 2021).

The interpolation procedure selects a given point stratum as cells, for which
it will construct faces. It iterates over the cells, whose cones are oriented sets of
vertices. The two essential operations are to extract an oriented face from the
vertex set, and then attach it to a cell with the correct orientation. Orientation
of mesh points is detailed in Sec. 1.1.3. In order to enumerate the faces for
a given cell type, we have DMPlexGetFaces Internal() for homogeneous cells,
and DMPlexGetRawFacesHybrid Internal() for hybrid cells, meaning cells with
more than one face type, such as prisms. These functions return oriented lists
of vertices for each face of the input cell.

4.1 Serial Algorithm

An initial iteration over cells construct all faces, and enters them into a hash
table, where the hash key is the sorted list of vertices in each face. When dealing
with hybrid cells, we need one pass for each type of face. Once the hash table is
constructed, we know the number of new faces to be inserted, and can allocate
a new Plex. This Plex is identical to the old, except that it has a new face

55

56 CHAPTER 4. INTERPOLATING

3

2 5

4

0 1

(a) original mesh

3

2 5

4

6

7

8

9

10

0 1

(b) mesh (a) interpolated

0 1

2 3 4 5

(c) plex representation of (a)

0 1

2 3 4 5

6 7 8 9 10

(d) plex representation of (b)

Figure 4.1: Sequential topological interpolation.

stratum, and the cone sizes of cells may have changed. For example, hexahderal
cells have 8 vertices, but 6 faces, so that cone size would change from 8 to 6.

A second iteration over cells inserts the faces. We clear the hash table and
repeat the face extraction above. If a face is missing from the table, we insert it
into the table, record its cone, and also insert it into the cell cone with default
orientation. If instead it is present in the table, we insert it into the cell cone
with orientation computed from comparing the face cone with that returned
from DMPlexGetFaces Internal(). Again, for hybrid cells, we need one pass
for each face type.

In order to interpolate an entire mesh, we loop over cell stratum from height
zero, the highest dimensional points, to depth one, the edges. For example, for a
hexahedral mesh, we would interpolate quadrilateral faces, and then edges. The
complexity to interpolate a given stratum is in O(2FCNCNH), where NC is the
number of cells, FC is the number of faces per cell, and NH is the number of face
types per cell. The leading term for a hexahedral mesh is 16N0 + 8N1 + 4N2 =
16C + 8F + 4E, where C is the number of cells, F the number of quadrilateral
faces, and E the number of edges. Clearly, the operations are all linear in the
mesh size.

4.2. PARALLEL ALGORITHM 57

4.2 Parallel algorithm

If interpolation is performed on a parallel mesh, the first step consists in ap-
plying the sequential topological interpolation (Sec. 4.1) and cone orientation
(Sec. 1.1.3) on each rank independently.

Then we must alter the PetscSF structure which identifies mesh points which
are owned by different processes, or leaf points. The SF structure is described
in the PETSc manual and (Zhang et al. 2022). We mark all leaf points which are
adjacent to another ghost point as candidates. These candidate points are then
gathered to root point owners (using PetscSFBcast()). For each candidate, for
each point in the cone, the root checks that either it owns that point in the
SF or it is a local point. If so, it claims ownership. These claims are again
broadcast, allowing a new SF to be created incorporating the new edges/faces.

However, the cone orientation has been done on each rank independently,
meaning that it is only partition-wise correct. In order to make these consistent,
we use the fact that interface edges/faces owned by different ranks represent the
same geometrical entity, i.e. they are connected by the pointSF, like edges 50
and 61 in Fig. 4.2, then they must have a conforming order of cone points (pr
means that point p is owned by rank r). If we let p→ q denote that p is a leaf
of root q in the pointSF, then we can write this requirement as an implication

p0 → p1

cone(p0) = (q00 , . . . , q
n−1
0)

cone(p1) = (q01 , . . . , q
n−1
1)

⇒

q00 → q01

· · ·
qn−10 → qn−11 .

(4.1)

However, if this implication is not satisfied, it must be true for some permutation
in the dihedral group of p, and our job is to find this permutation, which will
give us the new orientation of the point p1.

In Fig. 4.2 the implication is violated for the edges 50 and 61. They are
flipped with respect to each other, or more formally the pointSF connects the
edge and its incident vertices

50 → 61, 20 → 11, 30 → 31,

but the order of cone points does not conform,

20 = cone(50)[0] 6→ cone(61)[0] = 31,

30 = cone(50)[1] 6→ cone(61)[1] = 11.

and only inverting permutations can bring them into coincidence, and would
lead to an incorrect PDE solution if the discretization made use of the edge. In
order to satisfy this requirement, and additional synchronization of the interface
cones must be carried out. We start by synchronization of the interface cone
point numbering. Remember that the pointSF is a one-sided structure, so only
the origins of the arrows can be found directly. Let us assume an edge/face p
on rank r, pr, and a pointSF arrow pointing from pr to some ps, pr → ps. If

58 CHAPTER 4. INTERPOLATING

2

4

5

0

1

3

1

4

5

6

0 6

[0] [1]

2

3

(a) mesh from Fig. 4.1 with non-
conforming cone orientation

2

4

5

0

1

3

1

4

5

6

0 6

[0] [1]

2

3

(b) mesh from Fig. 4.1 with conforming
cone orientation

0 0
[0] [1]

1 2 3 2 31

4 5 6 4 5 6

0 1

0 1 2 1 2 0

1 0

(c) plex representation of (a);
ornt(01)[0] = 0

0 0
[0] [1]

1 2 3 2 31

4 5 6 4 5 6

0 1

0 1 2 1 2 0

0 1

(d) plex representation of (b);
ornt(01)[0] = −2

Figure 4.2: Parallel DMPlex with cone points order and orientation.

we detect an arrow directed from the cone point qr = cone(pr)[c] to qs, we
set root(qr) = qs, otherwise root(qr) = qr. This root(qr) is sent to s using
PetscSFBcastBegin/End(), and stored at the destination rank as leaf(qs).
This is done for each rank, each point with height greater than zero, and each
cone point.

