<div dir="ltr"><div dir="ltr">On Wed, Oct 19, 2022 at 1:04 PM Jackie Chan <<a href="mailto:chenlonglong0099@163.com">chenlonglong0099@163.com</a>> wrote:<br></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div style="line-height:1.7;color:rgb(0,0,0);font-size:14px;font-family:Arial"><div style="text-align:left"><span style="font-family:"Times New Roman";color:black;font-size:16px">Dear All,</span></div><div style="text-align:left"><span style="font-family:"Times New Roman";color:black;font-size:16px"><br></span></div><div style="text-align:left"><span style="font-family:"Times New Roman";font-size:16px"> I hope you're having a nice day.</span></div><div style="text-align:left"><span style="font-size:16px"><span lang="EN-US" style="font-size:16px;font-family:"Times New Roman",serif"> In finite element problems</span><font face="Times New Roman">, </font><span lang="EN-US" style="font-size:16px;font-family:"Times New Roman",serif">the stiffness matrix and <span style="font-size:16px;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">load vector</span> are constructed to calculate the displacement
vector using DMCreateMatrix and DMCreateGlobalVector, respectively. For some reason, I need to
make sure that the displacements of nodes on the opposite edges of two-dimensional
structured grid domain satisfy relative displacement condition. For example, the
displacements of two points with natural coordinates (x,Ymin)
and (x,Ymax)</span></span><span style="font-size:16px"><span lang="EN-US" style="font-family:"Times New Roman",serif">, i.e. the points are located on the upper and lower edges of 2D grid </span></span><span style="font-family:"Times New Roman",serif;font-size:16px">domain</span><span style="font-family:"Times New Roman",serif;font-size:16px"> </span><span style="font-family:"Times New Roman",serif;font-size:16px">and have the
same x-coordinates, are equal </span><span style="font-family:"Times New Roman",serif;font-size:10.5pt">respectively</span><span style="font-family:"Times New Roman",serif;font-size:16px">. To achieve this, I need to add particularly
big numbers to specific entries in stiffness matrix. In this way, the positions
of big numbers are usually far away from each other and belong to different
processes. I have tried many KSP types and PC settings to solve displacement
vector. However, the final results are mostly incorrect. The best solver type I
have tried is cg, but it still has some problems like excessive time consuming
and convergence steps. So, for this problem, what kind of KSP type and PC type are suitable? Or is there a way to speed up the calculation
process?</span></div></div></blockquote><div><br></div><div>Do you really just want a periodic domain? It seems like you should just make those identified nodes the same.</div><div><br></div><div> Thanks,</div><div><br></div><div> Matt</div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div style="line-height:1.7;color:rgb(0,0,0);font-size:14px;font-family:Arial"><div style="text-align:left"><span style="font-family:"Times New Roman";font-size:16px">Thanks,</span></div><div style="text-align:left"><span style="font-family:"Times New Roman";font-size:16px">Jackie Chan</span></div><span style="font-family:"Times New Roman""></span><br></div></blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>What most experimenters take for granted before they begin their experiments is infinitely more interesting than any results to which their experiments lead.<br>-- Norbert Wiener</div><div><br></div><div><a href="http://www.cse.buffalo.edu/~knepley/" target="_blank">https://www.cse.buffalo.edu/~knepley/</a><br></div></div></div></div></div></div></div></div>