Now from the rank s viewpoint, for the cone of point ps, it has root(cone(ps))
and the received leaf(cone(ps)). If root(qs) = leaf(qs) does not hold for all
cone points, we must transform the cone so that this condition is satisfied. We
do this by updating the orientation ornt(t) for all points t ∈ st(ps) accordingly
to compensate for the change of cone order. We can see that orientation syn-
chronization relies heavily on the pointSF, which is why it must be processed
first.

References

Logg, Anders (2009). “Efficient representation of computational meshes”. In: In-
ternational Journal of Computational Science and Engineering 4.4, pp. 283–
295.

Hapla, Vaclav, Matthew G. Knepley, Michael Afanasiev, Christian Boehm, Mar-
tin van Driel, Lion Krischer, and Andreas Fichtner (2021). “Fully Parallel
Mesh I/O using PETSc DMPlex with an Application to Waveform Model-

REFERENCES 59

ing”. In: SIAM Journal on Scientific Computing 43.2, pp. C127–C153. doi:
10.1137/20M1332748. eprint: http://arxiv.org/abs/2004.08729.

Zhang, Junchao, Jed Brown, Satish Balay, Jacob Faibussowitsch, Matthew Kne-
pley, Oana Marin, Richard Tran Mills, Todd Munson, Barry F. Smith, and
Stefano Zampini (2022). “The PetscSF Scalable Communication Layer”. In:
IEEE Transactions on Parallel and Distributed Systems 33.4, pp. 842–853.
doi: 10.1109/TPDS.2021.3084070.

https://doi.org/10.1137/20M1332748
http://arxiv.org/abs/2004.08729
https://doi.org/10.1109/TPDS.2021.3084070

60 CHAPTER 4. INTERPOLATING

Chapter 5

Extracting

The purpose of computing is insight, not numbers.

— Richard Hamming

5.1 Filtering

5.2 Submeshes

DMPlexCreateSubmesh()
In order to extract a submesh of lower dimension, we

• Get the join of a set of vertices

• Orient the k-faces into a Plex

• Find the boundary

61

62 CHAPTER 5. EXTRACTING

Chapter 6

Extruding

In this branch of utopian real estate, architecture is no longer the art of designing
buildings so much as the brutal skyward extrusion of whatever site the developer has
managed to assemble.

— Rem Koolhaas

Extrusion is the transformation of a mesh to one of higher dimension replac-
ing each cell by a new cell that has two copies of the original as faces, using a
tensor product construction. For example, an extruded segment would become
a quadrilateral, and an extruded triangle becomes a triangular prism. Below,
we will detail this transformation and the many customizations one can make.

6.1 Simple Extrusion

When automating extrusion, we would like to allow for an arbitrary number
of layers. Thus we will need dynamic data structures to indicate how cells
transform, rather than a static definition. We will imagine that we have a
structure with five parts to hold our information,

1. Nt: the number of celltypes produced

2. target: the celltypes produced

3. size: the number of each type of cells

4. cone: the cone of each produced cells

5. ornt: the orientation of each cone point

The cone array is encoded using the scheme we laid out in Section 3.1, namely
that each entry has a celltype, the number of cones to be taken, the cone index
for each, and finally the replica number. In order to describe extrusion for all
cells, we index this structure by celltype. As the simplest example, below we
will explain how a vertex is extruded into a series of line segments.

63

64 CHAPTER 6. EXTRUDING

We first indicate that this description is for celltype point, and then we set
the number of celltypes produced to two. We will make more vertices, and then
either segments or point prism tensors, depending on whether we decide
to use tensor cells in the extrusion. We use the number of layers, Nl, to allocate
the rest of our data structure.

ct = DM POLYTOPE POINT;
Nt[ct] = 2;
Nc = 6∗Nl;
No = 2∗Nl;
PetscMalloc4(Nt[ct], &target[ct], Nt[ct], &size[ct], Nc, &cone[ct], No, &ornt[ct]);
target[ct][0] = DM POLYTOPE POINT;
target[ct][1] = useTensor ? DM POLYTOPE POINT PRISM TENSOR : DM POLYTOPE SEGMENT;
size[ct][0] = Nl+1;
size[ct][1] = Nl;
for (i = 0; i < Nl; ++i) {
cone[ct][6∗i+0] = DM POLYTOPE POINT;
cone[ct][6∗i+1] = 0;
cone[ct][6∗i+2] = i;
cone[ct][6∗i+3] = DM POLYTOPE POINT;
cone[ct][6∗i+4] = 0;
cone[ct][6∗i+5] = i+1;
}
for (i = 0; i < No; ++i) ornt[ct][i] = 0;

For Nl layers, we will have Nl segments and Nl+1 vertices. The vertices have
no cones, but for each segment, we have two vertices which are described solely
by replica number since they are all produced by the original vertex. Finally,
vertices always have orientation 0.

A less trivial example is provided by the extrusion of triangles. We again pro-
duce two celltypes, triangles and either tri prisms or tri prism tensors,
and we must specify cones and orientations for both. As before, we make Nl
prisms and Nl+1 triangles.

ct = DM POLYTOPE TRIANGLE;
Nt[ct] = 2;
Nc = 12∗(Nl+1) + 18∗Nl;
No = 3∗(Nl+1) + 5∗Nl;
PetscMalloc4(Nt[ct], &target[ct], Nt[ct], &size[ct], Nc, &cone[ct], No, &ornt[ct]);
target[ct][0] = DM POLYTOPE TRIANGLE;
target[ct][1] = useTensor ? DM POLYTOPE TRI PRISM TENSOR : DM POLYTOPE TRI PRISM;
size[ct][0] = Nl+1;
size[ct][1] = Nl;

The cones for the triangles are straightforward. They are each formed from
the edges produced by the edges of the original triangle, and in the same order.
Thus, the replica numbers are exactly the layer number, and the orientations are

6.1. SIMPLE EXTRUSION 65

zero. If the orientation of the original triangle is nonzero, this will be propagated
by the group action mentioned above.

for (i = 0; i < Nl+1; ++i) {
cone[ct][12∗i+0] = DM POLYTOPE SEGMENT;
cone[ct][12∗i+1] = 1;
cone[ct][12∗i+2] = 0;
cone[ct][12∗i+3] = i;
cone[ct][12∗i+4] = DM POLYTOPE SEGMENT;
cone[ct][12∗i+5] = 1;
cone[ct][12∗i+6] = 1;
cone[ct][12∗i+7] = i;
cone[ct][12∗i+8] = DM POLYTOPE SEGMENT;
cone[ct][12∗i+9] = 1;
cone[ct][12∗i+10] = 2;
cone[ct][12∗i+11] = i;
}
for (i = 0; i < 3∗(Nl+1); ++i) ornt[ct][i] = 0;

Finally, we construct the cones of the triangular prisms. Each consists of two
triangle endcaps, and three side faces which can be either seg prism tensors
or quadrilaterals. The side faces are those extruded by the edges of the
original triangle, and are all properly oriented. However, if we make tri prisms
then the bottom endcap must reverse orientation so that it has an outward
normal.

coff = 12∗(Nl+1);
ooff = 3∗(Nl+1);
for (i = 0; i < Nl; ++i) {
if (useTensor) {
cone[ct][coff+18∗i+0] = DM POLYTOPE TRIANGLE;
cone[ct][coff+18∗i+1] = 0;
cone[ct][coff+18∗i+2] = i;
cone[ct][coff+18∗i+3] = DM POLYTOPE TRIANGLE;
cone[ct][coff+18∗i+4] = 0;
cone[ct][coff+18∗i+5] = i+1;
cone[ct][coff+18∗i+6] = DM POLYTOPE SEG PRISM TENSOR;
cone[ct][coff+18∗i+7] = 1;
cone[ct][coff+18∗i+8] = 0;
cone[ct][coff+18∗i+9] = i;
cone[ct][coff+18∗i+10] = DM POLYTOPE SEG PRISM TENSOR;
cone[ct][coff+18∗i+11] = 1;
cone[ct][coff+18∗i+12] = 1;
cone[ct][coff+18∗i+13] = i;
cone[ct][coff+18∗i+14] = DM POLYTOPE SEG PRISM TENSOR;
cone[ct][coff+18∗i+15] = 1;
cone[ct][coff+18∗i+16] = 2;

66 CHAPTER 6. EXTRUDING

cone[ct][coff+18∗i+17] = i;
ornt[ct][ooff+5∗i+0] = 0;
ornt[ct][ooff+5∗i+1] = 0;
ornt[ct][ooff+5∗i+2] = 0;
ornt[ct][ooff+5∗i+3] = 0;
ornt[ct][ooff+5∗i+4] = 0;
} else {
cone[ct][coff+18∗i+0] = DM POLYTOPE TRIANGLE;
cone[ct][coff+18∗i+1] = 0;
cone[ct][coff+18∗i+2] = i;
cone[ct][coff+18∗i+3] = DM POLYTOPE TRIANGLE;
cone[ct][coff+18∗i+4] = 0;
cone[ct][coff+18∗i+5] = i+1;
cone[ct][coff+18∗i+6] = DM POLYTOPE QUADRILATERAL;
cone[ct][coff+18∗i+7] = 1;
cone[ct][coff+18∗i+8] = 0;
cone[ct][coff+18∗i+9] = i;
cone[ct][coff+18∗i+10] = DM POLYTOPE QUADRILATERAL;
cone[ct][coff+18∗i+11] = 1;
cone[ct][coff+18∗i+12] = 1;
cone[ct][coff+18∗i+13] = i;
cone[ct][coff+18∗i+14] = DM POLYTOPE QUADRILATERAL;
cone[ct][coff+18∗i+15] = 1;
cone[ct][coff+18∗i+16] = 2;
cone[ct][coff+18∗i+17] = i;
ornt[ct][ooff+5∗i+0] = −2;
ornt[ct][ooff+5∗i+1] = 0;
ornt[ct][ooff+5∗i+2] = 0;
ornt[ct][ooff+5∗i+3] = 0;
ornt[ct][ooff+5∗i+4] = 0;
}
}

6.1.1 Coordinates

New coordinates for the extruded mesh are determined by following the local
normal out some distance from the original surface, and thus can be broken into
two parts: computation of the local normal and computation of the layer start
and thickness. We shall first look at determining the local normal direction.
In the simplest case, we can prescribe a global normal direction, either using
the API in DMPlexExtrude() and DMPlexTransformExtrudeSetNormal(), or
using a command line option, -dm_plex_transform_extrude_normal. If the normal is not
specified and we are extruded an embedded surface, meaning the coordinates
come from a higher dimensional space, then we can compute a local normal.
The local normal at a mesh point p is defined to be the average of the cell

6.2. EMBEDDED EXTRUSION 67

normals for all cells contained in its star. The computation of surface normals
is described in Section 2.5. It would be possible to weight this average, for
example by the area of each cell, but this is not currently done. Finally, if the
normal is not computed or specified, the default normal for a two-dimensional
extruded mesh is ŷ, and for a three-dimensional mesh is ẑ.

6.2 Embedded Extrusion

In crustal dynamics, a fault is a crack in the Earth’s crust along which there is
movement, with adjacent rocks sliding past one another. Faults can be modeled
by dislocations in a mesh, cuts allowing faces to slide past each other. In order
to model this, we must disconnect the mesh along this plane so that the sides
can move independently. We do this by duplicating the k-cells (faces) which
make up the embedded surface. In addition, we can introduce extruded cells to
bridge the cut, which forms the basis of the cohesive cell method to implement
fault rheologies (Aagaard, Knepley, and Williams 2013).

To begin, we must create a representation of the embedded surface and
its boundary, which has been described in Chapter 5. We do this using
DMPlexCreateSubmesh() which accepts a label marking the interface to be
split. This is the label passed to DMPlexCreateHybridMesh() which calls
DMPlexCreateSubmesh() internally. On output, four structures describing the
new mesh are returned. First, a label indicates what parts of the original mesh
impinged on the on division surface. Points directly on the surface are labeled
with their dimension, so an edge 7 on the division surface would have value
1 in label. Points that impinge from the positive side are labeled with their
dimension shifted by one hundred, so an edge 6 with one vertex 3 on the surface
would have value 101 and vertex would have value 0. Points from the negative
side have the opposite values, so an edge 9 from the negative side of the surface
would have value -101 in the label. Second, another label indicates which points
in the new mesh were the result of splitting points in the original mesh. The
label value is the dimension shifted by ±100 depending on the side for the given
point. For example, if two edges 10 and 14 in the new mesh result from splitting
an edge in the original mesh, the label would have value 101 for edge 10 and
value -101 for edge 14. Third, an interface DM is built from the original division
surface using DMPlexCreateSubmesh(). Submeshes all have a label, retrieved
using DMPlexGetSubpointMap(), which maps each point back to a point in the
original mesh from which is was extracted, here the division surface. Lastly, it
returns a new mesh with faces on the division surface extruded into prisms, a
process we will now detail.

When creating the new mesh, we split the algorithm into two phases: a
labeling phase where all decisions are made about how to process points, and a
construction phase where the new mesh itself is built based upon those decisions.
This is very similar to the strategy used in adaptive refinement in Chapter ??.
This division means that in parallel communication may be necessary to build
the labels, but the mesh will not change during this time. When we construct

68 CHAPTER 6. EXTRUDING

the new mesh, hopefully no communication is needed since the labels contain
enough information to proceed independently on each process.

6.2.1 Labeling

In order to split the mesh along the embedded surface, we will augment the
label constructed in DMPlexCreateSubmesh(). We need to mark all cells which
are adjacent to the surface so that we can replace points in their cones and
supports with duplicates as the surface is pulled apart. We label them exactly
as explained above, with negative numbers for one side of the fault, and using
a shift added to the point dimension.

We loop over the mesh cells which are in the support of each surface face.
The orientation of the surface face in the cell gives the side of the surface,
meaning that faces with negative orientation are on the positive side since we
always orient for outward normals. For each cell, we iterate over the closure of
all its faces. It any point in the closure is on the fault, and is not labeled as
being on the surface boundary, we label the face with the same side as the cell.
We mark all boundary points as non-replicated, first checking that it is indeed
part of the surface label. At this point, we also check for cross edges. These are
edges in the surface that connect two points on the surface boundary without
lying on the boundary themselves. We force these into the boundary as well so
that we never have a situation in which an edge is replicated but both of its
endpoints are not.

Finally, we must mark any point adjacent to a replicated point on the surface.
All these points must lie in the star of surface vertices, and in fact vertices not
on the boundary, since the boundary is not replicated. However, we do not have
a simple test for determining which side of the surface a given point is on, so
we proceed iteratively. For each cell in the star of a surface vertex, we check
its faces. Since we have already marked the closure of cells with faces on the
surface, cells adjacent to these will have marked faces. This allows us to classify
the cell and mark its closure. We iterate this process until the whole vertex star
is labeled, or nothing has changed in which case we fail. This iteration cannot
fail if each side of the fault is covered by a solid volume of cells. This can be
interpreted as a breadth-first search along face connections.

TODO If a face is newly marked and shared (owned or ghost), send mark
to sharing procs. Use algorithm from knepley/plex-parallel-submesh.

6.2.2 Construction

Using the label we construct above, we create a new mesh by extruding cells out
of our internal surface. The new mesh will be composed of three types of points:
Normal Points which stay the same
Replicated Points which are copied
Non-replicated Points which are not copied, but still make hybrid points
Hybrid Entirely new points, such as cohesive cells

All points off the surface are normal points. Most surface points are replicated,

REFERENCES 69

except for some boundary points which may be non-replicated. This means
that we put the same point on both sides of the split surface, but allow a hybrid
cell to bridge them. The hybrid points are tensor cells which connected the
replicated and non-replicated points on the surface.

We first calculate the sizes for each depth of each new point type, so that we
can determine a numbering. The replicated and hybrid points are placed after
the normal points in the numbering. We then set the cone size, support size, and
cell type for each new point. The cone sizes and cell types are straightforward,
but the support size requires some logic. We use the input label marking all
points incident to the fault to determine which side of the surface each connected
point is on. This allows us to partition the support of replicated points based
on which side of the surface they lie on. After this, we allocate storage in the
new DM with DMSetUp() and fill in the cones and supports. Then we replace
replicated points in the negative side cones. This could have been done as part
of the last step, but is simpler to split out. After recreating the coordinates,
labels, and point SF, we have a complete mesh.

References

Aagaard, Brad T., Matthew G. Knepley, and Charles A. Williams (2013). “A
Domain Decomposition Approach to Implementing Fault Slip in Finite-
Element Models of Quasi-static and Dynamic Crustal Deformation”. In:
Journal of Geophysical Research: Solid Earth 118.6, pp. 3059–3079. issn:
2169-9356. doi: 10.1002/jgrb.50217.

https://doi.org/10.1002/jgrb.50217

70 CHAPTER 6. EXTRUDING

Chapter 7

Refining

Though the mills of God grind slowly; Yet they grind exceeding small;
Though with patience He stands waiting, With exactness grinds He all.

— Henry Wadsworth Longfellow

7.1 Regular refinement

We understand the process of refinement as a mesh transformation in which
the initial points are replaced by new points with specified cones, exactly as
described in Chapter 3. In regular refinement, we replace each point by some
number of smaller copies of itself. In the simplest case, each source vertex
generates an identical target vertex. A slightly more complicated example is
the segment, which is refined to two segments by placing a vertex in the middle,

23 4

The endpoints produce identical points, and the segment itself produces the two
subsegments and center vertex.

Describe process of figuring out subcell mapping (be precise about orienta-
tion mapping):

• Start with identity for orientation 0 (ex11 -ornt bounds 0,1 REPLACE=1)

• Construct another orientation of the cell

• For each cell produced (tct, r, o)

– Loop over cells of type tct produced from the original orientation

– Match them with DMPolytopeMatchOrientation()

– If a match is found, report (rnew, onew)

– ex11 -print table 1 -ornt bounds o,o+1

71

72 CHAPTER 7. REFINING

Orientation 0 -1

Arrangement

4 5

6

7

89

10

11

12

13 14

15

1617

18

4

56

7

8

9

10

11

12

13

14

1516

17

18

Orientation 1 -2

Arrangement

4

5 6

7

8

9

10

11

12

13

14

15 16

17

18

4

5

6

7 8

9

10

11

1213

14 15

16

1718

Orientation 2 -3

Arrangement

4

5

6

78

9

10

11

12 13

1415

16

17 18 45

6

7

8 9

10

11

12

1314

15

16 17

18

Table 7.1: Regular refinement of all orientations of a triangle.

7.1. REGULAR REFINEMENT 73

Orientation 0 1

Arrangement

8

9

10

11

12 13

14

15

16

17

89

10

11

12

13 14

1516

17

Table 7.2: Regular refinement of all orientations of a tetrahedron.

74 CHAPTER 7. REFINING

7.1.1 Converting cell types

3

4 5

6

7

89

10

1112

13 14

15

1617

18

7.1. REGULAR REFINEMENT 75

4

5

6

7

8

9

10

11

12

13 14

15

16

17

18

76 CHAPTER 7. REFINING

7.1.2 Boundary Layers

7.1.3 Snapping to structure

7.2 Adaptive refinement

7.2.1 Plaza

8 9 10

11 12 13

14 15 16

17

1819

2021

22

23 24 25

26

27

28 29

30

31

32

0

1

2 3

4

5

6

7

7.2. ADAPTIVE REFINEMENT 77

18 19 20

21 22 23

24 25 26

27

28

29

30 31

0

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

7.2.2 p4est

7.2.3 ParMMG

78 CHAPTER 7. REFINING

Chapter 8

Coordinate Transformations

The purpose of computing is insight, not numbers.

— Richard Hamming

8.1 Coordinate Representation

8.2 Direct Modification

Coordinates in Plex are directly available to the user. If the FE discretizing co-
ordinates is interpolatory, simple modifications can be accomplished by directly
modifying the coordinate coefficient values. For example, one could shift a mesh
along a given vector v using

Vec xl;
PetscScalar ∗coords;
PetscInt cdim, N;

DMGetCoordinateDim(dm, &cdim);
DMGetCoordinatesLocal(dm, &xl);
VecGetLocalSize(xl, &N);
VecGetArrayWrite(xl, &coords);
for (PetscInt p = 0; p < N/cdim; ++p) {
for (PetscInt d = 0; d < cdim; ++d) coords[p ∗ cdim + d] += v[d];
}
VecRestoreArrayWrite(xl, &coords);
DMSetCoordinates(dm, NULL);

The last line destroys the global coordinate vector, so that it will be recreated on
the next call to DMGetCoordinates() using the new values from the local vector.
We could have instead changed the global coordinate values and recreated the
local vector.

79

80 CHAPTER 8. COORDINATE TRANSFORMATIONS

8.3 Projection

More complex coordinate transformations, or coordinate update for complex co-
ordinate spaces can use a different mechanism, which amounts to a projection
into the coordinate space. The function which accomplishes the transformation
is DMPlexRemapGeometry(), which takes a PetscPointFunc argument describ-
ing the map. As a simple example, we will shear a domain in direction w,
meaning

x←− x + m (x ·w) . (8.1)

where the vector m indicates the strength of the shearing in each direction, and
should be zero in the direction of w. For example, to shear in the z direction,
we would apply 1 0 mx

0 1 my

0 0 1

 (8.2)

to the coordinate vector x.
First we will create our strength, or moduli, vector m from an array of

multipliers, assuming that the direction w is one of the coordinate directions
dir, which is added at the beginning as the first modulus,

DM cdm;
PetscDS cds;
PetcsInt cdim;
PetscScalar ∗moduli;

DMGetCoordinateDM(dm, &cdm);
DMGetCoordinateDim(dm, &cdim);
PetscMalloc1(cdim + 1, &moduli);
moduli[0] = dir;
for (PetscInt d = 0, e = 0; d < cdim; ++d)
moduli[d + 1] = d == dir ? 0.0 : multipliers[e++];

DMGetDS(cdm, &cds);
PetscDSSetConstants(cds, cdim + 1, moduli);

After creating the moduli, we set them as constants in the PetscDS associated
with the coordinate DM. That way, these will be passed into our point function
during the projection operation. Now we need to define a point function for the
transformation

void f0 shear(PetscInt dim, PetscInt Nf, PetscInt NfAux,
const PetscInt uOff[], const PetscInt uOff x[], const PetscScalar u[],
const PetscScalar u t[], const PetscScalar u x[],

const PetscInt aOff[], const PetscInt aOff x[], const PetscScalar a[],
const PetscScalar a t[], const PetscScalar a x[],

8.3. PROJECTION 81

PetscReal t, const PetscReal x[], PetscInt numConstants,
const PetscScalar constants[], PetscScalar coords[])
{
const PetscInt Nc = uOff[1] − uOff[0];
const PetscInt ax = (PetscInt)PetscRealPart(constants[0]);
PetscInt c;

for (c = 0; c < Nc; ++c) coords[c] = u[c] + constants[c + 1] ∗ u[ax];
}

After this setup, we can remap the coordinates and free the moduli vector.

DMPlexRemapGeometry(dm, 0.0, f0 shear);
PetscFree(moduli);

In the library, this transformation has been encapsulated in the function
DMPlexShearGeometry().

82 CHAPTER 8. COORDINATE TRANSFORMATIONS

Part III

Applications

83

Chapter 9

Crustal Dynamics

The purpose of computing is insight, not numbers.

— Richard Hamming

85

86 CHAPTER 9. CRUSTAL DYNAMICS

Chapter 10

Low Mach Flow

The purpose of computing is insight, not numbers.

— Richard Hamming

87

88 CHAPTER 10. LOW MACH FLOW

Appendices

89

Appendix A

Creating DMPlex Meshes

The simplest way to create a DMPlex is shown below:

DMCreate(comm, &dm);
DMSetType(dm, DMPLEX);
DMSetFromOptions(dm);
DMViewFromOptions(dm, NULL, "−dm view");

This first creates an empty DM object, and then sets its implementation type
to “plex”. Remember that PETSc objects have a two layer structure, with the
top layer being the generic interface (DM), and the bottom layer containing the
concrete implementation type (DMPlex) (Balay et al. 2022). From this basis,
you can use command line options to construct, manipulate, and output meshes.

A.1 Working with files

It is very common to use a mesh generator, such as Gmsh (Geuzaine and
Remacle 2009), TetGen (Si 2015) or Cubit Blacker, Bohnhoff, and Edwards
1994, or CAD program, or simulation package, and end up with your mesh in
a file. PETSc can read a large number of format and convert them to a Plex,
listed in Table A.1. You can read in a file in any of these formats using

-dm_plex_filename <name>

or read in a mesh boundary and have the mesh generated automatically using

-dm_plex_boundary_filename <name>

Once the file is read in, the Plex can become the object of any of the available
transformations. For example, Gmsh meshes are stored with only cells and
vertices,

$ cd src/dm/impls/plex/tests
$ make ex1
$./ex1 -dm_plex_filename ${PETSC_DIR}/share/petsc/datafiles/meshes/square.msh -dm_view
-dm_plex_interpolate 0

DM Object: Simplicial Mesh 1 MPI processes

91

92 APPENDIX A. CREATING DMPLEX MESHES

type: plex
Simplicial Mesh in 2 dimensions:
0-cells: 30
2-cells: 42

Labels:
celltype: 2 strata with value/size (3 (42), 0 (30))
depth: 2 strata with value/size (0 (30), 1 (42))
Cell Sets: 1 strata with value/size (7 (42))

Notice that there are 30 vertices (0-cells) and 42 triangles (2-cells with celltype
3). We can read one in and have the edges and faces calculated automatically
using the interpolation transformation,

$./ex1 -dm_plex_filename ${PETSC_DIR}/share/petsc/datafiles/meshes/square.msh -dm_view
-dm_plex_interpolate 1

DM Object: Simplicial Mesh 1 MPI processes
type: plex

Simplicial Mesh in 2 dimensions:
0-cells: 30
1-cells: 71
2-cells: 42

Labels:
celltype: 3 strata with value/size (0 (30), 3 (42), 1 (71))
depth: 3 strata with value/size (0 (30), 1 (71), 2 (42))
Cell Sets: 1 strata with value/size (7 (42))
Face Sets: 4 strata with value/size (11 (4), 8 (4), 10 (4), 9 (4))

so now there are also 71 edges (1-cells). We can read meshes in parallel, and by
default this happens on the root process,

$ mpiexec -np 3 ./ex1 -dm_plex_filename ${PETSC_DIR}/share/petsc/datafiles/meshes/square.msh
-dm_view

DM Object: Simplicial Mesh 3 MPI processes
type: plex

Simplicial Mesh in 2 dimensions:
0-cells: 30 0 0
1-cells: 71 0 0
2-cells: 42 0 0

Labels:
celltype: 3 strata with value/size (0 (30), 3 (42), 1 (71))
depth: 3 strata with value/size (0 (30), 1 (71), 2 (42))
Cell Sets: 1 strata with value/size (7 (42))
Face Sets: 4 strata with value/size (11 (4), 8 (4), 10 (4), 9 (4))

but we can tell PETSc to distribute the mesh over processes, using a certain
partitioner,

$ mpiexec -np 3 ./ex1 -dm_plex_filename ${PETSC_DIR}/share/petsc/datafiles/meshes/square.msh
-dm_view -dm_distribute -petscpartitioner_type parmetis

DM Object: Simplicial Mesh 3 MPI processes
type: plex

Simplicial Mesh in 2 dimensions:
0-cells: 13 13 13
1-cells: 26 26 26
2-cells: 14 14 14

Labels:
depth: 3 strata with value/size (0 (13), 1 (26), 2 (14))
celltype: 3 strata with value/size (0 (13), 1 (26), 3 (14))
Cell Sets: 1 strata with value/size (7 (14))
Face Sets: 2 strata with value/size (8 (2), 10 (4))

which gives us 14 triangles on each process. We can visualize this most flexibly
using HDF5 and Paraview

$ mpiexec -np 3 ./ex1 -dm_plex_filename ${PETSC_DIR}/share/petsc/datafiles/meshes/square.msh
-dm_distribute -petscpartitioner_type parmetis -dm_partition_view -dm_view hdf5:mesh.h5

$ ${PETSC_DIR}/lib/petsc/bin/petsc_gen_xdmf.py mesh.h5

A.2. WORKING WITH SHAPES 93

Figure A.1: Gmsh mesh partitioned and distributed by PETSc.

which produces Fig. A.1. Next, we will look at creating meshes from familiar
shapes.

A.2 Working with Shapes

Plex has a few built-in domain shapes for which it can create meshes automat-
ically,

DM SHAPE BOX The tensor product of intervals in dimension d
DM SHAPE BOX SURFACE The surface of a box in dimension d+ 1
DM SHAPE BALL The d-dimensional ball
DM SHAPE SPHERE The surface of the (d+ 1)-dimensional ball
DM SHAPE CYLINDER The tensor product of the interval and disk

which use user can select using -dm_plex_shape. They can also choose to
create a domain with the shape of any of the reference cells by using
-dm_plex_reference_cell_domain. Even after choosing the shape, there remain many
properties to be specified for the mesh. By default, meshes are two-dimensional,
but this can be changed using -dm_plex_dim. Meshes are also interpolated by de-
fault, but this can be set using -dm_plex_interpolate. The coordinates can be scaled
with -dm_plex_scale. Last, we need to specify what kind of cells will discretize the
domain. The most common choices are either simplices or tensor product cells,
which can be set using -dm_plex_simplex. However, some shapes support more ex-
otic cells, notably the reference cell domain, which can be set directly using
-dm_plex_cell.

94 APPENDIX A. CREATING DMPLEX MESHES

Format Extension
PETSc/HDF5 .h5
PETSc/Cell-Vertex .dat
Gmsh .msh
Gmsh2 .msh2
Gmsh4 .msh4
CGNS .cgns
ExodusII .exo
Genesis .gen
Fluent .cas
Med .med
PLY .ply
STEP .stp
IGES .iges
EGADS .egads
EGADSLite .egadslite

Table A.1: File formats that can be read and converted to a DMPlex.

Example: Box The simplest, but probably most useful built-in shape is the
box. We can control the number of faces in each direction, and the bounding
box corners through options. The run below produces the mesh in Fig. A.2.

$./ex1 -dm_plex_shape box -dm_plex_dim 3 -dm_plex_box_faces 1,3,5 -dm_plex_box_lower -1,-1,-1
-dm_plex_box_upper 1,1,1 -dm_view hdf5:mesh.h5

$ ${PETSC_DIR}/lib/petsc/bin/petsc_gen_xdmf.py mesh.h5

Example: Periodic box We can also control the periodicity of each di-
mension. The default behavior in Plex is to represent periodicity by making a
periodic topology, rather than identifying separate mesh points. Here we make
a square mesh, periodic in x and y using tensor cells, and demonstrate two
different embeddings, as shown in Fig. A.3.

$./ex1 -dm_plex_shape box -dm_plex_simplex 0 -dm_plex_box_faces 50,70
-dm_plex_box_bd periodic,periodic -dm_view hdf5:mesh.h5

$ ${PETSC_DIR}/lib/petsc/bin/petsc_gen_xdmf.py mesh.h5

We can also cut along the periodic boundary to unroll the mesh for viewing.
Below we show a mesh periodic only in x, with and without the cut, in Fig. A.4

$./ex1 -dm_plex_shape box -dm_plex_simplex 0 -dm_plex_box_faces 5,7
-dm_plex_box_bd periodic,none -dm_view hdf5:mesh1.h5

$ ${PETSC_DIR}/lib/petsc/bin/petsc_gen_xdmf.py mesh1.h5
$./ex1 -dm_plex_shape box -dm_plex_simplex 0 -dm_plex_box_faces 5,7
-dm_plex_box_bd periodic,none -dm_plex_periodic_cut -dm_view hdf5:mesh2.h5

$ ${PETSC_DIR}/lib/petsc/bin/petsc_gen_xdmf.py mesh2.h5

Example: Box with wedges For some shapes, we can change the type of
cell we use. Above, we showed both simples and tensor cells for boxes. We can
also prisms, as shown in Fig. A.5.

A.2. WORKING WITH SHAPES 95

Figure A.2: Box mesh with tetrahedra.

Figure A.3: Doubly periodic box mesh with quadrilaterals.

96 APPENDIX A. CREATING DMPLEX MESHES

Figure A.4: Singly periodic box mesh with quadrilaterals, embedded (left) and
cut (right).

$./ex1 -dm_plex_shape box -dm_plex_dim 3 -dm_plex_cell tensor_triangular_prism
-dm_plex_box_faces 5,7,3 -dm_view hdf5:mesh.h5

$ ${PETSC_DIR}/lib/petsc/bin/petsc_gen_xdmf.py mesh.h5

Example: Sphere Plex creates a sphere using the icosahedral mesh as a
starting point. If we refine it, the subsequent points are inserted on the surface,
as shown in Fig. A.6.

$./ex1 -dm_plex_shape sphere -dm_plex_sphere_radius 10 -dm_view hdf5:mesh1.h5
$ ${PETSC_DIR}/lib/petsc/bin/petsc_gen_xdmf.py mesh1.h5
$./ex1 -dm_plex_shape sphere -dm_plex_sphere_radius 10 -dm_refine 2 -dm_view hdf5:mesh2.h5
$ ${PETSC_DIR}/lib/petsc/bin/petsc_gen_xdmf.py mesh2.h5

We can also mesh spheres using tensor cells, where we being with a cube, as in
Fig. A.7.

$./ex1 -dm_plex_shape sphere -dm_plex_simplex 0 -dm_view hdf5:mesh1.h5
$ ${PETSC_DIR}/lib/petsc/bin/petsc_gen_xdmf.py mesh1.h5
$./ex1 -dm_plex_shape sphere -dm_plex_simplex 0 -dm_refine 4 -dm_view hdf5:mesh2.h5
$ ${PETSC_DIR}/lib/petsc/bin/petsc_gen_xdmf.py mesh2.h5

Example: Ball The ball can be created by running a mesh generator on
the sphere mesh, as in Fig. A.8. The generated mesh would be very poor if
we started with a coarse boundary, so we refine it twice using the bd prefix.
Notice that by default, the generator does not create a nice interior mesh, and
it will look worse with uniform refinement, so we refine it based on a volume
constraint up front.

$./ex1 -dm_plex_shape ball -dm_plex_dim 3 -dm_plex_ball_radius 10 -bd_dm_refine 2
-dm_view hdf5:mesh1.h5

$ ${PETSC_DIR}/lib/petsc/bin/petsc_gen_xdmf.py mesh1.h5
$./ex1 -dm_plex_shape ball -dm_plex_dim 3 -dm_plex_ball_radius 10 -bd_dm_refine 2
-dm_refine_volume_limit_pre 10 -dm_view hdf5:mesh2.h5

$ ${PETSC_DIR}/lib/petsc/bin/petsc_gen_xdmf.py mesh2.h5

It would be possible to use tensor cells in a cubed-sphere approach, but PETSc
does not currently support this.

A.2. WORKING WITH SHAPES 97

Figure A.5: Box mesh with tensor triangular prisms.

Figure A.6: Sphere mesh with triangles, before and after refinement.

Figure A.7: Sphere mesh with quadrilaterals, before and after refinement.

98 APPENDIX A. CREATING DMPLEX MESHES

Figure A.8: Ball mesh with tetrahedra, before and after volume-constrained
refinement.

Example: Periodic cylinder Currently, Plex only creates cylinders with
tensor cells so that periodicity is supported, but visualization for periodic cylin-
ders is not yet supported. We can make a non-periodic cylinder, but refinement
remapping is only effective once, so we turn it off during a pre-refinement stage,
with the final cylinder shown in Fig. A.9.

$./ex1 -dm_plex_shape cylinder -dm_refine_pre 2 -dm_refine_remap_pre 0 -dm_refine 1
-dm_view hdf5:mesh.h5

$ ${PETSC_DIR}/lib/petsc/bin/petsc_gen_xdmf.py mesh.h5
$./ex1 -dm_plex_shape cylinder -dm_plex_cylinder_bd periodic

Example: Cylinder with wedges We can make a cylinder from tensor
triangular prisms, as in Fig. A.10. Notice that refinement for tensor cells does
not split the tensor direction.

$./ex1 -dm_plex_shape cylinder -dm_plex_cell tensor_triangular_prism -dm_plex_cylinder_num_wedges 7
-dm_refine 1 -dm_view hdf5:mesh.h5

$ ${PETSC_DIR}/lib/petsc/bin/petsc_gen_xdmf.py mesh.h5

A.3 Working in Parallel

A.3. WORKING IN PARALLEL 99

Figure A.9: Cylinder mesh with tensor triangular prisms.

Figure A.10: Cylinder mesh with tensor triangular prisms.

100 APPENDIX A. CREATING DMPLEX MESHES

References

Balay, Satish et al. (2022). PETSc/TAO Users Manual. Tech. rep. ANL-21/39
- Revision 3.18. Argonne National Laboratory.

Geuzaine, Christophe and Jean-François Remacle (2009). “Gmsh: A 3-D fi-
nite element mesh generator with built-in pre-and post-processing facili-
ties”. In: International Journal for Numerical Methods in Engineering 79.11,
pp. 1309–1331.

Si, Hang (Feb. 2015). “TetGen, a Delaunay-Based Quality Tetrahedral Mesh
Generator”. In: ACM Trans. on Mathematical Software 41.2. doi: 10.1145/

2629697.
Blacker, Ted D, William J Bohnhoff, and Tony L Edwards (1994). CUBIT mesh

generation environment. Volume 1: Users manual. Tech. rep. Sandia Na-
tional Labs., Albuquerque, NM (United States).

https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697

Index 101

Index

Numbers written in italic refer to the page where the corresponding entry is
described; numbers underlined refer to the definition; numbers in roman refer
to the pages where the entry is used.

k-cell, 11

Cayley Table, 21
cohesive cell, 67
complex, 11, 16
configuration, 14
conforming, 11
Coxeter groups, 21
cross edges, 68

dihedral group, 19
dof, 39

fault, 67

group transformations, 15

hybrid, 55

interpolation, 55
invariance theorems, 15

leaf, 57

mesh interpolation, 16

orientation, 15, 16

output sensitive, 45

reduced point number, 51

replica number, 48

root, 57

topological space, 11

transformation type, 47

weakly equivalent, 41

	I Representations
	1 Topology
	1.1 Conforming Topology
	1.1.1 The Hasse Diagram
	1.1.2 Mesh Interpolation
	1.1.3 Orientation
	1.1.4 Periodicity
	1.1.5 CAD Interface

	1.2 Nonconforming Topology
	1.2.1 The Parent Tree
	1.2.2 Anchors and Constraints

	1.3 Submeshes
	1.4 Parallelism
	1.4.1 Distribution

	2 Functions
	2.1 PetscSection
	2.1.1 Constraints
	2.1.2 Symmetries

	2.2 Parallelism
	2.2.1 Local and Global Sections
	2.2.2 Data Distribution

	2.3 Periodicity
	2.4 Global Basis Transformation
	2.5 Geometry
	2.6 Projection
	2.6.1 Interpolation
	2.6.2 L2 projection

	II Transformations
	3 General Transformations
	3.1 Definition
	3.2 Group Action
	3.3 Numbering
	3.4 Implementation

	4 Interpolating
	4.1 Serial Algorithm
	4.2 Parallel algorithm

	5 Extracting
	5.1 Filtering
	5.2 Submeshes

	6 Extruding
	6.1 Simple Extrusion
	6.1.1 Coordinates

	6.2 Embedded Extrusion
	6.2.1 Labeling
	6.2.2 Construction

	7 Refining
	7.1 Regular refinement
	7.1.1 Converting cell types
	7.1.2 Boundary Layers
	7.1.3 Snapping to structure

	7.2 Adaptive refinement
	7.2.1 Plaza
	7.2.2 p4est
	7.2.3 ParMMG

	8 Coordinate Transformations
	8.1 Coordinate Representation
	8.2 Direct Modification
	8.3 Projection

	III Applications
	9 Crustal Dynamics
	10 Low Mach Flow
	Appendix A Creating DMPlex Meshes
	A.1 Working with files
	A.2 Working with Shapes
	A.3 Working in Parallel

	Index

